Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sites Description
2.2. Data Sources and Processing
2.2.1. Land Cover Types
2.2.2. MODIS NPP Product (MOD17A3H v006)
2.2.3. NDVI
2.2.4. Meteorological Datasets
2.2.5. DEM
2.2.6. SOCD
2.3. Research Methods
2.3.1. Estimation of NPP Based on CASA Model
- APAR
- Light energy utilization efficiency and its optimization
2.3.2. Estimation of Soil Respiration
- Geostatistical model of soil respiration (GSMSR)
- Rs–Rh relationship mode
2.3.3. Verification Method of NEP Estimation Results
2.3.4. Anomaly NEP (ANEP)
2.3.5. NEP Variation Trend Analysis
3. Results
3.1. The Analysis of NPP Based on the CASA Model
3.1.1. NPP Estimation Results
3.1.2. The Reliability Analysis of Estimated NPP
3.2. The NEP Estimation Results Based on Coupling Model
3.2.1. NEP Estimation Results
3.2.2. The Accuracy of Estimated NEP
3.3. Analysis of Spatiotemporal Variation of NEP in China
3.3.1. The Monthly Variation of NEP in China
3.3.2. The Interannual Variation of NEP in China
- The spatiotemporal variation characteristics of NEP from 2001 to 2016
- The trends of NEP from 2001 to 2016
4. Discussion
4.1. The NPP Estimation Results of Optimized CASA Model
4.2. The NEP Estimation Results of Coupling Model
4.3. The Prospects of the Study
5. Conclusions
- (1)
- It is feasible to couple the CASA model with GSMSR and Rs–Rh relationship model to estimate vegetation carbon sink, and model parameters optimization is an effective method to improve the estimation accuracy. Compared with the original CASA model, the R2 of the optimized CASA model increased from 0.411 to 0.774, and the RMSE decreased from 21.425 to 12.045 , indicating that it could improve the estimation accuracy by using vegetation classification to optimize the parameter of the CASA model;
- (2)
- Chinese NEP values are different in each region, presenting the pattern of southern region > northern region > Qinghai–Tibet region > northwestern region. From the annual average value of NEP, the southern and northern regions are carbon sinks as a whole, while the northwest and Qinghai Tibet regions are carbon sources. Nevertheless, the monthly variation patterns of NEP in different regions are generally similar, showing a single peak curve with summer as the peak;
- (3)
- The NEP values of various vegetation types are also different. The annual average NEP values of vegetation types such as ENF, EBF, DBF and MXF are higher, and are presented as carbon sink; however, the NPP values of grassland and cropland are relatively lower and the Rh values are relatively higher, so the mean NEP values are below zero, which shows that they are carbon sources. In addition, similar to different regions, the seasonal variation patterns of different vegetation also show a single peak curve with a peak in summer;
- (4)
- The NEP in most regions of China show a non-significant level upward trend in the summer of 2001–2016, but main cropland and some grassland show a non-significant level downward trend. In addition, the NEP of different geographical regions have spatial differences with time series. The NEP in the south is much higher than that in the Qinghai–Tibet Plateau, but the fluctuations in the time series of both are relatively small; and that in Northern and Northwestern China are low, but their interannual changes are relatively large.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nayak, R.K.; Patel, N.R.; Dadhwal, V.K. Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model. Environ. Monit. Assess. 2010, 170, 195–213. [Google Scholar] [CrossRef] [PubMed]
