Using Remote Sensing Data and Species–Environmental Matching Model to Predict the Potential Distribution of Grassland Rodents in the Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Framework
2.3. Rodent Species Occurrence Data
2.4. Environmental Factors from Remote-Sensing Big Data
2.5. Maxent Modeling and Validation
3. Results
3.1. The Potential Suitable Distribution of Five Major Rodents in Northern China
3.2. Environmental Variable Importance Analysis on Habitat Suitability
3.3. Response Curves of the Top Four Environmental Variables
4. Discussion
4.1. Innovations and Caveats
4.2. Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, A.S.; Young, J.C. Hantavirus pulmonary syndrome: At the crossroads. Curr. Opin. Infect. Dis. 2001, 14, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Guan, Y.; Tian, T.; Wu, W.; Wang, Q.; Huang, Y.; Li, G.; Wang, L. Distribution of the intermediate hosts of Echinococcus multilocularis in Shiqu County, Sichuan, China. Chin. Med. J. 2011, 124, 2834–2837. [Google Scholar] [CrossRef] [PubMed]
- Ocampo-Chavira, P.; Eaton-Gonzalez, R.; Riquelme, M. Of Mice and Fungi: Coccidioides spp. Distribution Models. J. Fungi 2020, 6, 320. [Google Scholar] [CrossRef] [PubMed]
- Lerdthusnee, K.; Nigro, J.; Monkanna, T.; Leepitakrat, W.; Leepitakrat, S.; Insuan, S.; Charoensongsermkit, W.; Khlaimanee, N.; Akkagraisee, W.; Chayapum, K.; et al. Surveys of rodent-borne disease in Thailand with a focus on scrub typhus assessment. Integr. Zool. 2008, 3, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Addink, E.A.; De Jong, S.M.; Davis, S.A.; Dubyanskiy, V.; Burdelov, L.A.; Leirs, H. The use of high-resolution remote sensing for plague surveillance in Kazakhstan. Remote Sens. Environ. 2010, 114, 674–681. [Google Scholar] [CrossRef]
- Sage, K.M.; Johnson, T.L.; Teglas, M.B.; Nieto, N.C.; Schwan, T.G. Ecological niche modeling and distribution of Ornithodoros hermsi associated with tick-borne relapsing fever in western North America. PLoS Negl. Trop. Dis. 2017, 11, e0006047. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, K.; Mohammadi, S.; Eskandarzadeh, N. How will climate change affect the temporal and spatial distributions of a reservoir host, the Indian gerbil (Tatera indica), and the spread of zoonotic diseases that it carries? Evol. Ecol. Res. 2018, 19, 215–226. [Google Scholar]
- Tian, L. Relationship between environmental factors and the spatial distribution of Spermophilus dauricus during 2000–2015 in China. Int. J. Biometeorol. 2018, 62, 1781–1789. [Google Scholar] [CrossRef]
- Biscornet, L.; Revillion, C.; Jego, S.; Lagadec, E.; Gomard, Y.; Le Minter, G.; Rocamora, G.; Guernier-Cambert, V.; Melade, J.; Dellagi, K.; et al. Predicting the Presence of Leptospires in Rodents from Environmental Indicators Opens Up Opportunities for Environmental Monitoring of Human Leptospirosis. Remote Sens. 2021, 13, 325. [Google Scholar] [CrossRef]
- Fatima, S.H.; Zaidi, F.; Adnan, M.; Ali, A.; Jamal, Q.; Khisroon, M. Rat-bites of an epidemic proportion in Peshawar vale; a GIS based approach in risk assessment. Environ. Monit. Assess. 2018, 190, 233. [Google Scholar] [CrossRef]
- Graham, A.J.; Danson, F.M.; Pleydell, D. Remote sensing for disease transmission: Small mammal and vegetation interactions. In Proceedings of the International Goscience and Remote Sensing Symposium (IGARSS), Toulouse, France, 21–25 July 2003; pp. 4546–4548. [Google Scholar] [CrossRef]
