Remote Sensing Monitoring of the Spatial Pattern of Greening and Browning in Xilin Gol Grassland and Its Response to Climate and Human Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.1.1. Study Area
2.1.2. NDVI
2.1.3. Climate Data Sets
2.1.4. Other Data
2.2. Methods
2.2.1. Time Series Analysis Method
2.2.2. Land Cover Transfer Matrix
2.2.3. Correlation Analysis
2.2.4. Improved Buffer Analysis
3. Results
3.1. Spatial Distribution and Trend of NDVI
3.2. The Relationship between NDVI Change and Land Cover Change
3.3. The Relationship between the NDVI and Climatic Elements
3.4. The Relationship between the NDVI and Socioeconomic Elements
4. Discussion
4.1. The Influence of Climatic Factors on Grassland
4.2. Significant Browning of Grassland Driven by Human Activities
4.3. Greening of Grasslands and Its Driving Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
PER 1 | BA 1 | POP 1 | OP 1 | OS 1 | OT 1 | NS 1 | AA 1 | RC 1 | HM 1 | |
---|---|---|---|---|---|---|---|---|---|---|
2000 | 272.10 | 28.00 | 99.34 | 23.69 | 25.78 | 19.74 | 920.61 | 1.92 | 122.83 | 8023 |
2001 | 235.80 | 29.06 | 91.83 | 21.98 | 29.27 | 22.99 | 840.43 | 4.223 | 128.33 | 7233 |
2002 | 275.80 | 32.00 | 93.31 | 23.15 | 32.48 | 26.27 | 899.44 | 9.861 | 152.72 | 7498 |
2003 | 348.30 | 34.00 | 93.97 | 28.54 | 42.48 | 29.65 | 861.91 | 2.92 | 198.48 | 7571 |
2004 | 292.30 | 36.80 | 99.59 | 32.43 | 62.57 | 38.46 | 837.32 | 7.55 | 373.47 | 7758 |
2005 | 222.30 | 41.40 | 100.60 | 33.10 | 82.01 | 54.11 | 765.61 | 11.837 | 693.82 | 8005 |
2006 | 253.90 | 41.40 | 100.90 | 35.71 | 115.39 | 64.34 | 742.33 | 3.92 | 1121 | 12,587 |
2007 | 231.40 | 43.60 | 101.68 | 39.10 | 170.23 | 80.12 | 743.11 | 9.302 | 2104.11 | 14,703 |
2008 | 324.10 | 50.60 | 102.71 | 47.09 | 250.52 | 96.54 | 622.13 | 16.65 | 4665.52 | 15,586 |
2009 | 256.20 | 70.00 | 103.60 | 52.14 | 316.36 | 116.50 | 603.58 | 4.92 | 7216.02 | 16,161 |
2010 | 277.60 | 73.50 | 102.86 | 59.60 | 398.87 | 133.58 | 544.35 | 13.9252 | 10,793.73 | 17,318 |
2011 | 270.10 | 64.50 | 103.31 | 71.87 | 463.01 | 161.80 | 534.80 | 26.1391 | 12,790 | 17,536 |
2012 | 397.40 | 68.00 | 104.06 | 81.58 | 549.76 | 188.86 | 534.81 | 5.92 | 14,631.63 | 17,896 |
2013 | 323.90 | 68.00 | 103.89 | 91.50 | 590.10 | 220.80 | 591.74 | 23.2351 | 14,113.55 | 18,097 |
2014 | 278.60 | 68.00 | 104.04 | 98.49 | 589.52 | 252.58 | 576.07 | 25.9961 | 12,134.42 | 19,111 |
2015 | 209.10 | 69.00 | 104.26 | 105.50 | 611.12 | 283.48 | 622.16 | 31.1655 | 8365.64 | 19,212 |
2016 | 159.56 | 70.05 | 104.69 | 115.30 | 613.71 | 316.50 | 580.70 | 38.0055 | 8137.1 | 19,518 |
2017 | 114.35 | 73.05 | 105.16 | 120.84 | 618.62 | 341.50 | 616.86 | 47.4555 | 9360.97 | 19,875 |
2018 | 175.22 | 177.12 | 105.48 | 127.36 | 646.64 | 363.32 | 653.01 | 52.3535 | 10,584.84 | 20,242 |
2019 | 167.34 | 179.07 | 105.83 | 123.16 | 323.81 | 351.62 | 631.00 | 58.6835 | 11,043.01 | 24,055 |
2020 | 278.60 | 179.68 | 110.88 | 134.90 | 357.99 | 346.95 | 588.31 | 63.9935 | 10,971.94 | 22,515 |
References
