Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Images and Weather Datasets
2.3. Vegetation Indices
2.4. Methodology for Estimating Evapotranspiration Using Satellite Images
Surface Albedo Adjustment
2.5. Determination of Surface-energy Partitioning
Calculation of Energy Fluxes (H and LE) and Evaporative Fraction
2.6. Estimate of ETa Using SEBAL Method
2.7. Land Use and Land Cover Dynamics
2.8. Statistical Analyses
Goodness of Fit
3. Results and Discussion
3.1. Comparisons of Land Use and Land Cover (LULC)
3.2. Rainfall Variability in Land Cover Classes
3.3. Vegetation Cover Indices of the Municipality
3.4. Land Surface Temperature (LST) in the Studied Classes
3.5. Variations of the Actual Evapotranspiration (ETa) of Land Use Classes
3.6. Statistical Relations between the Variables Studied and Land Use
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Item | Description |
a and b | Are the calibration coefficients |
Cp | Specific heat of air |
d | Willmott’s index of agreement |
DEM | Digital elevation model |
dT | Near-surface air temperature gradient |
ea | Actual atmospheric water vapor pressure |
es | Water vapor saturation pressure |
ETa | Actual evapotranspiration |
G | Soil heat flux |
GEE | Google Earth Engine |
H | Sensible heat flux |
HR | Instantaneous relative humidity |
k | von Karman constant |
LAI | Leaf area index |
LCCC | Lin’s concordance correlation coefficient |
LE | Latent heat flux |
LSE | Land surface emissivity |
LST | Land surface temperature |
LULC | Land use and land cover |
MAE | Mean absolute error |
NDVI | Normalized Difference Vegetation Index |
NSE | Nash-Sutcliffe efficiency coefficient |
PBIAS | Percent bias |
PCA | Principal component analysis |
rah | Near-surface aerodynamic resistance to heat transport |
RMSE | Root mean square error |
Rn | Net radiation |
Rn24 | Daily net radiation |
R2 | Coefficient of determination |
SAVI | Soil-Adjusted Vegetation Index |
T0 | Instantaneous air temperature |
Ta | Air temperature |
u* | Friction velocity |
u200 | Wind speed at the height of 200 m |
VC | Vegetation cover |
W | Precipitable water |
z1 and z2 | Are the two heights between the surface of the anchor pixels |
zom | Momentum roughness length |
αsup | Surface albedo |
εa | Atmospheric emissivity |
Λ | Evaporative fraction |
λ | Latent heat of vaporization of water |
ρair | Air density |
ψm and ψh | Stability correction factors for momentum and sensible heat, respectively |
References
- Arnan, X.; Leal, I.R.; Tabarelli, M.; Andrade, J.F.; Barros, M.F.; Câmara, T.; Jamelli, D.; Knoechelmann, C.M.; Menezes, T.G.C.; Menezes, A.G.S.; et al. A framework for deriving measures of chronic anthropogenic disturbance: Surrogate, direct, single and multi-metric indices in Brazilian Caatinga. Ecol. Indic. 2018, 94, 274–282. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Silva, B.B.D.; De Moura, M.S.B.; Verhoef, A.; Nóbrega, R.L.B. The use of remote sensing for reliable estimation of net radiation and its components: A case study for contrasting land covers in an agricultural hotspot of the Brazilian semiarid region. Agric. For. Meteorol. 2020, 291, 108052. [Google Scholar] [CrossRef]
- Moro, M.F.; Nic Lughadha, E.; de Araújo, F.S.; Martins, F.R. A Phytogeographical Metaanalysis of the Semiarid Caatinga Domain in Brazil. Bot. Rev. 2016, 82, 91–148. [Google Scholar] [CrossRef]
- Magalhães, K.D.N.; Guarniz, W.A.S.; Sá, K.M.; Freire, A.B.; Monteiro, M.P.; Nojosa, R.T.; Bieski, I.G.C.; Custódio, J.B.; Balogun, S.O.; Bandeira, M.A.M. Medicinal plants of the Caatinga, northeastern Brazil: Ethnopharmacopeia (1980–1990) of the late professor Francisco José de Abreu Matos. J. Ethnopharmacol. 2019, 237, 314–353. [Google Scholar] [CrossRef]
- de Medeiros e Silva, É.; Paixão, V.H.F.; Torquato, J.L.; Lunardi, D.G.; de Oliveira Lunardi, V. Fruiting phenology and consumption of zoochoric fruits by wild vertebrates in a seasonally dry tropical forest in the Brazilian Caatinga. Acta Oecologica 2020, 105, 103553. [Google Scholar] [CrossRef]
- dos Santos, L.R.; Nascimento Lima, A.M.; Cunha, J.C.; Rodrigues, M.S.; Barros Soares, E.M.; dos Santos, L.P.A.; da Silva, A.V.L.; Ferreira Fontes, M.P. Does irrigated mango cultivation alter organic carbon stocks under fragile soils in semiarid climate? Sci. Hortic. 2019, 255, 121–127. [Google Scholar] [CrossRef]