- Goodin, D.G.; Koch, D.E.; Owen, R.D.; Chu, Y.K.; Hutchinson, J.M.S.; Jonsson, C.B. Land cover associated with hantavirus presence in Paraguay. Glob. Ecol. Biogeogr. 2006, 15, 519–527. [Google Scholar] [CrossRef]
- Herbreteau, V.; Demoraes, F.; Hugot, J.P.; Kittayapong, P.; Salem, G.; Souris, M.; Gonzalez, J.P. Perspectives on applied spatial analysis to animal health: A case of rodents in Thailand. Ann. N. Y. Acad. Sci. 2006, 1081, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Qian, Q.; Wang, Z.; Glass, G.; Song, S.; Zhang, W.; Li, X.; Yang, H.; Wang, X.; Fang, L.; et al. Using Geographic Information System-based Ecologic Niche Models to Forecast the Risk of Hantavirus Infection in Shandong Province, China. Am. J. Trop. Med. Hyg. 2011, 84, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahoz-Monfort, J.J.; Guillera-Arroita, G.; Milner-Gulland, E.J.; Young, R.P.; Nicholson, E. Satellite imagery as a single source of predictor variables for habitat suitability modelling: How Landsat can inform the conservation of a critically endangered lemur. J. Appl. Ecol. 2010, 47, 1094–1102. [Google Scholar] [CrossRef]
- Monjeau, J.A.; Rotela, C.H.; Lamfri, M.; Marquez, J.; Scavuzzo, C.M.; Stanulescu, M.; Nabte, M.J.; Rial, E.G. Estimating habitat suitability for potential hantavirus reservoirs in north-western Patagonia using satellite imagery: Searching for the best predictive tools. Mamm. Biol. 2011, 76, 409–416. [Google Scholar] [CrossRef]
- Mohammadi, S.; Ebrahimi, E.; Shahriari Moghadam, M.; Bosso, L. Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecol. Inform. 2019, 52, 7–13. [Google Scholar] [CrossRef]
- Valerio, F.; Ferreira, E.; Godinho, S.; Pita, R.; Mira, A.; Fernandes, N.; Santos, S.M. Predicting Microhabitat Suitability for an Endangered Small Mammal Using Sentinel-2 Data. Remote Sens. 2020, 12, 562. [Google Scholar] [CrossRef] [Green Version]
- Su, J.H.; Aryal, A.; Nan, Z.B.; Ji, W.H. Climate Change-Induced Range Expansion of a Subterranean Rodent: Implications for Rangeland Management in Qinghai-Tibetan Plateau. PLoS ONE 2015, 10, e0138969. [Google Scholar] [CrossRef]
- Hamidi, K.; Matin, M.M.; Kilpatrick, C.W.; Eskandarzadeh, N. Landscape and niche specialisation of two brush-tailed mice species Calomyscus elburzensis and C. hotsoni in Iran: A case of the role of ecological niche modelling in finding area(s) of contact. Ethol. Ecol. Evol. 2019, 31, 435–456. [Google Scholar] [CrossRef]
- Barros, M.I.; Brito, J.C.; Campos, J.C.; Mappes, T.; Qninba, A.; Sousa, F.V.; Boratynski, Z. The effect of rainfall on population dynamics in Sahara-Sahel rodents. Mammal Res. 2018, 63, 485–492. [Google Scholar] [CrossRef]
- Lorenzo, C.; Rioja-Paradela, T.; Carrillo-Reyes, A.; Santiz-Lopez, E.; Bolanos-Citalan, J. Projected impact of global warming on the distribution of two pocket mouse species with implications on the conservation of Heteromys nelsoni (Rodentia: Heteromyidae). Rev. Biol. Trop. 2019, 67, 1210–1219. [Google Scholar] [CrossRef]
- Clement, L.; Catzeflis, F.; Richard-Hansen, C.; Barrioz, S.; de Thoisy, B. Conservation interests of applying spatial distribution modelling to large vagile Neotropical mammals. Trop. Conserv. Sci. 2014, 7, 202–223. [Google Scholar] [CrossRef]
