Machine Learning-Based Concrete Crack Depth Prediction Using Thermal Images Taken under Daylight Conditions
Abstract
:1. Introduction
2. Thermal Image Collection
2.1. Test Program
2.2. Test Specimen
2.3. Test Setup
2.4. Test Results
3. Data Analysis Result and Discussion
3.1. Parameter Information
3.2. Machine Learning
3.3. Results and Discussions
4. Data Bias Analysis Result and Discussion
4.1. Data Bias Analysis
4.2. Analysis Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aggelis, D.G.; Shiotani, T.; Polyzos, D. Characteristics of surface crack depth and repair evaluation using Rayleigh waves. Cem. Concr. Compos. 2009, 31, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Wang, Y. Crack-Depth estimation in concrete elements using ultrasonic shear-horizontal waves. J. Perform. Constr. Facil. 2020, 34, 04020064. [Google Scholar] [CrossRef]
- Sham, F.C.; Chen, N.; Long, L. Surface crack detection by flash thermography on concrete surface. Insight Non-Destr. Test. Cond. Monit. 2008, 50, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Omar, T.; Nehdi, M.L. Remote sensing of concrete bridge decks using manned aerial vehicle infrared thermography. Autom. Constr. 2017, 83, 360–371. [Google Scholar] [CrossRef]
- Omar, T.; Nehdi, M.L.; Zayed, T. Infrared thermography model for automated detection of delamination in RC bridge decks. Constr. Build. Mater. 2018, 168, 313–327. [Google Scholar] [CrossRef]
- Kodikara, J.; Rajeev, P.; Rhoden, N.J. Determination of thermal diffusivity of soil using infrared thermal imaging. Can. Geotech. J. 2011, 48, 1295–1302. [Google Scholar] [CrossRef]
- Andrade, R.M.D.; Eduardo, A.C. Methodology for automatic process of the fired ceramic tile’s internal defect using IR images and artificial neural network. J. Braz. Soc. Mech. Sci. Eng. 2011, 33, 67–73. [Google Scholar] [CrossRef]
- Bauer, E.; de Freitas, V.P.; Mustelier, N.; Barreira, E.; de Freitas, S.S. Infrared thermography–evaluation of the results reproducibility. Struct. Surv. 2015, 33, 20–35. [Google Scholar] [CrossRef]
- Seo, H. Infrared thermography for detecting cracks in pillar models with different reinforcing systems. Tunn. Undergr. Space Technol. 2021, 116, 104118. [Google Scholar] [CrossRef]
- Chun, P.J.; Hayashi, S. Development of a concrete floating and delamination detection system using infrared thermography. IEEE-ASME Trans. Mechatron. 2021, 26, 2835–2844. [Google Scholar] [CrossRef]
- Feroz, S.; Abu Dabous, S. UAV-based remote sensing applications for bridge condition assessment. Remote Sens. 2021, 13, 1809. [Google Scholar] [CrossRef]
- Mandirola, M.; Casarotti, C.; Peloso, S.; Lanese, I.; Brunesi, E.; Senaldi, I. Use of UAS for damage inspection and assessment of bridge infrastructures. Int. J. Disaster Risk Reduct. 2022, 72, 102824. [Google Scholar] [CrossRef]
- Tong, X.; Guo, J.; Ling, Y.; Ying, Z. A new image-based method for concrete bridge bottom crack detection. In Proceedings of the 2011 International Conference on Image Analysis and Signal Processing, Wuhan, China, 21–23 October 2011. [Google Scholar]
- Nguyen, H.N.; Kam, T.Y.; Cheng, P.Y. A novel automatic concrete surface crack identification using isotropic undecimated wavelet transform. In Proceedings of the 2012 International Symposium on Intelligent Signal Processing and Communications System, New Taipei City, Taiwan, 4–7 November 2012. [Google Scholar]