- Shi, Y.; Cai, Y.; Zhao, M. Social interaction effect of rotational grazing and its policy implications for sustainable use of grassland: Evidence from pastoral areas in Inner Mongolia and Gansu, China. Land Use Policy 2021, 111, 105734. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Yu, D.; Li, Y.; Yin, B.; Wu, N.; Ye, R.; Liu, G. Spatiotemporal variation of net primary productivity and its response to drought in Inner Mongolian desert steppe. Glob. Ecol. Conserv. 2022, 33, e01991. [Google Scholar] [CrossRef]
- Wu, Z. Study on Landscape Pattern Optimization of Large-Scale Surface Coal Base in Semi-arid Steppe Based on 3S Integrated Technology. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2020. [Google Scholar]
- Choudhury, A.; Lahkar, J.; Saikia, B.K.; Singh, A.K.A.; Chikkaputtaiah, C.; Boruah, H.P.D. Strategies to address coal mine-created environmental issues and their feasibility study on northeastern coalfields of Assam, India: A review. Environ. Dev. Sustain. 2021, 23, 9667–9709. [Google Scholar] [CrossRef]
- Bian, Z.; Yu, H.; Hou, J.; Mu, S. Influencing factors and evaluation of land degradation of 12 coal mine areas in Western China. J. China Coal Soc. 2020, 45, 338–350. [Google Scholar]
- Ma, Q.; Wu, J.; He, C.; Fang, X. The speed, scale, and environmental and economic impacts of surface coal mining in the Mongolian Plateau. Resour. Conserv. Recycl. 2021, 173, 105730. [Google Scholar] [CrossRef]
- Qian, T.N.; Bagan, H.; Kinoshita, T.; Yamagata, Y. Spatial-Temporal Analyses of Surface Coal Mining Dominated Land Degradation in Holingol, Inner Mongolia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1675–1687. [Google Scholar] [CrossRef]
- Wu, Z.H.; Lei, S.G.; Lu, Q.Q.; Bian, Z.F. Impacts of Large-Scale Open-Pit Coal Base on the Landscape Ecological Health of Semi-Arid Grasslands. Remote Sens. 2019, 11, 1820. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; He, X.; Zhao, J.; Li, Z.; Feng, Y.; Bao, H. The effect of open-pit coal mining on the surrounding grassland communities in north China-Case of West Second Open-Pit Mine in Xilin Hot. J. Arid Land Resour. Environ. 2019, 33, 199–203. [Google Scholar]
- Guangjun, W.; Zhenqi, H.U.; Haiqing, D.U.; Mingyi, D.U.; Qiuji, C. Analysis of Grassland Desertification Due to Coal Mining Based on Remote SensingAn Example from Huolinhe Open-cast Coalmine. J. Remote Sens. 2006, 10, 917–925. [Google Scholar]
- McKenna, P.B.; Lechner, A.M.; Phinn, S.; Erskine, P.D. Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: A Global Systematic Review. Remote Sens. 2020, 12, 3535. [Google Scholar] [CrossRef]
- Chen, B.; Xu, G.; Coops, N.; Ciais, P.; Innes, J.; Wang, G.; Myneni, R.; Wang, T.; Krzyzanowski, J.; Li, Q.; et al. Changes in vegetation photosynthetic activity trends across the Asia–Pacific region over the last three decades. Remote Sens. Environ. 2014, 144, 28–41. [Google Scholar] [CrossRef]
- Schell, J.A. Monitoring vegetation systems in the great plains with ERTS. Nasa Spec. Publ. 1973, 351, 309. [Google Scholar]