- Simone, I.; Provensal, C.; Polop, J. Habitat use by corn mice (Calomys musculinus) in cropfield borders of agricultural ecosystems in Argentina. Wildlife Res. 2012, 39, 112–122. [Google Scholar] [CrossRef]
- Andreo, V.; Belgiu, M.; Hoyos, D.B.; Osei, F.; Provensal, C.; Stein, A. Rodents and satellites: Predicting mice abundance and distribution with Sentinel-2 data. Ecol. Inform. 2019, 51, 157–167. [Google Scholar] [CrossRef]
- Naderi, M.; Kaboli, M.; Ahmadi, M.; Krystufek, B. Fat Dormouse (Glis glis) distribution modeling in the Hyrcanian relict forests of Northern Iran. Pol. J. Ecol. 2016, 64, 136–142. [Google Scholar] [CrossRef]
- Barlett, T.R.; Martin, G.M.; Laguna, M.F.; Abramson, G.; Monjeau, A. Climatic constraints and the distribution of Patagonian mice. J. Mammal. 2019, 100, 1979–1991. [Google Scholar] [CrossRef]
- Martin-Regalado, C.N.; Briones-Salas, M.; Lavariega, M.C.; Moreno, C.E. Spatial incongruence in the species richness and functional diversity of cricetid rodents. PLoS ONE 2019, 14, e0217154. [Google Scholar] [CrossRef]
- Widick, I.V.; Bean, W.T. Evaluating current and future range limits of an endangered, keystone rodent (Dipodomys ingens). Divers. Distrib. 2019, 25, 1074–1087. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.; Haseeb, M.A. Modeling the ecologic niche of plague in sylvan and domestic animal hosts to delineate sources of human exposure in the western United States. PeerJ 2015, 3, e1493. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Schmid, B.V.; Liu, J.; Si, X.Y.; Stenseth, N.C.; Zhang, Z.B. The trophic responses of two different rodent-vector-plague systems to climate change. Proc. Biol. Sci. 2015, 282, 20141846. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Graham, C.H.; Elith, J.; Hijmans, R.J.; Guisan, A.; Townsend Peterson, A.; Loiselle, B.A. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 2008, 45, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Veiga, P.; Saatchi, S.; Tansey, K.; Balzter, H. Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico. Remote Sens. Environ. 2016, 183, 265–281. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Roberts, D.A.; Stow, D.A.; An, L.; Hall, S.J.; Yabiku, S.T.; Kyriakidis, P.C. Mapping understory invasive plant species with field and remotely sensed data in Chitwan, Nepal. Remote Sens. Environ. 2020, 250, 112037. [Google Scholar] [CrossRef]
- Flory, A.R.; Kumar, S.; Stohlgren, T.J.; Cryan, P.M. Environmental conditions associated with bat white-nose syndrome mortality in the north-eastern United States. J. Appl. Ecol. 2012, 49, 680–689. [Google Scholar] [CrossRef]
- Ancillotto, L.; Bosso, L.; Smeraldo, S.; Smeraldo, S.; Mori, E.; Mazza, G.; Herkt, M.; Galimberti, A.; Ramazzotti, F.; Russo, D. An African bat in Europe, Plecotus gaisleri: Biogeographic and ecological insights from molecular taxonomy and Species Distribution Models. Ecol. Evol. 2020, 10, 5785–5800. [Google Scholar] [CrossRef]
- Hintze, F.; Machado, R.B.; Bernard, E. Bioacoustics for in situ validation of species distribution modelling: An example with bats in Brazil. PLoS ONE 2021, 16, e0248797. [Google Scholar] [CrossRef]
- Mateo-Tomás, P.; Olea, P.P.; Sánchez-Barbudo, I.S.; Mateo, R. Alleviating human–wildlife conflicts: Identifying the causes and mapping the risk of illegal poisoning of wild fauna. J. Appl. Ecol. 2012, 49, 376–385. [Google Scholar] [CrossRef]
