Spatial-Temporal Neural Network for Rice Field Classification from SAR Images
Abstract
:1. Introduction
- This study proposes an original rice field classifier based on a spatial-temporal neural network called a convolutional long short-term memory rice field classifier (ConvLSTM-RFC) to classify rice fields in study areas from Sentinel-1A SAR images.
- The proposed model ConvLSTM-RFC is designed with multiple convolutional long short-term memory attentions blocks (ConvLSTM Att Block) to predict spatial-temporal features from the SAR images.
- The binary cross entropy loss function has been replaced by the bi-tempered logistic loss function (BiTLL) to make the proposed model more robust to noise in data during the training process [46].
- A convolutional block attention module (CBAM) was embedded in the residual structure of the ConvLSTM Att Block to extract refined features from the intermediate feature maps.
2. Materials and Methods
2.1. Study Area
2.2. Ground Truth Data
2.3. Data Preprocessing and Smoothing Processes
2.4. Architecture and Strategy
2.4.1. Convlstm Attention Block
2.4.2. Incorrect Labeled Data
2.4.3. Bi-Tempered Logistic Loss
2.5. Training and Testing Process
2.6. Model Evaluation
2.7. Execution Environment
3. Results
3.1. Influence of Spatial-Temporal Model
3.2. Influence of Different Optimized Strategy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elert, E. Rice by the numbers: A good grain. Nature 2014, 514, S50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanty, S.; Wassmann, R.; Nelson, A.; Moya, P.; Jagadish, S. Rice and climate change: Significance for food security and vulnerability. Int. Rice Res. Inst. 2013, 14, 1–14. [Google Scholar]
- Sekhar, C. Climate change and rice economy in Asia: Implications for trade policy. he State of Agricultural Commodity Markets (SOCO) (Rome, FAO); Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Guo, H.Y. Classification of multitemporal Sentinel-2 data for field-level monitoring of rice cropping practices in Taiwan. Adv. Space Res. 2020, 65, 1910–1921. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Tigchelaar, M.; Kantar, M.B. Climate variability impacts on rice production in the Philippines. PLoS ONE 2018, 13, e0201426. [Google Scholar] [CrossRef]
- Jiang, Y.; Carrijo, D.; Huang, S.; Chen, J.; Balaine, N.; Zhang, W.; van Groenigen, K.J.; Linquist, B. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crop. Res. 2019, 234, 47–54. [Google Scholar] [CrossRef]
- Chen, C.; van Groenigen, K.J.; Yang, H.; Hungate, B.A.; Yang, B.; Tian, Y.; Chen, J.; Dong, W.; Huang, S.; Deng, A.; et al. Global warming and shifts in cropping systems together reduce China’s rice production. Glob. Food Secur. 2020, 24, 100359. [Google Scholar] [CrossRef]
- Mandal, A.C.; Singh, O.P. Climate Change and Practices of Farmers’ to maintain rice yield: A case study. Int. J. Biol. Innov. 2020, 2, 42–51. [Google Scholar] [CrossRef]
- Sahajpal, R.; Fontana, L.; Lafluf, P.; Leale, G.; Puricelli, E.; O’Neill, D.; Hosseini, M.; Varela, M.; Reshef, I. Using machine-learning models for field-scale crop yield and condition modeling in Argentina. In Proceedings of the XII Congreso de AgroInformática (CAI 2020)-JAIIO 49 (Modalidad Virtual); 2020; pp. 238–241. [Google Scholar]
- Zhao, R.; Li, Y.; Ma, M. Mapping paddy rice with satellite remote sensing: A review. Sustainability 2021, 13, 503. [Google Scholar] [CrossRef]
- Verbeiren, S.; Eerens, H.; Piccard, I.; Bauwens, I.; Van Orshoven, J. Sub-pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 486–497. [Google Scholar] [CrossRef]
- Atzberger, C.; Formaggio, A.; Shimabukuro, Y.; Udelhoven, T.; Mattiuzzi, M.; Sanchez, G.; Arai, E. Obtaining crop-specific time profiles of NDVI: The use of unmixing approaches for serving the continuity between SPOT-VGT and PROBA-V time series. Int. J. Remote Sens. 2014, 35, 2615–2638. [Google Scholar] [CrossRef]
- Kontgis, C.; Schneider, A.; Ozdogan, M. Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sens. Environ. 2015, 169, 255–269. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Li, X.; Tian, H.; Pan, Z. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS ONE 2013, 8, e70816. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.; Arifuzzanman, B.; Iwami, Y. Prompt proxy mapping of flood damaged rice fields using MODIS-derived indices. Remote Sens. 2015, 7, 15969–15988. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Zhan, Y.; Wang, L.; Hao, P.; Niu, Z. Major crops classification using time series MODIS EVI with adjacent years of ground reference data in the US state of Kansas. Optik 2016, 127, 1071–1077. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S.; Wheeler, B.; Iiames, J.S.; Campbell, J.B. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens. Environ. 2016, 174, 258–265. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.; Rao, M.N.; Mohammed, I.A.; Whitbread, A.M. Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data. Int. J. Digit. Earth 2016, 9, 981–1003. [Google Scholar] [CrossRef] [Green Version]