- de Souza Leão, P.C.; do Nascimento, J.H.B.; de Moraes, D.S.; de Souza, E.R. Yield components of the new seedless table grape ‘BRS Ísis’ as affected by the rootstock under semi-arid tropical conditions. Sci. Hortic. 2020, 263, 109114. [Google Scholar] [CrossRef]
- Rallo, G.; Paço, T.A.; Paredes, P.; Puig-Sirera, À.; Massai, R.; Provenzano, G.; Pereira, L.S. Updated single and dual crop coefficients for tree and vine fruit crops. Agric. Water Manag. 2021, 250, 106645. [Google Scholar] [CrossRef]
- Gomes, L.S.; Maia, A.G.; de Medeiros, J.D.F. Fuzzified hedging rules for a reservoir in the Brazilian semiarid region. Environ. Chall. 2021, 4, 100125. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Martins, M.A.; Tomasella, J.; Rodriguez, D.A.; Alvalá, R.C.S.; Giarolla, A.; Garofolo, L.L.; Júnior, J.L.S.; Paolicchi, L.T.L.C.; Pinto, G.L.N. Improving drought management in the Brazilian semiarid through crop forecasting. Agric. Syst. 2018, 160, 21–30. [Google Scholar] [CrossRef]
- de Queiroz, M.G.; da Silva, T.G.F.; de Souza, C.A.A.; da Rosa Ferraz Jardim, A.M.; Araújo Júnior, G.D.N.; Souza, L.S.B.; Moura, M.S.B. Composition of Caatinga Species under Anthropic Disturbance and Its Correlation with Rainfall Partitioning. Floresta Ambient. 2021, 28, 20190044. [Google Scholar] [CrossRef]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Nally, R.M.; Thomson, J.R.; de Barros Ferraz, S.F.; Louzada, J.; Oliveira, V.H.F.; et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016, 535, 144–147. [Google Scholar] [CrossRef] [Green Version]
- da Silva Junior, C.A.; Teodoro, P.E.; Delgado, R.C.; Teodoro, L.P.R.; Lima, M.; de Andréa Pantaleão, A.; Baio, F.H.R.; De Azevedo, G.B.; de Oliveira Sousa Azevedo, G.T.; Capristo-Silva, G.F.; et al. Persistent fire foci in all biomes undermine the Paris Agreement in Brazil. Sci. Rep. 2020, 10, 16246. [Google Scholar] [CrossRef]
- da Rosa Ferraz Jardim, A.M.; da Silva, T.G.F.; de Souza, L.S.B.; do Nascimento Araújo Júnior, G.; Alves, H.K.M.N.; de Sá Souza, M.; de Araújo, G.G.L.; de Moura, M.S.B. Intercropping forage cactus and sorghum in a semi-arid environment improves biological efficiency and competitive ability through interspecific complementarity. J. Arid Environ. 2021, 188, 104464. [Google Scholar] [CrossRef]
- Costa, M.D.S.; De Oliveira-Júnior, J.F.; Dos Santos, P.J.; Correia Filho, W.L.F.; De Gois, G.; Blanco, C.J.C.; Teodoro, P.E.; da Silva, C.A., Jr.; Santiago, D.D.B.; Souza, E.D.O.; et al. Rainfall extremes and drought in Northeast Brazil and its relationship with El Niño–Southern Oscillation. Int. J. Climatol. 2021, 41, E2111–E2135. [Google Scholar] [CrossRef]
- Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Rodriguez, D.A.; Santana, M.D.O.; Sestini, M.F. Desertification trends in the Northeast of Brazil over the period 2000–2016. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 197–206. [Google Scholar] [CrossRef]
- Vieira, R.M.S.P.; Tomasella, J.; Alvalá, R.C.S.; Sestini, M.F.; Affonso, A.G.; Rodriguez, D.A.; Barbosa, A.A.; Cunha, A.P.M.A.; Valles, G.F.; Crepani, E.; et al. Identifying areas susceptible to desertification in the Brazilian northeast. Solid Earth 2015, 6, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, K.; de Sousa-Neto, E.R.; de Carvalho, J.A.; Lima, J.R.D.S.; Menezes, R.; Duarte-Neto, P.J.; Guerra, G.D.S.; Ometto, J.P.H.B. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga. Sci. Total Environ. 2016, 571, 1048–1057. [Google Scholar] [CrossRef] [Green Version]
- de Castro Teixeira, A.H.; Leivas, J.F.; Andrade, R.G.; Hernandez, F.B.T. Water productivity assessments with Landsat 8 images in the Nilo Coelho irrigation scheme. IRRIGA 2015, 1, 1–10. [Google Scholar] [CrossRef]
- Ronquim, C.C.; Leivas, J.F.; de Castro Teixeira, A.H.; Silva, G.B.; Garçon, E.A.M. Water indicators based on SPOT 6 satellite images in irrigated area at the Paracatu River Basin, Brazil. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX, 104211I; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10421, p. 104211I. [Google Scholar]
