Remote Sensing—Based Assessment of the Water-Use Efficiency of Maize over a Large, Arid, Regional Irrigation District
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. ET Model
2.3. Crop Mapping Algorithm
2.4. Estimation of Crop Yield
2.5. Water-Use Efficiency (WUE) Assessment
2.6. Data Sources
3. Results
3.1. Model Validation of HTEM and Spatiotemporal Patterns of ET
3.2. Evaluation of the Crop Classifier and Spatiotemporal Patterns of Maize Distribution
3.3. Maize Evapotranspiration during the Whole Growth Period
3.4. Maize Yield Estimation Based on ET and Maize Mapping
3.5. Spatiotemporal Variations of Maize WUE from 2003 to 2012
4. Discussion
5. Conclusions
- (1)
- The HTEM model performs well in the study region, with RMSE of 0.52 mm/day at the field scale and 26.21 mm from April to October at the regional scale during the whole study period.
- (2)
- The asymmetric logistic function is applicable in describing the maize NDVI time series at sampling points with a mean coefficient of determination of 0.99. Meanwhile, a classifier based on phenological and vegetation indices can obtain spatial distribution and determine the inter-annual variability of maize cover in multiple years. The mean relative errors for the training and testing years were 5.13% and 20.53%, respectively.
- (3)
- The maize yield estimation model based on the Stewart water production function can estimate maize yield with high accuracy in multiple years. The mean relative error and mean absolute error between estimated yield and statistical yield were 4.30% and 446.33 kg/hm2, respectively.
- (4)
- The average annual WUEET and WUET in the Hetao Irrigation District were 1.94 kg/m3 and 3.06 kg/m3, respectively. The results show a negative correlation between WUE and net water diversion.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Total Number | Day of Year |
---|---|---|
2003 | 58 | 36, 43, 54, 57, 68, 79, 80, 85, 103, 105, 108, 110, 114, 120, 121, 128, 129, 139, 144, 148, 153, 156, 157, 164, 173, 174, 189, 201, 208, 214, 217, 223, 228, 231, 235, 245, 251, 253, 255, 256, 265, 266, 274, 287, 288, 290, 294, 297, 299, 303, 306, 308, 319, 326, 333, 335, 340, 347 |
2004 | 65 | 2, 37, 41, 50, 53, 60, 66, 71, 90, 92, 94, 98, 99, 101, 105, 108, 114, 117, 119, 126, 128, 133, 142, 151, 160, 162, 172, 174, 183, 188, 202, 208, 217, 220, 225, 229, 238, 241, 244, 247, 252, 259, 261, 264, 265, 266, 270, 275, 277, 281, 284, 286, 288, 295, 300, 302, 313, 316, 320, 325, 334, 336, 339, 345, 354 |
2005 | 61 | 50, 64, 66, 71, 76, 78, 82, 87, 94, 99, 103, 105, 107, 110, 117, 121, 123, 126, 128, 131, 133, 147, 149, 153, 162, 164, 169, 171, 173, 186, 196, 204, 212, 215, 229, 238, 244, 245, 251, 256, 265, 276, 279, 281, 283, 288, 290, 297, 302, 304, 309, 313, 315, 317, 322, 324, 327, 329, 332, 350, 357 |
2006 | 56 | 8, 49, 54, 60, 65, 67, 72, 74, 79, 81, 83, 85, 88, 105, 110, 113, 120, 126, 133, 138, 142, 147, 151, 154, 161, 165, 167, 177, 181, 186, 207, 209, 211, 213, 218, 227, 232, 245, 248, 252, 259, 277, 282, 284, 289, 291, 294, 295, 298, 303, 305, 309, 312, 314, 318, 325 |
2007 | 53 | 12, 17, 31, 36, 83, 93, 95, 97, 114, 116, 120, 125, 132, 138, 139, 145, 146, 148, 152, 155, 159, 164, 175, 191, 196, 200, 212, 214, 219, 225, 228, 232, 239, 246, 251, 253, 262, 264, 266, 267, 287, 292, 298, 301, 308, 310, 312, 317, 324, 331, 333, 349, 365 |
2008 | 64 | 4, 9, 53, 57, 59, 62, 64, 66, 69, 75, 77, 86, 93, 98, 101, 105, 107, 114, 116, 119, 121, 125, 126, 128, 135, 139, 141, 144, 151, 158, 162, 176, 182, 183, 186, 188, 194, 197, 203, 215, 217, 224, 235, 240, 244, 249, 255, 256, 274, 276, 279, 285, 290, 299, 304, 306, 309, 313, 324, 333, 336, 340, 345, 352 |