- Gallardo, B.; Aldridge, D.C. The ‘dirty dozen’: Socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. J. Appl. Ecol. 2013, 50, 757–766. [Google Scholar] [CrossRef]
- Bean, W.T.; Prugh, L.R.; Stafford, R.; Butterfield, H.S.; Westphal, M.; Brashares, J.S. Species distribution models of an endangered rodent offer conflicting measures of habitat quality at multiple scales. J. Appl. Ecol. 2014, 51, 1116–1125. [Google Scholar] [CrossRef] [Green Version]
- Ørsted, I.V.; Ørsted, M. Species distribution models of the Spotted Wing Drosophila (Drosophila suzukii, Diptera: Drosophilidae) in its native and invasive range reveal an ecological niche shift. J. Appl. Ecol. 2019, 56, 423–435. [Google Scholar] [CrossRef]
- Alaniz, A.J.; Soares, A.O.; Vergara, P.M.; de Azevedo, E.B.; Grez, A.A. The failed invasion of Harmonia axyridis in the Azores, Portugal: Climatic restriction or wrong population origin? Insect Sci. 2021, 28, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.P.; Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 2010, 37, 1378–1393. [Google Scholar] [CrossRef]
- Taylor, P.J.; Nengovhela, A.; Linden, J.; Baxter, R.M. Past, present, and future distribution of Afromontane rodents (Muridae: Otomys) reflect climate-change predicted biome changes. Mammalia 2016, 80, 359–375. [Google Scholar] [CrossRef]
- Aghová, T.; Šumbera, R.; Piálek, L.; Mikula, O.; McDonough, M.M.; Lavrenchenko, L.A.; Meheretu, Y.; Mbau, J.S.; Bryja, J. Multilocus phylogeny of East African gerbils (Rodentia, Gerbilliscus) illuminates the history of the Somali-Masai savanna. J. Biogeogr. 2017, 44, 2295–2307. [Google Scholar] [CrossRef]
- Percequillo, A.R.; Dalapicolla, J.; Abreu, E.F.; Roth, P.R.O.; Ferraz, K.; Chiquito, E.A. How many species of mammals are there in Brazil? New records of rare rodents (Rodentia: Cricetidae: Sigmodontinae) from Amazonia raise the current known diversity. PeerJ 2017, 5, e4071. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Li, Y.; Xu, B.; Wei, J.; Li, S.; Dong, J.; Qu, J.; Xu, J.; Huang, Z.; Ma, C.; et al. Using Satellite Data for the Characterization of Local Animal Reservoir Populations of Hantaan Virus on the Weihe Plain, China. Remote Sens. 2017, 9, 1076. [Google Scholar] [CrossRef] [Green Version]
- Boria, R.A.; Blois, J.L. The effect of large sample sizes on ecological niche models: Analysis using a North American rodent, Peromyscus maniculatus. Ecol. Model. 2018, 386, 83–88. [Google Scholar] [CrossRef]
- Galante, P.J.; Alade, B.; Muscarella, R.; Jansa, S.A.; Goodman, S.M.; Anderson, R.P. The challenge of modeling niches and distributions for data-poor species: A comprehensive approach to model complexity. Ecography 2018, 41, 726–736. [Google Scholar] [CrossRef] [Green Version]
- Mayamba, A.; Byamungu, R.M.; Vanden Broecke, B.; Leirs, H.; Hieronimo, P.; Nakiyemba, A.; Isabirye, M.; Kifumba, D.; Kimaro, D.; Mdangi, M.; et al. Factors influencing the distribution and abundance of small rodent pest species in agricultural landscapes in Eastern Uganda. J. Vertebr Biol. 2020, 69, 20002.1-17. [Google Scholar] [CrossRef]
- Austrich, A.; Kittlein, M.J.; Mora, M.S.; Mapelli, F.J. Potential distribution models from two highly endemic species of subterranean rodents of Argentina: Which environmental variables have better performance in highly specialized species? Mamm. Biol. 2021, 101, 503–519. [Google Scholar] [CrossRef]