- Cunha, J.; Nóbrega, R.L.B.; Rufino, I.; Erasmi, S.; Galvão, C.; Valente, F. Surface albedo as a proxy for land-cover clearing in seasonally dry forests: Evidence from the Brazilian Caatinga. Remote Sens. Environ. 2020, 238, 111250. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, H.A.; Lakshmi Kumar, T.V.; Paredes, F.; Elliott, S.; Ayuga, J.G. Assessment of Caatinga response to drought using Meteosat-SEVIRI Normalized Difference Vegetation Index (2008–2016). ISPRS J. Photogramm. Remote Sens. 2019, 148, 235–252. [Google Scholar] [CrossRef]
- de Queiroz, M.G.; da Silva, T.G.F.; Zolnier, S.; da Rosa Ferraz Jardim, A.M.; de Souza, C.A.A.; do Nascimento Araújo Júnior, G.; de Morais, J.E.F.; de Souza, L.S.B. Spatial and temporal dynamics of soil moisture for surfaces with a change in land use in the semi-arid region of Brazil. Catena 2020, 188, 104457. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Souza, R.; Hartzell, S.; Feng, X.; Antonino, A.C.D.; de Souza, E.S.; Menezes, R.S.C.; Porporato, A. Optimal management of cattle grazing in a seasonally dry tropical forest ecosystem under rainfall fluctuations. J. Hydrol. 2020, 588, 125102. [Google Scholar] [CrossRef]
- Fendrich, A.N.; Barretto, A.; de Faria, V.G.; de Bastiani, F.; Tenneson, K.; Guedes Pinto, L.F.; Sparovek, G. Disclosing contrasting scenarios for future land cover in Brazil: Results from a high-resolution spatiotemporal model. Sci. Total Environ. 2020, 742, 140477. [Google Scholar] [CrossRef]
- Lopes, V.C.; Parente, L.L.; Baumann, L.R.F.; Miziara, F.; Ferreira, L.G. Land-use dynamics in a Brazilian agricultural frontier region, 1985–2017. Land Use Policy 2020, 97, 104740. [Google Scholar] [CrossRef]
- Blondeel, H.; Landuyt, D.; Vangansbeke, P.; De Frenne, P.; Verheyen, K.; Perring, M.P. The need for an understory decision support system for temperate deciduous forest management. For. Ecol. Manag. 2021, 480, 118634. [Google Scholar] [CrossRef]
- de Araujo, H.F.; Machado, C.C.; Pareyn, F.G.; Nascimento, N.F.D.; Araújo, L.D.; de A. P. Borges, L.A.; Santos, B.A.; Beirigo, R.M.; Vasconcellos, A.; Dias, B.D.O.; et al. A sustainable agricultural landscape model for tropical drylands. Land Use Policy 2021, 100, 104913. [Google Scholar] [CrossRef]
- Liu, S.; Su, H.; Zhang, R.; Tian, J.; Chen, S.; Wang, W. Regional Estimation of Remotely Sensed Evapotranspiration Using the Surface Energy Balance-Advection (SEB-A) Method. Remote Sens. 2016, 8, 644. [Google Scholar] [CrossRef] [Green Version]
- Mutti, P.R.; da Silva, L.L.; Medeiros, S.D.S.; Dubreuil, V.; Mendes, K.R.; Marques, T.V.; Lúcio, P.S.; e Silva, C.M.S.; Bezerra, B.G. Basin scale rainfall-evapotranspiration dynamics in a tropical semiarid environment during dry and wet years. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 29–43. [Google Scholar] [CrossRef]
- Teixeira, A.D.C.; de Miranda, F.; Leivas, J.; Pacheco, E.; Garçon, E. Water productivity assessments for dwarf coconut by using Landsat 8 images and agrometeorological data. ISPRS J. Photogramm. Remote Sens. 2019, 155, 150–158. [Google Scholar] [CrossRef]
- Moreira, E.B.M.; Nóbrega, R.S.; Da Silva, B.B.; Ribeiro, E.P. Estimativa da evapotranspiração em área urbana através de imagens digitais TM-Landsat 5. Geosul 2019, 34, 559–585. [Google Scholar] [CrossRef]
- da Silva, M.V.; Pandorfi, H.; de Almeida, G.L.P.; de Lima, R.P.; dos Santos, A.; da Rosa Ferraz Jardim, A.M.; Rolim, M.M.; da Silva, J.L.B.; Batista, P.H.D.; da Silva, R.A.B.; et al. Spatio-temporal monitoring of soil and plant indicators under forage cactus cultivation by geoprocessing in Brazilian semi-arid region. J. S. Am. Earth Sci. 2021, 107, 103155. [Google Scholar] [CrossRef]
- Mhawej, M.; Faour, G. Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system. Environ. Model. Softw. 2020, 133, 104845. [Google Scholar] [CrossRef]
- Júnior, J.B.C.; e Silva, C.M.S.; De Almeida, H.A.; Bezerra, B.; Spyrides, M.H.C. Detecting linear trend of reference evapotranspiration in irrigated farming areas in Brazil’s semiarid region. Theor. Appl. Climatol. 2019, 138, 215–225. [Google Scholar] [CrossRef]
- IBGE Instituto Brasileiro de Geografia e Estatística. Available online: https://cidades.ibge.gov.br/brasil/pe/petrolina/panorama (accessed on 29 August 2021).