- Pathak, K.; Malhi, Y.; Sileshi, G.W.; Das, A.K.; Nath, A.J. Net ecosystem productivity and carbon dynamics of the traditionally managed Imperata grasslands of North East India. Sci. Total Environ. 2018, 635, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Ran, Y.; Li, X.; Sun, R.; Kljun, N.; Zhang, L.; Wang, X.; Zhu, G. Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale. Agric. For. Meteorol. 2016, 230–231, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Aubinet, M.; Hurdebise, Q.; Chopin, H.; Debacq, A.; de Ligne, A.; Heinesch, B.; Manise, T.; Vincke, C. Inter-annual variability of Net Ecosystem Productivity for a temperate mixed forest: A predominance of carry-over effects? Agric. For. Meteorol. 2018, 262, 340–353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Huang, J.; Chuai, X.; Xie, X.; Zhu, Z.; Wang, Y. Spatial distribution and changing trends of net ecosystem productivity in China. Geogr. Geo-Inf. Sci. 2020, 36, 69–74. [Google Scholar]
- Yao, Y.; Li, Z.; Wang, T.; Chen, A.; Wang, X.; Du, M.; Jia, G.; Li, Y.; Li, H.; Luo, W.; et al. A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agric. For. Meteorol. 2018, 253–254, 84–93. [Google Scholar] [CrossRef]
- Yuan, J.; Niu, Z.; Wang, C. Vegetation NPP distribution based on MODIS data and CASA model—A case study of northern Hebei Province. Chin. Geogr. Sci. 2006, 16, 334–341. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Luo, T. Approaches to the regional scale bio-productivity of terrestrial ecosystems. Resour. Sci. 1998, 20, 23–34. [Google Scholar]
- Fang, J. Global Ecology: Climate Change and Ecological Responses; Higher Education Press: Beijing, China, 2004. [Google Scholar]
- Chen, Y.; Chen, L.; Cheng, Y.; Ju, W.; Chen, H.Y.H.; Ruan, H. Afforestation promotes the enhancement of forest LAI and NPP in China. For. Ecol. Manag. 2020, 462, 117990. [Google Scholar] [CrossRef]
- Lieth, H. Computer Mapping of Forest Data: Proc.51 Annual Mtg; American Sect/Society of American Forests: Washington, DC, USA, 1972. [Google Scholar]
- Lieth, H. Evapotranspiration and primary productivity. Pub. Climatol. 1972, 25, 34–46. [Google Scholar]
- Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Gilmanov, T.G.; Scholes, R.J.; Schimel, D.S.; Kirchner, T.; Menaut, J.-C.; Seastedt, T.; Garcia-Moya, E.; et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob. Biogeochem. Cycles 1993, 7, 785–809. [Google Scholar] [CrossRef] [Green Version]
- Running, S.W.; Hunt, E.R. 8—Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global-Scale Models. In Scaling Physiological Processes; Ehleringer, J.R., Field, C.B., Eds.; Academic Press: San Diego, CA, USA, 1993; pp. 141–158. [Google Scholar]
- Veroustraete, F.; Patyn, J.; Myneni, R.B. Forcing of a simple ecosystem model with fAPAR and climatic data to estimate regional scale photosynthetic assimilation. In Vegetation, Modelling and Climate Change Effects; Veroustraete, F., Ceulemans, R., Impens, I., Van Rensbergen, J., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1994; pp. 151–177. [Google Scholar]
- Prince, S.D.; Goward, S.N. Global Primary Production: A Remote Sensing Approach. J. Biogeogr. 1995, 22, 815–835. [Google Scholar] [CrossRef]
- Goetz, S.J.; Prince, S.D.; Goward, S.N.; Thawley, M.M.; Small, J. Satellite remote sensing of primary production: An improved production efficiency modeling approach. Ecol. Model. 1999, 122, 239–255. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Wang, X.; Zhang, X. A new algorithm for the estimation of leaf unfolding date using MODIS data over China’s terrestrial ecosystems. ISPRS J. Photogramm. Remote Sens. 2019, 149, 77–90. [Google Scholar] [CrossRef]