2009 | 70 | 22, 27, 32, 36, 41, 45, 50, 59, 64, 72, 79, 82, 87, 91, 95, 98, 105, 111, 116, 119, 123, 125, 132, 137, 142, 146, 150, 151, 155, 164, 171, 174, 175, 176, 180, 182, 187, 192, 196, 205, 212, 214, 217, 221, 223, 224, 225, 226, 228, 231, 239, 242, 244, 254, 260, 264, 265, 267, 269, 271, 275, 279, 281, 285, 287, 290, 297, 299, 301, 311 |
2010 | 58 | 49, 50, 56, 74, 85, 91, 92, 96, 103, 105, 113, 119, 121, 122, 130, 131, 139, 151, 153, 156, 162, 169, 170, 171, 178, 186, 190, 192, 199, 201, 202, 203, 209, 210, 217, 220, 231, 234, 238, 240, 247, 254, 256, 265, 266, 268, 276, 277, 279, 281, 288, 290, 298, 325, 332, 334, 336, 352 |
2011 | 55 | 28, 30, 33, 44, 58, 62, 69, 74, 83, 92, 100, 101, 104, 108, 111, 132, 133, 136, 141, 143, 150, 152, 163, 165, 181, 193, 195, 196, 197, 200, 207, 211, 213, 214, 218, 221, 228, 234, 238, 241, 243, 253, 255, 266, 268, 275, 277, 289, 293, 314, 316, 319, 323, 341, 348 |
2012 | 76 | 32, 34, 38, 41, 45, 49, 52, 57, 66, 68, 70, 72, 83, 84, 90, 95, 97, 107, 112, 118, 122, 130, 135, 137, 139, 143, 145, 151, 153, 160, 162, 164, 167, 168, 169, 177, 184, 186, 187, 193, 205, 208, 211, 221, 222, 225, 232, 234, 235, 239, 241, 242, 248, 250, 257, 258, 263, 271, 272, 273, 276, 283, 285, 296, 299, 301, 303, 305, 306, 317, 319, 324, 330, 331, 333, 344 |
Year | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | Max | Min | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ET/mm | 625 | 618 | 600 | 599 | 624 | 603 | 617 | 640 | 622 | 617 | 640 | 599 | 617 |
E/mm | 287 | 317 | 306 | 331 | 310 | 326 | 332 | 335 | 325 | 319 | 335 | 287 | 319 |
T/mm | 338 | 301 | 294 | 268 | 314 | 277 | 285 | 305 | 297 | 298 | 338 | 277 | 298 |
T/ET | 0.54 | 0.48 | 0.49 | 0.45 | 0.50 | 0.46 | 0.46 | 0.48 | 0.48 | 0.48 | 0.54 | 0.45 | 0.48 |
Year | Hangjinhouqi | Linhe | Wuyuan | |||
---|---|---|---|---|---|---|
ET/mm | T/mm | ET/mm | T/mm | ET/mm | T/mm | |
2003 | 574 | 373 | 560 | 369 | 594 | 386 |
2004 | 581 | 361 | 536 | 354 | 568 | 364 |
2005 | 540 | 343 | 522 | 338 | 497 | 322 |
2006 | 478 | 305 | 474 | 307 | 486 | 306 |
2007 | 539 | 356 | 529 | 344 | 523 | 343 |
2008 | 512 | 310 | 489 | 314 | 479 | 311 |
2009 | 541 | 310 | 537 | 323 | 533 | 318 |
2010 | 547 | 353 | 523 | 333 | 512 | 302 |
2011 | 550 | 352 | 512 | 334 | 544 | 325 |
2012 | 531 | 324 | 510 | 314 | 553 | 303 |
Average | 539 | 339 | 519 | 333 | 529 | 328 |
References
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, S.K.; Srivastava, P.K. Future challenges in agricultural water management. In Agricultural Water Management; Academic Press: Cambridge, MA, USA, 2021; pp. 445–456. [Google Scholar]
- Dregne, H.; Kassas, M.; Rozanov, B. A new assessment of the world status of desertification. Desertif. Control Bull. 1991, 20, 6–18. [Google Scholar]
- Yang, Y.T.; Shang, S.H.; Jiang, L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Shang, S.H.; Mao, X.M. Data envelopment analysis on efficiency evaluation of irrigation-fertilization schemes for winter wheat in North China. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Beijing, China, 18–20October 2008; Springer: Boston, MA, USA, 2009; Volume 1, pp. 39–48. [Google Scholar]
- Jiang, Y.; Xu, X.; Huang, Q.Z.; Huo, Z.L.; Huang, G.H. Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model. Agric. Water Manag. 2015, 147, 67–81. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Kong, D.D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y.T. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Han, C.Y.; Zhang, B.Z.; Chen, H.; Wei, Z.; Liu, Y. Spatially distributed crop model based on remote sensing. Agric. Water Manag. 2019, 218, 165–173. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sens. Environ. 2020, 237, 111594. [Google Scholar] [CrossRef]