- NASA Giovanni. National Aeronautics and Space Administration. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 29 August 2021).
- Santos, C.; da Silva, R.M.; Silva, A.M.; Neto, R.M.B. Estimation of evapotranspiration for different land covers in a Brazilian semi-arid region: A case study of the Brígida River basin, Brazil. J. S. Am. Earth Sci. 2017, 74, 54–66. [Google Scholar] [CrossRef]
- Tasumi, M. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery; University of Idaho: Moscow, ID, USA, 2003. [Google Scholar]
- Moletto-Lobos, I.; Mattar, C.; Barichivich, J. Performance of Satellite-Based Evapotranspiration Models in Temperate Pastures of Southern Chile. Water 2020, 12, 3587. [Google Scholar] [CrossRef]
- Consoli, S.; Inglese, P.; Inglese, G. Determination of evapotranspiration and crop coefficient of cactus pear (Opuntia ficus-indica Mill.) with an energy balance technique. Acta Hortic. 2013, 995, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; You, Y.; Li, J.; Sitch, S.; Gu, X.; Nabel, J.E.M.S.; Lombardozzi, D.; Luo, M.; Feng, X.; Arneth, A.; et al. Response of global land evapotranspiration to climate change, elevated CO2, and land use change. Agric. For. Meteorol. 2021, 311, 108663. [Google Scholar] [CrossRef]
- Hartzell, S.; Bartlett, M.S.; Porporato, A. Unified representation of the C3, C4, and CAM photosynthetic pathways with the Photo3 model. Ecol. Model. 2018, 384, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Laipelt, L.; Ruhoff, A.L.; Fleischmann, A.; Kayser, R.H.B.; Kich, E.D.M.; Da Rocha, H.R.; Neale, C.M.U. Assessment of an Automated Calibration of the SEBAL Algorithm to Estimate Dry-Season Surface-Energy Partitioning in a Forest–Savanna Transition in Brazil. Remote Sens. 2020, 12, 1108. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.; Waters, R.; Bastiaanssen, W.; Tasumi, M.; Trezza, R. SEBAL (Surface Energy Balance Algorithms for Land)—Idaho Implementation, Advanced Training and Users Manual, Version 1.0; Idaho Department of Water Resources: Boise, ID, USA, 2002. [Google Scholar]
- Bastiaanssen, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Li, B.; Yu, X.; Shao, M.; Jin, X. Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation. Earth Syst. Sci. Data 2021, 13, 3995–4017. [Google Scholar] [CrossRef]
- Filho, W.L.F.C.; Santiago, D.D.B.; de Oliveira-Júnior, J.F.; Junior, C.A.D.S. Impact of urban decadal advance on land use and land cover and surface temperature in the city of Maceió, Brazil. Land Use Policy 2019, 87, 104026. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation. NASA/GSFCT Type III Final Report; NASA/GSFCT: Greenbelt, MD, USA, 1974; pp. 1–390. [Google Scholar]
- Gao, Q.; Li, Y.; Wan, Y.; Lin, E.; Xiong, W.; Jiangcun, W.; Wang, B.; Li, W. Grassland degradation in Northern Tibet based on remote sensing data. J. Geogr. Sci. 2006, 16, 165–173. [Google Scholar] [CrossRef]
- de Lima, I.P.; Jorge, R.G.; de Lima, J.L.M.P. Remote Sensing Monitoring of Rice Fields: Towards Assessing Water Saving Irrigation Management Practices. Front. Remote Sens. 2021, 2, 762093. [Google Scholar] [CrossRef]
- Teixeira, A.H.C.; Bastiaanssen, W.G.M.; Ahmad, M.D.; Bos, M.G. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil: Part B: Application to the regional scale. Agric. For. Meteorol. 2009, 149, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Bright, R.M.; Davin, E.; O’Halloran, T.; Pongratz, J.; Zhao, K.; Cescatti, A. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Chang. 2017, 7, 296–302. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Soppe, R.W.O.; Thoreson, B.P.; Allen, R.G.; Teixeira, A.H.C. Thermal-infrared technology for local and regional scale irrigation analyses in horticultural systems. Acta Hortic. 2008, 792, 33–46. [Google Scholar] [CrossRef]