- Melaas, E.K.; Sulla-Menashe, D.; Gray, J.M.; Black, T.A.; Morin, T.H.; Richardson, A.D.; Friedl, M.A. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sens. Environ. 2016, 186, 452–464. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Turner, D.P.; Gower, S.T.; Cohen, W.B.; Gregory, M.; Maiersperger, T.K. Effects of spatial variability in light use efficiency on satellite-based NPP monitoring. Remote Sens. Environ. 2002, 80, 397–405. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Zhao, M.; Running, S.W.; Wofsy, S.C.; Urbanski, S.; Dunn, A.L.; Munger, J.W. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sens. Environ. 2003, 88, 256–270. [Google Scholar] [CrossRef] [Green Version]
- Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. Earth Surf. 1994, 99, 5263. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Epstein, H.E.; Lauenroth, W.K.; Burke, I.C. A NPP estimates from NDVI for the central grassland region of the United States. Ecology 1997, 78, 953–958. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, Y.; Wang, Y.; Wu, R. Analysis of terrestrial net primary productivity by improved CASA model in Three-river headwaters region. J. Nanjing Univ. Inf. Sci. Technol. Nat. Sci. Ed. 2013, 5, 34–42. [Google Scholar]
- Zhou, G.-S.; Zhang, X.-S. A natural vegetation NPP model. Acta Phytoecol. Sin. 1995, 18, 193–200. [Google Scholar]
- Bouchet, R.J. Evapotranspiration reelle at potentielle, signification climatique. IAHS Publ. 1963, 62, 134–142. [Google Scholar]
- Zhou, G.-S.; Zhang, X.-S. Study on Chinese climate-vegetation relationship. Acta Phytoecol. Sin. 1996, 20, 113–119. [Google Scholar]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of maximum light utilization of typical Chinese vegetation. Chin. Sci. Bull. 2006, 51, 700–706. [Google Scholar]
- Brown, R.; Markewitz, D. Soil heterotrophic respiration: Measuring and modeling seasonal variation and silvicultural impacts. For. Ecol. Manag. 2018, 430, 594–608. [Google Scholar] [CrossRef]
- Li, J.; Pendall, E.; Dijkstra, F.A.; Nie, M. Root effects on the temperature sensitivity of soil respiration depend on climatic condition and ecosystem type. Soil Tillage Res. 2020, 199, 104574. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, B.; Li, C.; Gao, M.; Wang, Y.; Zhou, Z.; Yuan, H. Dissecting soil CO2 fluxes from a subtropical forest in China by integrating field measurements with a modeling approach. Geoderma 2011, 161, 88–94. [Google Scholar] [CrossRef]
- Yang, X.; Wang, M.; Huang, Y. The climatic-induced net carbon sink by terrestrial biosphere over 1901–1995. Adv. Atmos. Sci. 2001, 18, 1192–1206. [Google Scholar] [CrossRef]
- Potter, C.; Klooster, S.; de Carvalho, C.R.; Genovese, V.B.; Torregrosa, A.; Dungan, J.; Bobo, M.; Coughlan, J. Modeling seasonal and interannual variability in ecosystem carbon cycling for the Brazilian Amazon region. J. Geophys. Res. Earth Surf. 2001, 106, 10423–10446. [Google Scholar] [CrossRef]
- Tate, K.R.; Scott, N.A.; Parshotam, A.; Brown, L.; Wilde, R.H.; Giltrap, D.J.; Trustrum, N.A.; Gomez, B.; Ross, D.J. A multi-scale analysis of a terrestrial carbon budget: Is New Zealand a source or sink of carbon? Agric. Ecosyst. Environment. 2000, 82, 229–246. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Chen, L.; Li, R.; Deng, F.; Zhang, M.; Wen, L. Carbon flux and soil organic carbon content and density of different community types in a typical steppe ecoregion of Xilin Gol in inner Mongolia, China. J. Arid Environ. 2020, 178, 104155. [Google Scholar] [CrossRef]