- Chidodo, D.J.; Kimaro, D.N.; Hieronimo, P.; Makundi, R.H.; Isabirye, M.; Leirs, H.; Massawe, A.; Mdangi, M.; Kifumba, D.; Mulungu, L. Application of normalized difference vegetation index (NDVI) to forecast rodent population abundance in smallholder agro-ecosystems in semi-arid areas in Tanzania. Mammalia 2020, 84, 136–143. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, Y.; Huang, W.; Ren, B.; Deng, Q.; Shi, Y.; Bai, J.; Ren, Y.; Geng, Y.; Ma, H. Overwintering Distribution of Fall Armyworm (Spodoptera frugiperda) in Yunnan, China, and Influencing Environmental Factors. Insects 2020, 11, 805. [Google Scholar] [CrossRef] [PubMed]
- Bean, W.T.; Stafford, R.; Brashares, J.S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 2012, 35, 250–258. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Frederico, R.G.; De Marco, P.J.; Zuanon, J. Evaluating the use of macroscale variables as proxies for local aquatic variables and to model stream fish distributions. Freshw. Biol. 2014, 59, 2303–2314. [Google Scholar] [CrossRef]
- Tye, C.A.; McCleery, R.A.; Fletcher, R.J., Jr.; Greene, D.U.; Butryn, R.S. Evaluating citizen vs. professional data for modelling distributions of a rare squirrel. J. Appl. Ecol. 2017, 54, 628–637. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
Maxent Models | AUC | TSS |
---|---|---|
Microtus | 0.96 | 0.86 |
Citellus | 0.93 | 0.88 |
Myospalax | 0.96 | 0.85 |
Meriones | 0.92 | 0.77 |
Ochotona | 0.99 | 0.93 |
Rodent Species | HS | MS | LS | US | ||||
---|---|---|---|---|---|---|---|---|
Proportion | Area/km2 | Proportion | Area/km2 | Proportion | Area/km2 | Proportion | Area/km2 | |
Microtus | 0.32% | 13,216 | 9.39% | 386,754 | 25.05% | 1,031,401 | 65.24% | 2,686,409 |
Citellus | 0.53% | 21,707 | 2.72% | 111,910 | 5.49% | 225,863 | 91.27% | 3,758,300 |
Myospalax | 0.31% | 12,568 | 2.35% | 96,585 | 5.21% | 214,502 | 92.14% | 3,794,125 |
Meriones | 0.71% | 29,370 | 6.75% | 278,004 | 17.14% | 705,678 | 75.40% | 3,104,728 |
Ochotona | 0.20% | 8112 | 0.50% | 20,616 | 0.77% | 31,782 | 98.53% | 4,057,270 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Sun, Z.; Qimuge, E.; Ye, H.; Huang, W.; Nie, C.; Wang, K.; Zhou, Y. Using Remote Sensing Data and Species–Environmental Matching Model to Predict the Potential Distribution of Grassland Rodents in the Northern China. Remote Sens. 2022, 14, 2168. https://doi.org/10.3390/rs14092168
Lu L, Sun Z, Qimuge E, Ye H, Huang W, Nie C, Wang K, Zhou Y. Using Remote Sensing Data and Species–Environmental Matching Model to Predict the Potential Distribution of Grassland Rodents in the Northern China. Remote Sensing. 2022; 14(9):2168. https://doi.org/10.3390/rs14092168
Chicago/Turabian StyleLu, Longhui, Zhongxiang Sun, Eerdeng Qimuge, Huichun Ye, Wenjiang Huang, Chaojia Nie, Kun Wang, and Yantao Zhou. 2022. "Using Remote Sensing Data and Species–Environmental Matching Model to Predict the Potential Distribution of Grassland Rodents in the Northern China" Remote Sensing 14, no. 9: 2168. https://doi.org/10.3390/rs14092168
APA StyleLu, L., Sun, Z., Qimuge, E., Ye, H., Huang, W., Nie, C., Wang, K., & Zhou, Y. (2022). Using Remote Sensing Data and Species–Environmental Matching Model to Predict the Potential Distribution of Grassland Rodents in the Northern China. Remote Sensing, 14(9), 2168. https://doi.org/10.3390/rs14092168