- Teixeira, A.H.C.; Bastiaanssen, W.G.M.; Moura, M.S.B.; Soares, J.M.; Ahmad, M.D.; Bos, M.G. Energy and water balance measurements for water productivity analysis in irrigated mango trees, Northeast Brazil. Agric. For. Meteorol. 2008, 148, 1524–1537. [Google Scholar] [CrossRef] [Green Version]
- Filho, W.L.F.C.; De Oliveira-Júnior, J.F.; De Barros Santiago, D.; De Bodas Terassi, P.M.; Teodoro, P.E.; De Gois, G.; Blanco, C.J.C.; De Almeida Souza, P.H.; da Silva Costa, M.; Gomes, H.B.; et al. Rainfall variability in the Brazilian northeast biomes and their interactions with meteorological systems and ENSO via CHELSA product. Big Earth Data 2019, 3, 315–337. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.D.C.; Bastiaanssen, W.; Ahmad, M.-U.; Bos, M. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil: Part A: Calibration and validation. Agric. For. Meteorol. 2009, 149, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.T.; e Silva, C.M.S.; Lima, K.C. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theor. Appl. Climatol. 2017, 130, 77–90. [Google Scholar] [CrossRef]
- da Rosa Ferraz Jardim, A.M.; da Silva, M.V.; Silva, A.R.; dos Santos, A.; Pandorfi, H.; de Oliveira-Júnior, J.F.; de Lima, J.L.; de Souza, L.S.B.; do Nascimento Araújo Júnior, G.; Lopes, P.M.O.; et al. Spatiotemporal climatic analysis in Pernambuco State, Northeast Brazil. J. Atmos. Solar-Terr. Phys. 2021, 223, 105733. [Google Scholar] [CrossRef]
- Preston, W.; Nascimento, C.; Silva, Y.; Silva, D.J.; Ferreira, H.A. Soil fertility changes in vineyards of a semiarid region in Brazil. J. Soil Sci. Plant Nutr. 2017, 17, 672–685. [Google Scholar] [CrossRef] [Green Version]
- Menezes, K.M.S.; Silva, D.K.A.; Gouveia, G.V.; da Costa, M.M.; Queiroz, M.A.A.; Yano-Melo, A.M. Shading and intercropping with buffelgrass pasture affect soil biological properties in the Brazilian semi-arid region. Catena 2019, 175, 236–250. [Google Scholar] [CrossRef]
- Giongo, V.; Coleman, K.; da Silva Santana, M.; Salviano, A.M.; Olszveski, N.; Silva, D.J.; Cunha, T.J.F.; Parente, A.; Whitmore, A.P.; Richter, G.M. Optimizing multifunctional agroecosystems in irrigated dryland agriculture to restore soil carbon—Experiments and modelling. Sci. Total Environ. 2020, 725, 138072. [Google Scholar] [CrossRef]
- INMET Instituto Nacional de Meteorologia. Available online: https://portal.inmet.gov.br/ (accessed on 29 August 2021).
- Borges, C.K.; dos Santos, C.A.C.; Carneiro, R.G.; da Silva, L.L.; de Oliveira, G.; Mariano, D.; Silva, M.T.; da Silva, B.B.; Bezerra, B.G.; Perez-Marin, A.M.; et al. Seasonal variation of surface radiation and energy balances over two contrasting areas of the seasonally dry tropical forest (Caatinga) in the Brazilian semi-arid. Environ. Monit. Assess. 2020, 192, 524. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring; U.S. Geological Survey Data Series; USGS: Menlo Park, CA, USA, 2014; Volume 832. [Google Scholar]
- Marengo, J.A.; Aalves, L.M.; Alvala, R.C.; Cunha, A.P.; Brito, S.; Moraes, O.L.L. Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. An. Acad. Bras. Cienc. 2018, 90, 1973–1985. [Google Scholar] [CrossRef]
- USGS (United States Geological Survey). Landsat Missions Timeline. Available online: https://landsat.usgs.gov/landsat-missions-timeline (accessed on 29 August 2021).