- Xie, W.; Chen, S.-T.; Hu, Z.-H. Factors influencing the variability in soil heterotrophic respiration from terrestrial ecosystem in China. Environ. Sci. 2014, 35, 334–340. [Google Scholar]
- Chen, S.; Huang, Y.; Zou, J.; Shen, Q.; Hu, Z.; Qin, Y.; Chen, H.; Pan, G. Modeling interannual variability of global soil res-piration from climate and soil properties. Agric. For. Meteorol. 2010, 150, 590–605. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob. Chang. Biol. 2004, 10, 1756–1766. [Google Scholar] [CrossRef]
- Yu, G.; Zheng, Z.; Wang, Q.; Fu, Y.; Zhuang, J.; Sun, X.; Wang, Y. Spatiotemporal Pattern of Soil Respiration of Terrestrial Ecosystems in China: The Development of a Geostatistical Model and Its Simulation. Environ. Sci. Technol. 2010, 44, 6074–6080. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C.S. Global patterns of carbon dioxide emissions from soils. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Zhang, Y.; Huang, M.; Tao, B.; Liu, Z.; Hao, M.; Guo, R. Climate-driven uncertainties in modeling terrestrial ecosystem net primary productivity in China. Agric. For. Meteorol. 2017, 246, 123–132. [Google Scholar] [CrossRef]
- Niu, Z.; He, H.; Zhu, G.; Ren, X.; Zhang, L.; Zhang, K.; Yu, G.; Ge, R.; Li, P.; Zeng, N.; et al. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. Agric. For. Meteorol. 2019, 279, 107701. [Google Scholar] [CrossRef]
- Liang, L.; Sun, Q.; Luo, X.; Wang, J.; Zhang, L.; Deng, M.; Di, L.; Liu, Z. Long-term spatial and temporal variations of vegetative drought based on vegetation condition index in China. Ecosphere 2017, 8, e1919. [Google Scholar] [CrossRef]
- Chai, X.; Shi, P.; Song, M.; Zong, N.; He, Y.; Zhao, G.; Zhang, X. Carbon flux phenology and net ecosystem productivity simulated by a bioclimatic index in an alpine steppe-meadow on the Tibetan Plateau. Ecol. Model. 2019, 394, 66–75. [Google Scholar] [CrossRef]
- Yu, G.-R.; Wen, X.-F.; Sun, X.-M.; Tanner, B.D.; Lee, X.; Chen, J.-Y. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteorol. 2006, 137, 125–137. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Wu, Y.; Liu, S.; Huang, Y.; Yan, J.; Zhang, D.; Zhang, Q.; Liu, J.; Meng, Z.; et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Glob. Chang. Biol. 2011, 17, 3736–3746. [Google Scholar] [CrossRef]
- Huang, K.; Wang, S.; Zhou, L.; Wang, H.; Liu, Y.; Yang, F. Effects of drought and ice rain on potential productivity of a subtropical coniferous plantation from 2003 to 2010 based on eddy covariance flux observation. Environ. Res. Lett. 2013, 8, 035021. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Sun, X.; Xu, L.; Zhang, X.; He, Y.; Zhang, D.; Yu, G. Net ecosystem CO2 exchange and controlling factors in a steppe—Kobresia meadow on the Tibetan Plateau. Sci. China Ser. D Earth Sci. 2006, 49, 207–218. [Google Scholar] [CrossRef]
- Kato, T.; Tang, Y.; Gu, S.; Hirota, M.; Du, M.; Li, Y.; Zhao, X. Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Glob. Chang. Biol. 2006, 12, 1285–1298. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, G.; Wang, Y.; Li, Z.; Hao, Y. Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis steppe in Inner Mongolia. Sci. China Ser. D Earth Sci. 2006, 49, 196–206. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Q.; Jiang, J.; Tang, Y. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Glob. Chang. Biol. 2008, 14, 757–767. [Google Scholar] [CrossRef]
- Xu, X. China Monthly Vegetation Index (NDVI) Spatial Distribution Dataset. 2018. Available online: https://www.resdc.cn/data.aspx?DATAID=343 (accessed on 15 September 2021).