- Norman, J.; Kustas, W.; Humes, K. A two-source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL)-1. Frmulation. J. Hydrol. 1998, 213, 198–212. [Google Scholar] [CrossRef]
- Su, Z.B. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvement to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Remote Sens. Environ. 2012, 121, 370–388. [Google Scholar] [CrossRef]
- Yang, Y.T.; Shang, S.H. A hybrid dual source scheme and trapezoid framework based evapotranspiration model (HTEM) using satellite images: Algorithm and model test. J. Geophys. Res-Atmos. 2013, 118, 2284–2300. [Google Scholar] [CrossRef]
- Kamali, M.I.; Nazari, R. Determination of maize water requirement using remote sensing data and SEBAL algorithm. Agric. Water Manag. 2018, 209, 197–205. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, R.L.; Wan, Z.M.; Bi, Y.Y.; Zhou, C.H.; Tang, B.H.; Yan, G.J.; Zhang, X.Y. A reviewer of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.T.; Long, D.; Guan, H.D.; Liang, W.; Simmons, C.; Batelaan, O. Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics. Water Resour. Res. 2015, 51, 3145–3165. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Li, R.Y.; Shanmugan, K.S. Crop classification using airborne radar and landsat data. IEEE Trans. Geosci. Remote Sens. 1982, 1, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Jia, K.; Wu, B.F.; Li, Q.Z. Crop classification using HJ satellite multispectral data in the North China Plain. J. Appl. Remote Sens. 2013, 7, 3576. [Google Scholar] [CrossRef]
- Zhong, L.H.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Yang, S.T.; Gu, L.J.; Li, X.F.; Jiang, T.; Ren, R.Z. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery. Remote Sens. 2020, 12, 3119. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 mNDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. A comparison of MODIS 250-m EVI and NDVI data for crop mapping: A case study for southwest Kansas. Int. J. Remote Sens. 2010, 31, 805–830. [Google Scholar] [CrossRef]
- Skakun, S.; Franch, B.; Vermote, E.; Roger, J.; Becker-Reshef, I.; Justic, C.; Kussul, N. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens. Environ. 2017, 195, 244–258. [Google Scholar] [CrossRef]
- Hu, Q.; Sulla-Menashe, D.; Xu, B.D.; Yin, H.; Tang, H.J.; Yang, P.; Wu, W.B. A phenology-based spectral and temporal feature selection method for crop mapping from satellite time series. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 218–229. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Reginato, R.J. Remote sensing for agricultural water management and crop yield prediction. Agric. Water Manag. 1977, 1, 299–310. [Google Scholar] [CrossRef]
- Singh, R.; Semwal, D.P.; Rai, A.; Chhikara, R.S. Small area estimation of crop yield using remote sensing satellite data. Int. J. Remote Sens. 2002, 23, 49–56. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, Y.; Zhang, J.H.; Ali, S. Developing a process-based and remote sensing driven crop yield model for maize (PRYM-Maize) and its validation over the Northeast China Plain. J. Integr. Agric. 2021, 20, 408–423. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Hatfield, J.L.; Jackson, T.J.; Akhmedov, B.; Prueger, J.; Stern, A. Crop condition and yield simulations using Landsat and MODIS. Remote Sens. Environ. 2004, 92, 548–559. [Google Scholar] [CrossRef]
- Xin, Q.C.; Gong, P.; Yu, C.Q.; Yu, L.; Broich, M.; Suyker, A.E.; Myneni, R.B. A production efficiency model-based method for satellite estimates of corn and soybean yields in the Midwestern US. Remote Sens. 2013, 5, 5926–5943. [Google Scholar] [CrossRef] [Green Version]