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- da Silva, J.L.B.; de Albuquerque Moura, G.B.; de França e Silva, F.; Lopes, P.M.O.; Silva, T.; Lins, F.A.C.; de Oliveira Silva, D.A.; Ortiz, P.F.S. Spatial-temporal dynamics of the Caatinga vegetation cover by remote sensing in municipality of the Brazilian semi-arid. Rev. Bras. Ciênc. Agrár. 2019, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- de Moraes Rodrigues, J.A.; Lopes, P.M.O.; da Silva, J.L.B.; Araújo, H.L.; da Silva, M.V.; dos Santos, A.; de Albuquerque Moura, G.B. Spatial-temporal dynamics of Caatinga vegetation cover by remote sensing in the Brazilian semiarid region. DYNA 2020, 87, 109–117. [Google Scholar] [CrossRef]
- Batista, P.H.D.; de Almeida, G.L.P.; da Silva, J.L.B.; Pandorfi, H.; Da Silva, M.V.; da Silva, R.A.B.; de Melo, M.V.N.; Lins, F.A.C.; Junior, J.J.F.C. Short-term grazing and its impacts on soil and pasture degradation. DYNA 2020, 87, 123–128. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; Van Der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation. J. Hydrol. 1998, 212–213, 213–229. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Da Silva, B.B.; Braga, A.C.; Braga, C.C.; De Oliveira, L.M.M.; Montenegro, S.M.G.L.; Junior, B.B. Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Garrison, J.D.; Adler, G.P. Estimation of precipitable water over the United States for application to the division of solar radiation into its direct and diffuse components. Sol. Energy 1990, 44, 225–241. [Google Scholar] [CrossRef]
- Markham, B.L.; Barker, J.L. Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures. Landsat Tech. Notes 1986, 1, 3–8. [Google Scholar]
- Tang, R.; Li, Z.L.; Chen, K.S.; Jia, Y.; Li, C.; Sun, X. Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data. Agric. For. Meteorol. 2013, 174–175, 28–42. [Google Scholar] [CrossRef]
- Chang, Y.; Ding, Y.; Zhao, Q.; Zhang, S. Remote estimation of terrestrial evapotranspiration by Landsat 5 TM and the SEBAL model in cold and high-altitude regions: A case study of the upper reach of the Shule River Basin, China. Hydrol. Process. 2017, 31, 514–524. [Google Scholar] [CrossRef]
- Teixeira, A.D.C.; Bastiaanssen, W.; Ahmad, M.-U.; Moura, M.; Bos, M. Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil. J. Hydrol. 2008, 362, 110–127. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, S. The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. Remote Sens. 2016, 8, 983. [Google Scholar] [CrossRef] [Green Version]
- MapBiomas Brasil Plataforma de Mapas e Dados. Available online: https://mapbiomas.org/ (accessed on 29 August 2021).
- Pérez-Hoyos, A.; Rembold, F.; Kerdiles, H.; Gallego, J. Comparison of Global Land Cover Datasets for Cropland Monitoring. Remote Sens. 2017, 9, 1118. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation Project; QGIS: Chur, Switzerland, 2021. [Google Scholar]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Holtum, J.A.M.; Hancock, L.P.; Edwards, E.J.; Crisp, M.D.; Crayn, D.M.; Sage, R.; Winter, K. Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? Curr. Opin. Plant Biol. 2016, 31, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Li, N.; Zare, E.; Wang, J.; Triantafilis, J. Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data. Soil Tillage Res. 2020, 200, 104618. [Google Scholar] [CrossRef]
- Lin, L.I.-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 268. [Google Scholar] [CrossRef]
- Zhao, D.; Arshad, M.; Wang, J.; Triantafilis, J. Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking. Comput. Electron. Agric. 2021, 182, 105990. [Google Scholar] [CrossRef]
- R Core Team R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 29 August 2021).
- Correia, M.F.; da Silva Dias, M.A.F.; da Silva Aragão, M.R. Soil occupation and atmospheric variations over Sobradinho Lake area. Part two: A regional modeling study. Meteorol. Atmos. Phys. 2006, 94, 115–128. [Google Scholar] [CrossRef]
- da Silva, M.V.; Pandorfi, H.; Lopes, P.M.O.; da Silva, J.L.B.; de Almeida, G.L.P.; Silva, D.A.D.O.; dos Santos, A.; Rodrigues, J.A.D.M.; Batista, P.H.D.; Jardim, A.M.D.R.F. Pilot monitoring of caatinga spatial-temporal dynamics through the action of agriculture and livestock in the brazilian semiarid. Remote Sens. Appl. Soc. Environ. 2020, 19, 100353. [Google Scholar] [CrossRef]