- Tian, M.; Zhou, J.; Jia, B.; Lou, S.; Wu, H. Impact of Three Gorges reservoir water impoundment on vegetation–climate re-sponse relationship. Remote Sens. 2020, 12, 2860. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Xie, X. Study on Soil Organic Carbon Stocks in National and Regional Scale Using GIS; Nanjing Normal University: Nanjing, China, 2004. [Google Scholar]
- Holdridge, L.R. Determination of World Plant Formations from Simple Climatic Data. Science 1947, 105, 367–368. [Google Scholar] [CrossRef]
- Goetz, S.J.; Prince, S.D. Remote sensing of net primary production in boreal forest stands. Agric. For. Meteorol. 1996, 78, 149–179. [Google Scholar] [CrossRef]
- Raymond, E., Jr. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. Int. J. Remote Sens. 1994, 15, 1725–1730. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, J.; Zhu, Z.; Zhang, H.; Zhang, Z.; Guo, X.; Bi, Y.; Sun, L. Remotely sensed estimation of Net Primary Productivity (NPP) and its spatial and temporal variations in the Greater Khingan Mountain region, China. Sustainability 2017, 9, 1213. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Shi, P.; Shao, H.; Zhu, W.; Pan, Y. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. Int. J. Remote Sens. 2009, 30, 4851–4866. [Google Scholar] [CrossRef]
- Shi, Z. Spatial-Temporal Simulation of Vegetation Carbon Sink and Its Influential Factors Based on CASA and GSMSR Model in Shaanxi Province; Northwest A&F University: Yangling, China, 2015. [Google Scholar]
- Foken, T.L.R.O. Corrections and Data Quality. In Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Aubinet, M., Vesala, T., Papale, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Schotanus, P.; Nieuwstadt, F.T.M.; de Bruin, H.R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound. Layer Meteorol. 1983, 26, 81–93. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic Anemometer Tilt Correction Algorithms. Bound. Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of the flux measurements for density effects due to heat and water vapor transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Moore, C.J. Frequency response corrections for eddy correlation systems. Bound. Layer Meteorol. 1986, 37, 17–35. [Google Scholar] [CrossRef]
- Hollinger, D.Y.; Kelliher, F.M.; Byers, J.N.; Hunt, J.E.; McSeveny, T.M.; Weir, P.L. Carbon Dioxide Exchange between an Undisturbed Old-Growth Temperate Forest and the Atmosphere. Ecology 1994, 75, 134–150. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Qiu, S.; Yan, J.; Shi, Y.; Geng, D. VCI-Based Analysis on Spatiotemporal Variations of Spring Drought in China. Int. J. Environ. Res. Public Health 2021, 18, 7967. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Li, D.; Wang, Z. The characteristics of NPP of terrestrial vegetation in China based on MOD17A3 data. Ecol. Environ. Sci. 2018, 27, 397–405. [Google Scholar]
- Goncharova, O.; Matyshak, G.; Udovenko, M.; Semenyuk, O.; Epstein, H.; Bobrik, A. Temporal dynamics, drivers, and components of soil respiration in urban forest ecosystems. Catena 2020, 185, 104299. [Google Scholar] [CrossRef]
- Duan, Y.; He, Z.; Wang, Y.; Liu, J.; Huang, G. Monitoring land desertification of Tibet Autonomous Region based on remote sensing. J. Arid Land Resour. Environ. 2014, 28, 55–61. [Google Scholar]
- Zhao, Z.; Xu, D.; Zhang, X.; Lu, Z.; Zhang, X. Assessement of the Land Desertification Vulnerability in Inner Mongolia During the Period 2000–2015. Res. Soil Water Conserv. 2020, 27, 168–175. [Google Scholar]
- Peng, S.; Guo, Z.; Wang, B. Use of GIS and RS to estimate the light utilization efficient of the vegetation in Guangdong, China. Acta Ecol. Sin. 2000, 20, 903–909. [Google Scholar]
- Zhao, Y.; Niu, S.; Wang, J.; Li, H.; Li, G. Light use efficiency of vegetation: A review. Chin. J. Ecol. 2007, 26, 1471–1477. [Google Scholar]