- Zalama, E.; Gómez-García-Bermejo, J.; Medina, R.; Llamas, J. Road crack detection using visual features extracted by Gabor filter. Comput.-Aided Civ. Infrastruct. Eng. 2014, 29, 342–358. [Google Scholar] [CrossRef]
- Prasanna, P.; Dana, K.J.; Gucunski, N.; Basily, B.B.; La, H.M.; Lim, R.S.; Parvardeh, H. Automated crack detection on concrete bridges. IEEE Trans. Autom. Sci. Eng. 2016, 13, 591–599. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3434–3445. [Google Scholar] [CrossRef]
- Chen, J.H.; Su, M.C.; Cao, R.; Hsu, S.C.; Lu, J.C. A self organizing map optimization based image recognition and processing model for bridge crack inspection. Autom. Constr. 2017, 73, 58–66. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, E.; Shin, M.; Sim, S.H. Crack and noncrack classification from concrete surface image using machine learning. Struct. Health Monit. 2019, 18, 725–738. [Google Scholar] [CrossRef]
- Zhang, X.; Rajan, D.; Story, B. Concrete crack detection using context-aware deep semantic segmentation network. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 951–971. [Google Scholar] [CrossRef]
- Zhu, J.; Song, J. An intelligent classification model for surface defects on cement concrete bridges. Appl. Sci. 2020, 10, 972. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.-M.; Batbayar, E.; Ju, Y.-K. Development of UAV-based building crack detecting system. In Proceedings of the Architecture & City in Seoul, Seoul, Korea, 26–27 April 2018. (In Korea). [Google Scholar]
- Lee, J.-H.; Jeong, D.-M.; Batbayar, E.; Ju, Y.-K. UAV & thermography module-based building crack detecting system. In Proceedings of the Spring Annual Conference of AIK, Seoul, Korea, 26–27 April 2019. (In Korea). [Google Scholar]
- Bae, J.; Jang, A.; Park, M.J.; Lee, J.H.; Ju, Y.K. Assessment of concrete macrocrack depth using infrared thermography. Steel Compos. Struct. 2021. in review. [Google Scholar]
- Bae, J.; Lee, J.; Jang, A.; Ju, Y.K.; Park, M.J. SMART SKY EYE system for preliminary structural safety assessment of buildings using unmanned aerial vehicle. Sensors 2022, 22, 2762. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jang, A.; Park, M.J.; Ju, Y.K. Comparison analysis of machine learning for concrete crack depths prediction using thermal images and environmental parameters. J. Korean Assoc. Spat. Struct. 2021, 21, 99–110. (In Korea) [Google Scholar] [CrossRef]
- Teledyne FLIR. Available online: https://www.flir.com/products/t530/ (accessed on 20 March 2022).
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef] [Green Version]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme gradi-ent boosting. R Package, version 0.4-2. 2015; 1, 1–4. [Google Scholar]
- Rätsch, G.; Onoda, T.; Müller, K.R. Soft margins for AdaBoost. Mach. Learn. 2001, 42, 287–320. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wires Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Klema, V.; Laub, A. The singular value decomposition: Its computation and some applications. IEEE Trans. Autom. Control 1980, 25, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2020, 13, 411–430. [Google Scholar] [CrossRef] [Green Version]
Crack Depth (H) (mm) | Crack Width (W) (mm) | |||||
---|---|---|---|---|---|---|
5 | 8 | 10 | 12 | 15 | 20 | |
10 | - | - | C10-10 | - | C15-10 | C20-10 |
20 | C5-20 | C8-20 | C10-20 | C12-20 | C15-20 | C20-20 |
30 | - | - | C10-30 | - | C15-30 | C20-30 |
40 | C5-40 | C8-40 | C10-40 | C12-40 | C15-40 | C20-40 |
50 | - | - | C10-50 | - | C15-50 | C20-50 |