- Ranghetti, L.; Busetto, L.; Crema, A.; Fasola, M.; Cardarelli, E.; Boschetti, M. Testing estimation of water surface in Italian rice district from MODIS satellite data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 284–295. [Google Scholar] [CrossRef]
- Singha, M.; Wu, B.; Zhang, M. Object-based paddy rice mapping using HJ-1A/B data and temporal features extracted from time series MODIS NDVI data. Sensors 2017, 17, 10. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lu, D.; Moran, E.; Batistella, M.; Dutra, L.V.; Sanches, I.D.; da Silva, R.F.B.; Huang, J.; Luiz, A.J.B.; de Oliveira, M.A.F. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar] [CrossRef]
- Busetto, L.; Zwart, S.J.; Boschetti, M. Analysing spatial–temporal changes in rice cultivation practices in the Senegal River Valley using MODIS time-series and the PhenoRice algorithm. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 15–28. [Google Scholar] [CrossRef]
- Pan, B.; Zheng, Y.; Shen, R.; Ye, T.; Zhao, W.; Dong, J.; Ma, H.; Yuan, W. High Resolution Distribution Dataset of Double-Season Paddy Rice in China. Remote Sens. 2021, 13, 4609. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Rogan, J.; Kellndorfer, J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 2012, 117, 72–82. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Gruber, A.; Wagner, W. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote Sens. Lett. 2016, 7, 1209–1218. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Erten, E.; Campos-Taberner, M.; Garcia-Haro, F.J. Retrieval of vegetation height in rice fields using polarimetric SAR interferometry with TanDEM-X data. Remote Sens. Environ. 2017, 192, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, I.; Chakraborty, M. Analysis of temporal SAR and optical data for rice mapping. J. Indian Soc. Remote Sens. 2004, 32, 373–385. [Google Scholar] [CrossRef]
- Yang, S.; Shen, S.; Li, B.; Le Toan, T.; He, W. Rice mapping and monitoring using ENVISAT ASAR data. IEEE Geosci. Remote Sens. Lett. 2008, 5, 108–112. [Google Scholar] [CrossRef]
- Bouvet, A.; Le Toan, T. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sens. Environ. 2011, 115, 1090–1101. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Li, S.; Wang, Y.; Dai, L.; Lin, S. Monitoring rice phenology based on backscattering characteristics of multi-temporal RADARSAT-2 datasets. Remote Sens. 2018, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Minh, D.H.T.; Ndikumana, E.; Courault, D.; Belhouchette, H. Mapping paddy rice using Sentinel-1 SAR time series in Camargue, France. Remote Sens. 2019, 11, 887. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Peng, F.; Tao, Z.; Shao, W.; Dai, Q. Multielement Classification of a Small Fragmented Planting Farm Using Hyperspectral Unmanned Aerial Vehicle Image. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Mansaray, L.R.; Wang, F.; Huang, J.; Yang, L.; Kanu, A.S. Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets. Geocarto Int. 2020, 35, 1088–1108. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Avtar, R.; Mohan, G.; Misra, P.; Kurasaki, M. Monitoring and mapping of rice cropping pattern in flooding area in the Vietnamese Mekong delta using Sentinel-1A data: A case of an Giang province. ISPRS Int. J. Geo-Inf. 2019, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Chang, L.; Chen, Y.T.; Wang, J.H.; Chang, Y.L. Rice-Field Mapping with Sentinel-1A SAR Time-Series Data. Remote Sens. 2021, 13, 103. [Google Scholar] [CrossRef]
- Bahrami, H.; Homayouni, S.; McNairn, H.; Hosseini, M.; Mahdianpari, M. Regional Crop Characterization Using Multi-Temporal Optical and Synthetic Aperture Radar Earth Observations Data. Can. J. Remote Sens. 2021, 1–20. [Google Scholar] [CrossRef]
- Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yuan, W. Early-season mapping of winter wheat in China based on Landsat and Sentinel images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [Google Scholar] [CrossRef]