- Sun, R.; Zhu, Q. Distribution and seasonal change of net primary productivity in China from April, 1992 to March, 1993. Acta Geogr. Sin. 2000, 55, 36–45. [Google Scholar]
- Liu, Y.; Zhang, Z.; Tong, L.; Wang, Q.; Zhou, W.; Wang, Z.; Li, J. Spatiotemporal dynamics of China’s grassland NPP and its driving factors. Chin. J. Ecol. 2020, 39, 349–363. [Google Scholar]
- Tan, K.; Zhou, S.; Li, E.; Du, P. Assessing the impact of urbanization on net primary productivity using multi-scale remote sensing data: A case study of Xuzhou, China. Front. Earth Sci. 2015, 9, 319–329. [Google Scholar] [CrossRef]
- Wang, X.; Tan, K.; Chen, B.; Du, P. Assessing the Spatiotemporal Variation and Impact Factors of Net Primary Productivity in China. Sci. Rep. 2017, 7, srep44415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X. Response of net primary productivity (NPP) of Sichuan vegetations to global climate changes. Chin. J. Ecol. 2004, 23, 19–24. [Google Scholar]
- Wang, Y.; Sun, J.; Liu, M.; Zeng, T.; Tsunekawa, A.; Mubarak, A.A.; Zhou, H. Precipitation-use efficiency may explain net primary productivity allocation under different precipitation conditions across global grassland ecosystems. Glob. Ecol. Conserv. 2019, 20, e713. [Google Scholar] [CrossRef]
Site Code | Site Name | Location | Climate | Data Period | Reference |
---|---|---|---|---|---|
XSBN | Xishuangbanna | 101°16′E 21°54′N | Temperate continental monsoon climate | January 2010–December 2010 | [48] |
DHS | Dinghushan | 112°30′E 23°09′N | Monsoon humid climate of torrid zone | January 2010–December 2010 | [49] |
QYZ | Qianyanzhou | 115°03′29″E 26°44′29″N | Typical subtropical monsoon climate | January 2010–December 2010 | [50] |
CBS | Changbaishan | 128°05′45″E 42°24′9″N | Temperate continental monsoon climate | January 2010–December 2010 | [48] |
DX | Dangxiong | 91°03′E 30°29′N | Plateau monsoon climate | January 2010–December 2010 | [51] |
HB | Haibei | 101°19′E 37°37′N | Highland continental climate | January 2010–December 2010 | [52] |
NMG | Neimenggu | 116°40′E 43°32′N | Temperate semi-arid continental climate | January 2010–December 2010 | [53] |
YC | Yucheng | 116°34′E 36°50′N | Temperate semi-humid and monsoon climate | January 2010–December 2010 | [54] |
Vegetation Types | |
---|---|
ENF | 0.476 |
EBF | 0.985 |
DNF | 0.485 |
DBF | 0.692 |
MXF | 0.768 |
DS | 0.429 |
OS | 0.429 |
Grassland | 0.542 |
Cropland | 0.542 |
Other | 0.389 |
Vegetation Types | MOD17A3H (gC·m−2·a−1) | Optimized CASA Model (gC·m−2·a−1) | Percentage Deviation |
---|---|---|---|
ENF | 705.367 | 701.637 | 0.529% |
EBF | 767.051 | 811.981 | 5.857% |
DNF | 477.025 | 340.510 | 28.618% |
DBF | 565.624 | 516.450 | 8.694% |
MXF | 700.982 | 525.496 | 25.034% |
DS | 332.307 | 366.007 | 10.141% |
OS | 53.462 | 110.077 | 105.898% |
grassland | 191.985 | 183.444 | 4.449% |
wetland | 168.897 | 119.056 | 29.510% |
cropland | 413.199 | 270.829 | 34.456% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, L.; Geng, D.; Yan, J.; Qiu, S.; Shi, Y.; Wang, S.; Wang, L.; Zhang, L.; Kang, J. Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China. Remote Sens. 2022, 14, 1902. https://doi.org/10.3390/rs14081902
Liang L, Geng D, Yan J, Qiu S, Shi Y, Wang S, Wang L, Zhang L, Kang J. Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China. Remote Sensing. 2022; 14(8):1902. https://doi.org/10.3390/rs14081902
Chicago/Turabian StyleLiang, Liang, Di Geng, Juan Yan, Siyi Qiu, Yanyan Shi, Shuguo Wang, Lijuan Wang, Lianpeng Zhang, and Jianrong Kang. 2022. "Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China" Remote Sensing 14, no. 8: 1902. https://doi.org/10.3390/rs14081902
APA StyleLiang, L., Geng, D., Yan, J., Qiu, S., Shi, Y., Wang, S., Wang, L., Zhang, L., & Kang, J. (2022). Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China. Remote Sensing, 14(8), 1902. https://doi.org/10.3390/rs14081902