- Gutiérrez, A.P.A.; Engle, N.L.; De Nys, E.; Molejón, C.; Martins, E.S. Drought preparedness in Brazil. Weather Clim. Extrem. 2014, 3, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, P.S.M.; Lopes, S.D.F.; Trovão, D.M.D.B.M. Patterns of species richness and abundance among cactus communities receiving different rainfall levels in the semiarid region of Brazil. Acta Bot. Bras. 2016, 30, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.P.M.; Alvalá, R.C.; Nobre, C.A.; Carvalho, M.A. Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agric. For. Meteorol. 2015, 214–215, 494–505. [Google Scholar] [CrossRef]
- Fleischer, E.; Khashimov, I.; Hölzel, N.; Klemm, O. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change. Sci. Total Environ. 2016, 545–546, 424–433. [Google Scholar] [CrossRef]
- da Silva Filho, R.; Vasconcelos, R.S.; de Oliveira Galvão, C.; de Brito leite Cunha, J.E.; Rufino, I.A.A. Representação matemática do comportamento intra-anual do NDVI no Bioma Caatinga. Ciênc. Florest. 2020, 30, 473–488. [Google Scholar] [CrossRef]
- dos Santos, A.; Lopes, P.M.O.; da Silva, M.V.; da Rosa Ferraz Jardim, A.M.; de Albuquerque Moura, G.B.; Fernandes, G.S.T.; de Oliveira Silva, D.A.; da Silva, J.L.B.; de Moraes Rodrigues, J.A.; Silva, E.A.; et al. Causes and consequences of seasonal changes in the water flow of the São Francisco river in the semiarid of Brazil. Environ. Sustain. Indic. 2020, 8, 100084. [Google Scholar] [CrossRef]
- Leivas, J.F.; Andrade, R.G.; Victoria, D.D.C.; Torresan, F.E.; Bolfe, E.L. Monitoramento da seca 2011/2012 no Nordeste brasileiro a partir do satélite SPOT-Vegetation e TRMM. Rev. Eng. Agric. 2014, 22, 211–221. [Google Scholar] [CrossRef]
- Silveira, H.L.F.; Galvão, L.S.; Sanches, I.D.A.; LastNamede Sá, I.B.; Taura, T.A. Use of MSI/Sentinel-2 and airborne LiDAR data for mapping vegetation and studying the relationships with soil attributes in the Brazilian semi-arid region. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 179–190. [Google Scholar] [CrossRef]
- da Rosa Ferraz Jardim, A.M.; Santos, H.R.B.; Alves, H.K.M.N.; Ferreira-Silva, S.L.; de Souza, L.S.B.; do Nascimento Araújo Júnior, G.; Souza, M.D.S.; de Araújo, G.G.L.; de Souza, C.A.A.; da Silva, T.G.F. Genotypic differences relative photochemical activity, inorganic and organic solutes and yield performance in clones of the forage cactus under semi-arid environment. Plant Physiol. Biochem. 2021, 162, 421–430. [Google Scholar] [CrossRef]
- Miranda, R.D.Q.; Nóbrega, R.L.B.; de Moura, M.S.B.; Raghavan, S.; Galvíncio, J.D. Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101992. [Google Scholar] [CrossRef]
- de Almeida, C.L.; de Carvalho, T.R.A.; de Araújo, J.C. Leaf area index of Caatinga biome and its relationship with hydrological and spectral variables. Agric. For. Meteorol. 2019, 279, 107705. [Google Scholar] [CrossRef]
- Pinheiro, E.A.R.; Metselaar, K.; Lier, Q.D.J.V.; de Araújo, J.C. Importance of soil-water to the Caatinga biome, Brazil. Ecohydrology 2016, 9, 1313–1327. [Google Scholar] [CrossRef]
- Zhao, Z.; Sharifi, A.; Dong, X.; Shen, L.; He, B.J. Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization. Remote Sens. 2021, 13, 4338. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; He, B.J.; Li, L.G.; Wang, H.B.; Darko, A. Profile and concentric zonal analysis of relationships between land use/land cover and land surface temperature: Case study of Shenyang, China. Energy Build. 2017, 155, 282–295. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T.; Nazmfar, H.; Akbari, E.; Kohbanani, H.R. Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County, Iran. J. Environ. Plan. Manag. 2013, 56, 1290–1315. [Google Scholar] [CrossRef]
- Arraes, F.D.D.; Andrade, E.M.; Silva, D.A. Dinâmica do balanço de energia sobre o açude Orós e suas adjacências. Rev. Caatinga 2012, 25, 119–127. [Google Scholar]
- Bezerra, J.M.; de A. Moura, G.B.; Da Silva, B.B.; Lopes, P.M.O.; de F. e Silva, Ê.F. Parâmetros biofísicos obtidos por sensoriamento remoto em região semiárida do estado do Rio Grande do Norte, Brasil. Rev. Bras. Eng. Agríc. Ambient. 2014, 18, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Folhes, M.T.; Rennó, C.D.; Soares, J.V. Remote sensing for irrigation water management in the semi-arid Northeast of Brazil. Agric. Water Manag. 2009, 96, 1398–1408. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Wang, L.; Ruiz-Colmenero, M. Shrub encroachment alters the spatial patterns of infiltration. Ecohydrology 2015, 8, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Geissler, K.; Hahn, C.; Joubert, D.; Blaum, N. Functional responses of the herbaceous plant community explain ecohydrological impacts of savanna shrub encroachment. Perspect. Plant Ecol. Evol. Syst. 2019, 39, 125458. [Google Scholar] [CrossRef]