60 | - | C8-60 | C10-60 | C12-60 | C15-60 | C20-60 |
Parameter | Specification |
---|---|
IR resolution | 320 × 240 (76,800 pixels) |
Thermal sensitivity/NETD | <40 mK, 24 °C @ 30 °C (86 °F) |
Accuracy | ±2 °C (±3.6 °F) or ±2% of reading |
Digital camera | 5 MP, with built-in LED photo/video lamp |
Display | 4″, 640 × 480 pixel touchscreen LCD with autorotation |
Storage media | Removable SD card |
Crack Width (mm) | Crack Depth (mm) | Crack Temperature (°C) | Surface Temperature (°C) | Air Temperature (°C) | Humidity (%) | Illuminance (lux) |
---|---|---|---|---|---|---|
10 | 60 | 11.3 | 10.8 | 15.5 | 23.3 | 7448 |
15 | 20 | 10.3 | 9.9 | 13.7 | 24.1 | 6686 |
20 | 10 | 4.8 | 3.8 | 20.4 | 30.6 | 14,967 |
20 | 40 | 28.8 | 27.2 | 25.1 | 44.4 | 6189 |
Features | Average | Standard Deviation | First Quartile | Second Quartile (Median) | Third Quartile | Max. Value | Min. Value |
---|---|---|---|---|---|---|---|
Crack temperature (°C) | 24.80 | 13.50 | 16.00 | 26.70 | 37.00 | 47.8 | −2.3 |
Surface temperature (°C) | 24.50 | 13.58 | 15.05 | 26.30 | 36.40 | 47.2 | −3.3 |
Air temperature | 22.85 | 10.33 | 16.50 | 25.20 | 31.00 | 37.8 | −1.8 |
Humidity (%) | 37.23 | 12.35 | 27.30 | 40.50 | 45.50 | 74.3 | 3.1 |
Illuminance (lux) | 15,630 | 16,040 | 4436 | 9777 | 22,230 | 91,810 | 3200 |
Crack width (mm) | 15.05 | 8.90 | 10.00 | 15.00 | 20.00 | 60 | 5 |
Crack depth (mm) | 35.31 | 17.22 | 20.00 | 40.00 | 50.00 | 60 | 10 |
Algorithm | R2train | R2test | acc1 (%) | acc2 (%) | MAPE (%) |
---|---|---|---|---|---|
DT | 0.9436 | 0.8821 | 76.74 | 80.99 | 7.23 |
EXT | 0.9710 | 0.9606 | 52.33 | 69.83 | 8.27 |
XGB | 0.9999 | 0.9710 | 87.97 | 92.15 | 2.63 |
AB | 0.9998 | 0.9896 | 97.70 | 98.49 | 0.60 |
Algorithm | Technique | R2train | R2test | acc1 (%) | acc2 (%) | MAPE (%) |
---|---|---|---|---|---|---|
DT | PCA | 0.9303 | 0.8578 | 75.52 | 71.06 | 9.43 |
SVD | 0.9218 | 0.8533 | 74.65 | 71.06 | 10.44 | |
ICA | 0.9229 | 0.8752 | 76.38 | 72.14 | 9.1 | |
EXT | PCA | 0.9309 | 0.9198 | 49.75 | 32.54 | 13.43 |
SVD | 0.9098 | 0.8935 | 44.13 | 24.69 | 14.9 | |
ICA | 0.9304 | 0.9194 | 48.67 | 31.61 | 13.37 | |
XGB | PCA | 0.9999 | 0.9445 | 87.68 | 82.07 | 4.25 |
SVD | 0.9999 | 0.9442 | 84.59 | 78.11 | 5.26 | |
ICA | 0.9999 | 0.9403 | 85.03 | 78.69 | 4.86 | |
AB | PCA | 0.9987 | 0.9776 | 90.21 | 82.36 | 3.05 |
SVD | 0.9097 | 0.8935 | 44.13 | 24.69 | 15.9 | |
ICA | 0.9964 | 0.9765 | 84.38 | 71.71 | 4.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.J.; Kim, J.; Jeong, S.; Jang, A.; Bae, J.; Ju, Y.K. Machine Learning-Based Concrete Crack Depth Prediction Using Thermal Images Taken under Daylight Conditions. Remote Sens. 2022, 14, 2151. https://doi.org/10.3390/rs14092151
Park MJ, Kim J, Jeong S, Jang A, Bae J, Ju YK. Machine Learning-Based Concrete Crack Depth Prediction Using Thermal Images Taken under Daylight Conditions. Remote Sensing. 2022; 14(9):2151. https://doi.org/10.3390/rs14092151
Chicago/Turabian StylePark, Min Jae, Jihyung Kim, Sanggi Jeong, Arum Jang, Jaehoon Bae, and Young K. Ju. 2022. "Machine Learning-Based Concrete Crack Depth Prediction Using Thermal Images Taken under Daylight Conditions" Remote Sensing 14, no. 9: 2151. https://doi.org/10.3390/rs14092151
APA StylePark, M. J., Kim, J., Jeong, S., Jang, A., Bae, J., & Ju, Y. K. (2022). Machine Learning-Based Concrete Crack Depth Prediction Using Thermal Images Taken under Daylight Conditions. Remote Sensing, 14(9), 2151. https://doi.org/10.3390/rs14092151