- Mulianga, B.; Bégué, A.; Simoes, M.; Todoroff, P. Forecasting regional sugarcane yield based on time integral and spatial aggregation of MODIS NDVI. Remote Sens. 2013, 5, 2184–2199. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sens. Environ. 2013, 131, 215–231. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar-radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.L.; Huang, J.F.; Li, C.J.; Liu, L.Y.; Huang, W.J.; Wang, F.M.; Yang, X.H. Modelling paddy rice yield using MODIS data. Agric. For. Meteorol. 2014, 184, 107–116. [Google Scholar] [CrossRef]
- Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Ducrot, D.; Marais-Sicre, C.; Dejoux, J.F.; Huc, M.; Keravec, P.; Béziat, P.; et al. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens. Environ. 2012, 124, 844–857. [Google Scholar] [CrossRef]
- Zhang, J.H.; Yao, F.M. MODIS Satellite data coupled with a vegetation process model for mapping maize yield in the Northeast China. In Proceedings of the International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem, Wuhan, China, 8–10November 2013; Springer: Berlin/Heidelberg, Germany, 2013; Volume 399, pp. 214–222. [Google Scholar]
- Yu, R.H.; Liu, T.X.; Xu, Y.P.; Zhu, C.; Zhang, Q.; Qu, Z.Y.; Liu, X.M.; Li, C.Y. Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China. Agric. Water Manag. 2010, 97, 1952–1960. [Google Scholar] [CrossRef]
- Jiang, L. Remote Sensing-Based Evaluation of Irrigation Efficiency and Crop Water Use Efficiency over Irrigation District in Arid Region; Tsinghua University: Beijing, China, 2016. [Google Scholar]
- Long, D.; Singh, V.P. A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework. Water Resour. Res. 2012, 48, 72–84. [Google Scholar] [CrossRef]
- Li, F.; Kustas, W.P.; Prueger, J.H.; Neale, C.M.U.; Jackson, T.J. Utility of remote sensing-based two-source energy balance model under low-and high-vegetation cover conditions. J. Hydrometeorol. 2005, 6, 878–891. [Google Scholar] [CrossRef]
- Zhou, X.B.; Guan, H.D.; Xie, H.J.; Wilson, J.L. Analysis and optimization of NDVI definitions and areal fraction models in remote sensing of vegetation. Int. J. Remote Sens. 2009, 30, 721–751. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Kustas, W.P.; Caselles, V.; Anderson, M.C. Modeling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations. Remote Sens. Environ. 2008, 112, 1130–1143. [Google Scholar] [CrossRef]
- Chávez, J.L.; Neale, C.M.U.; Prueger, J.H.; Kustas, W.P. Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values. Irrig. Sci. 2008, 27, 67–81. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Ahmad, M.U.D.; Chemin, Y. Satellite surveillance of evaporative depletion across the Indus Basin. Water Resour. Res. 2002, 38, 9-1–9-9. [Google Scholar] [CrossRef]
- Dai, J.X.; Shi, H.B.; Tian, D.L.; Xia, Y.H.; Li, M.H. Determination of crop coefficients of main grain and oil crops in Inner Mongolia Hetao irrigation area. J. Irrig. Drain. 2011, 30, 23–27. (In Chinese) [Google Scholar]
- Royo, C.; Aparicio, N.; Blanco, R.; Villegas, D. Leaf and green area development of durum wheat genotypes grown under Mediterranean conditions. Eur. J. Agron. 2004, 20, 419–430. [Google Scholar] [CrossRef]
- Jiang, L.; Shang, S.H.; Yang, Y.T.; Guan, H.D. Mapping interannual variability of maize cover in a large irrigation district using a vegetation index-phenological index classifier. Comput. Electron. Agric. 2016, 123, 351–361. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Peng, Z.G.; Liu, Y.; Xu, D.; Wang, L.; Lei, B.; Du, L.J. Estimation of regional water product function for winter wheat using remote sensing and GIS. Trans. Chin. Soc. Agric. Mach. 2014, 45, 167–171. (In Chinese) [Google Scholar]
- Wang, Y.R.; Lei, Z.D.; Yang, S.X. Cumulative function of sensitive index for winter wheat. J. Hydraul. Eng. 1997, 5, 28–34. (In Chinese) [Google Scholar]