- Marques, T.V.; Mendes, K.; Mutti, P.; Medeiros, S.; Silva, L.; Perez-Marin, A.M.; Campos, S.; Lúcio, P.S.; Lima, K.; dos Reis, J.; et al. Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid. Agric. For. Meteorol. 2020, 287, 107957. [Google Scholar] [CrossRef]
- Santos, C.A.C.; Mariano, D.A.; das Chagas, A.; do Nascimento, F.; Fabiane, F.R.; de Oliveira, G.; Silva, M.T.; da Silva, L.L.; da Silva, B.B.; Bezerra, B.G.; et al. Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101982. [Google Scholar] [CrossRef]
- de Lima, C.E.S.; de Oliveira Costa, V.S.; Galvíncio, J.D.; da Silva, R.M.; Santos, C.A.G. Assessment of automated evapotranspiration estimates obtained using the GP-SEBAL algorithm for dry forest vegetation (Caatinga) and agricultural areas in the Brazilian semiarid region. Agric. Water Manag. 2021, 250, 106863. [Google Scholar] [CrossRef]
Acquisition Date | JD | dr | Local Time | θ | E | φ |
---|---|---|---|---|---|---|
5 October 2013 | 278 | 0.99 | 9 h 49 min a.m. | 0.90 | 65.12 | 82.93 |
12 November 2015 | 316 | 0.99 | 9 h 48 min a.m. | 0.90 | 64.85 | 113.46 |
16 October 2017 | 289 | 0.99 | 9 h 48 min a.m. | 0.91 | 65.81 | 92.82 |
7 November 2019 | 311 | 0.99 | 9 h 48 min a.m. | 0.90 | 65.41 | 110.36 |
Classes | Annual Quantification of Land Use/Land Cover Types (ha year−1) | |||
---|---|---|---|---|
2013 | 2015 | 2017 | 2019 | |
Arboreal Caatinga | 540.96 | 356.43 | 467.77 | 878.15 |
Shrub Caatinga | 235,450.18 | 233,919.88 | 234,688.22 | 238,445.74 |
Herbaceous Caatinga | 84,274.3 | 74,985.47 | 78,138.28 | 78,797.94 |
Pasture | 53,346.49 | 55,356.09 | 60,156.62 | 60,176.26 |
Agriculture | 31,919.62 | 34,209.91 | 35,678.87 | 36,718.13 |
Mosaic of Agriculture and Pasture | 39,420.48 | 45,494.96 | 34,884.41 | 29,371.88 |
Urban area | 4855.57 | 5496.18 | 5829.13 | 5825.78 |
Water bodies | 6375.49 | 6364.17 | 6339.79 | 5969.21 |
Total | 456,183.09 | 456,183.09 | 456,183.09 | 456,183.09 |
Source of Variation | df | SS | MS | F-Value | p-Value | |
---|---|---|---|---|---|---|
Regression | 2 | 464.41 | 232.21 | 16,692.84 | 0.0001 | |
LST | 1 | 335.29 | 335.29 | 24,103.8 | 0.0001 | |
H | 1 | 129.12 | 129.12 | 9281.9 | 0.0001 | |
Error | 397 | 5.52 | 0.01 | |||
Total | 399 | 469.93 | ||||
Regression statistics | ||||||
Predictors in model | Regression coefficients | |||||
β0 | β1 | β2 | R2 | |||
LST, H | 6.89 | −0.0527 | −0.0120 | 0.98 | ||
Model | Statistical metrics | |||||
RMSE | MAE | PBIAS (%) | NSE | LCCC | d | |
0.498 | 0.413 | −13.32 | 0.826 | 0.907 | 0.9620 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jardim, A.M.d.R.F.; Araújo Júnior, G.d.N.; Silva, M.V.d.; Santos, A.d.; Silva, J.L.B.d.; Pandorfi, H.; Oliveira-Júnior, J.F.d.; Teixeira, A.H.d.C.; Teodoro, P.E.; de Lima, J.L.M.P.; et al. Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sens. 2022, 14, 1911. https://doi.org/10.3390/rs14081911
Jardim AMdRF, Araújo Júnior GdN, Silva MVd, Santos Ad, Silva JLBd, Pandorfi H, Oliveira-Júnior JFd, Teixeira AHdC, Teodoro PE, de Lima JLMP, et al. Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sensing. 2022; 14(8):1911. https://doi.org/10.3390/rs14081911
Chicago/Turabian StyleJardim, Alexandre Maniçoba da Rosa Ferraz, George do Nascimento Araújo Júnior, Marcos Vinícius da Silva, Anderson dos Santos, Jhon Lennon Bezerra da Silva, Héliton Pandorfi, José Francisco de Oliveira-Júnior, Antônio Heriberto de Castro Teixeira, Paulo Eduardo Teodoro, João L. M. P. de Lima, and et al. 2022. "Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian" Remote Sensing 14, no. 8: 1911. https://doi.org/10.3390/rs14081911
APA StyleJardim, A. M. d. R. F., Araújo Júnior, G. d. N., Silva, M. V. d., Santos, A. d., Silva, J. L. B. d., Pandorfi, H., Oliveira-Júnior, J. F. d., Teixeira, A. H. d. C., Teodoro, P. E., de Lima, J. L. M. P., Silva Junior, C. A. d., Souza, L. S. B. d., Silva, E. A., & Silva, T. G. F. d. (2022). Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sensing, 14(8), 1911. https://doi.org/10.3390/rs14081911