- Yang, L.; Huang, R.; Huang, J.; Lin, T.; Wang, L.; Mijiti, R.; Wei, P.; Tang, C.; Shao, J.; Li, Q.; et al. Semantic Segmentation Based on Temporal Features: Learning of Temporal-Spatial Information from Time-Series SAR Images for Paddy Rice Mapping. IEEE Trans. Geosci. Remote Sens. 2021, 60. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Wu, M.C.; Alkhaleefah, M.; Chang, L.; Chang, Y.L.; Shie, M.H.; Liu, S.J.; Chang, W.Y. Recurrent Deep Learning for Rice Fields Detection from SAR Images. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1548–1551. [Google Scholar]
- Fernandez-Beltran, R.; Baidar, T.; Kang, J.; Pla, F. Rice-yield prediction with multi-temporal sentinel-2 data and 3D CNN: A case study in Nepal. Remote Sens. 2021, 13, 1391. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Crisóstomo de Castro Filho, H.; Abílio de Carvalho Júnior, O.; Ferreira de Carvalho, O.L.; Pozzobon de Bem, P.; dos Santos de Moura, R.; Olino de Albuquerque, A.; Rosa Silva, C.; Guimarães Ferreira, P.H.; Fontes Guimarães, R.; Trancoso Gomes, R.A. Rice crop detection using LSTM, Bi-LSTM, and machine learning models from sentinel-1 time series. Remote Sens. 2020, 12, 2655. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Feng, Q.; Yin, D. Winter wheat yield prediction at county level and uncertainty analysis in main wheat-producing regions of China with deep learning approaches. Remote Sens. 2020, 12, 1744. [Google Scholar] [CrossRef]
- Amid, E.; Warmuth, M.K.; Anil, R.; Koren, T. Robust bi-tempered logistic loss based on bregman divergences. arXiv 2019, arXiv:1906.03361. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Suryono, H.; Kuswanto, H.; Iriawan, N. Rice phenology classification based on random forest algorithm for data imbalance using Google Earth engine. Procedia Comput. Sci. 2022, 197, 668–676. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Zhang, J.; Liu, L.; Wu, K. Rice False Smut Detection and Prescription Map Generation in a Complex Planting Environment, with Mixed Methods, Based on Near Earth Remote Sensing. Remote Sens. 2022, 14, 945. [Google Scholar] [CrossRef]
Time Series | Year | Month | Day |
---|---|---|---|
1 | 2017 | February | 08 |
2 | 2017 | February | 20 |
3 | 2017 | March | 04 |
4 | 2017 | March | 16 |
5 | 2017 | March | 28 |
6 | 2017 | April | 09 |
7 | 2017 | April | 21 |
8 | 2017 | May | 03 |
9 | 2017 | May | 15 |
10 | 2017 | May | 27 |
11 | 2017 | June | 08 |
12 | 2017 | July | 02 |
13 | 2017 | July | 14 |
14 | 2017 | July | 26 |
Hyperparameter | GRU Configuration | 3D CNN Configuration | ConLSTM Configuration | ConvLSTM-RFC Configuration |
---|---|---|---|---|
Optimizer | Adam | Adam | Adam | Ranger |
Batch size | 4096 | 16 | 16 | 16 |
Epoch | 35 | 60 | 60 | 60 |
Learning rate | 0.001 | 0.001 | 0.001 | 0.002 |
Loss function | Binary cross entropy | Binary cross entropy | Binary cross entropy | BiTLL 1 |
GRU | |||
---|---|---|---|
Ground truth | |||
Rice field | Nonrice field | ||
Prediction | Rice field | 25.75% | 74.24% |
Nonrice field | 1.72% | 98.27% | |
3D CNN | |||
Ground truth | |||
Rice field | Nonrice field | ||
Prediction | Rice field | 48.29% | 51.80% |
Nonrice field | 2.81% | 97.18% | |
ConvLSTM | |||
Ground truth | |||
Rice field | Nonrice field | ||
Prediction | Rice field | 48.83% | 51.16% |
Nonrice field | 2.83% | 97.16% | |
ConvLSTM+Bi-tempered logistic loss (ConvLSTM-BiTLL) | |||
Ground truth | |||
Rice field | Nonrice field | ||
Prediction | Rice field | 74.19% | 25.80% |
Nonrice field | 10.41% | 89.58% | |
ConvLSTM+Bi-tempered logistic loss+CBAM (ConvLSTM-RFC) | |||
Ground truth | |||
Rice field | Nonrice field | ||
Prediction | Rice field | 84.91% | 15.08% |
Nonrice field | 8.79% | 91.20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-L.; Tan, T.-H.; Chen, T.-H.; Chuah, J.H.; Chang, L.; Wu, M.-C.; Tatini, N.B.; Ma, S.-C.; Alkhaleefah, M. Spatial-Temporal Neural Network for Rice Field Classification from SAR Images. Remote Sens. 2022, 14, 1929. https://doi.org/10.3390/rs14081929
Chang Y-L, Tan T-H, Chen T-H, Chuah JH, Chang L, Wu M-C, Tatini NB, Ma S-C, Alkhaleefah M. Spatial-Temporal Neural Network for Rice Field Classification from SAR Images. Remote Sensing. 2022; 14(8):1929. https://doi.org/10.3390/rs14081929
Chicago/Turabian StyleChang, Yang-Lang, Tan-Hsu Tan, Tsung-Hau Chen, Joon Huang Chuah, Lena Chang, Meng-Che Wu, Narendra Babu Tatini, Shang-Chih Ma, and Mohammad Alkhaleefah. 2022. "Spatial-Temporal Neural Network for Rice Field Classification from SAR Images" Remote Sensing 14, no. 8: 1929. https://doi.org/10.3390/rs14081929
APA StyleChang, Y. -L., Tan, T. -H., Chen, T. -H., Chuah, J. H., Chang, L., Wu, M. -C., Tatini, N. B., Ma, S. -C., & Alkhaleefah, M. (2022). Spatial-Temporal Neural Network for Rice Field Classification from SAR Images. Remote Sensing, 14(8), 1929. https://doi.org/10.3390/rs14081929