- Jiang, L.; Shang, S.H.; Yang, Y.T.; Wang, Y.R. Method of regional crop yield estimation based on remote sensing evapotranspiration model. Trans. Chin. Soc. Agric. Eng. 2019, 35, 90–97. (In Chinese) [Google Scholar]
- Yu, G.R.; Wang, Q.F.; Zhuang, J. Modeling the water use efficiency of soybean and maize plants under environmental stresses: Application of a synthetic model of photosynthesis-transpiration. J. Plant Physiol. 2004, 16, 303–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, S.L. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Su, T.; Feng, S.Y.; Xu, Y. Spring maize yield estimation based on radiation use efficiency and multi-temporal remotely sensed data. Remote Sens. Technol. Appl. 2013, 28, 824–830. (In Chinese) [Google Scholar]
- Yu, B.; Shang, S.H. Multi-year mapping of major crop yields in an irrigation district from high spatial and temporal resolution vegetation index. Sensors 2018, 18, 3787–3801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.Y. Simulation of Irrigated Hydrological Processes and Assessment of Water Productivity in Inner Mongolia Hetao Irrigation District; China Agricultural University: Beijing, China, 2015. [Google Scholar]
Function | Parameters | Accuracy Evaluation | ||||
---|---|---|---|---|---|---|
K | B | n | MRE 1 (%) | MAE 1 (kg/hm2) | R2 | |
Stewart | 1.10 | 2.76 | 5.00 | 4.30 | 446.33 | 0.75 |
Year | Hangjinhouqi | Linhe | Wuyuan | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimated Yield (kg/hm2) | Statistical Yield (kg/hm2) | Relative Error (%) | Estimated Yield (kg/hm2) | Statistical Yield (kg/hm2) | Relative Error (%) | Estimated Yield (kg/hm2) | Statistical Yield (kg/hm2) | Relative Error (%) | |
2003 | 11,737.06 | 13,313.34 | 11.84 | 11,508.48 | 11,484.26 | 0.21 | 11,998.44 | 10,479.76 | 14.49 |
2004 | 10,144.89 | 11,169.42 | 9.17 | 9999.46 | 9917.54 | 0.83 | 9970.73 | 9010.49 | 10.66 |
2005 | 10,322.50 | 11,184.41 | 7.71 | 10,267.22 | 9932.53 | 3.37 | 9722.08 | 9160.42 | 6.13 |
2006 | 10,466.77 | 11,154.42 | 6.16 | 9988.67 | 9925.04 | 0.64 | 9821.04 | 9152.92 | 7.30 |
2007 | 9627.42 | 9992.50 | 3.65 | 9177.72 | 9107.95 | 0.77 | 8602.49 | 8268.37 | 4.04 |
2008 | 9695.19 | 10,202.40 | 4.97 | 9821.48 | 9767.62 | 0.55 | 10,018.23 | 9580.21 | 4.57 |
2009 | 10,069.08 | 10,224.89 | 1.52 | 10,116.72 | 10,119.94 | 0.03 | 9906.74 | 9745.13 | 1.66 |
2010 | 9797.02 | 10,337.33 | 5.23 | 10,282.75 | 10,187.41 | 0.94 | 10,306.02 | 9887.56 | 4.23 |
2011 | 10,710.15 | 10,277.36 | 4.21 | 9550.31 | 10,082.46 | 5.28 | 9947.46 | 9902.55 | 0.45 |
2012 | 10,956.75 | 10,682.16 | 2.57 | 10,328.28 | 10,172.41 | 1.53 | 10,418.75 | 10,862.07 | 4.08 |
Mean | 10,352.68 | 10,853.82 | 4.62 | 10,104.11 | 10,069.72 | 0.34 | 10,071.20 | 9604.95 | 4.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Yang, Y.; Shang, S. Remote Sensing—Based Assessment of the Water-Use Efficiency of Maize over a Large, Arid, Regional Irrigation District. Remote Sens. 2022, 14, 2035. https://doi.org/10.3390/rs14092035
Jiang L, Yang Y, Shang S. Remote Sensing—Based Assessment of the Water-Use Efficiency of Maize over a Large, Arid, Regional Irrigation District. Remote Sensing. 2022; 14(9):2035. https://doi.org/10.3390/rs14092035
Chicago/Turabian StyleJiang, Lei, Yuting Yang, and Songhao Shang. 2022. "Remote Sensing—Based Assessment of the Water-Use Efficiency of Maize over a Large, Arid, Regional Irrigation District" Remote Sensing 14, no. 9: 2035. https://doi.org/10.3390/rs14092035
APA StyleJiang, L., Yang, Y., & Shang, S. (2022). Remote Sensing—Based Assessment of the Water-Use Efficiency of Maize over a Large, Arid, Regional Irrigation District. Remote Sensing, 14(9), 2035. https://doi.org/10.3390/rs14092035