- Guan, Q.; Yang, L.; Pan, N.; Lin, J.; Xu, C.; Wang, F.; Liu, Z. Greening and Browning of the Hexi Corridor in Northwest China: Spatial Patterns and Responses to Climatic Variability and Anthropogenic Drivers. Remote Sens. 2018, 10, 1270. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Xu, L.; Liu, Z.; Jing, Y.; Zhu, W. Dynamics of NDVI and its influencing factors in the Chinese Loess Plateau during 2002–2018. Reg. Sustain. 2021, 2, 36–46. [Google Scholar] [CrossRef]
- Das, P. 20 years MODIS-NDVI monitoring suggests that vegetation has increased significantly around Tehri Dam reservoir, Uttarakhand, India. Remote Sens. Appl. Soc. Environ. 2021, 24, 100610. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Wang, Z.; Li, D.; Zhang, Y.; Qin, D.; Li, S. Elevation-dependent decline in vegetation greening rate driven by increasing dryness based on three satellite NDVI datasets on the Tibetan Plateau. Ecol. Indic. 2019, 107, 105569. [Google Scholar] [CrossRef]
- Zhumanova, M.; Mönnig, C.; Hergarten, C.; Darr, D.; Wrage-Mönnig, N. Assessment of vegetation degradation in mountainous pastures of the Western Tien-Shan, Kyrgyzstan, using eMODIS NDVI. Ecol. Indic. 2018, 95, 527–543. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Bian, J.; Li, A.; Zhang, Z.; Zhao, W.; Lei, G.; Yin, G.; Jin, H.; Tan, J.; Huang, C. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model. Remote Sens. Environ. 2017, 197, 98–114. [Google Scholar] [CrossRef]
- Sun, B.; Li, Z.; Gao, Z.; Guo, Z.; Wang, B.; Hu, X.; Bai, L. Grassland degradation and restoration monitoring and driving forces analysis based on long time-series remote sensing data in Xilin Gol League. Acta Ecol. Sin. 2017, 37, 219–228. [Google Scholar] [CrossRef]
- Li, C.; Xian, G.; Zhou, Q.; Pengra, B.W. A novel automatic phenology learning (APL) method of training sample selection using multiple datasets for time-series land cover mapping. Remote Sens. Environ. 2021, 266, 112670. [Google Scholar] [CrossRef]
- Ahmed, T.; Singh, D. Probability density functions based classification of MODIS NDVI time series data and monitoring of vegetation growth cycle. Adv. Space Res. 2020, 66, 873–886. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; Tu, Z.; Zhang, Y.; Tsendbazar, N.-E. Monitoring vegetation change and their potential drivers in Yangtze River Basin of China from 1982 to 2015. Environ. Monit. Assess. 2020, 192, 642. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Ceulemans, T.; Hodgson, J.G.; Jarvis, S.; Grime, J.P.; Smart, S.M. Drivers of vegetation change in grasslands of the Sheffield region, northern England, between 1965 and 2012/13. Appl. Veg. Sci. 2016, 19, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Erli, W.; Junqi, Z. Analysis of NDVI Changes and Its Climate Factor Drivers in Ebinur Lake Basin from 1998 to 2012. J. Appl. Sci. 2015, 33, 59–69. [Google Scholar]
- Zhang, L.F.; Yan, H.W.; Qiu, L.S.; Cao, S.P.; He, Y.; Pang, G.J. Spatial and Temporal Analyses of Vegetation Changes at Multiple Time Scales in the Qilian Mountains. Remote Sens. 2021, 13, 5046. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, J.; Ren, Z.; Li, J.; Guo, Y. Mapping the increased minimum mortality temperatures in the context of global climate change. Nat. Commun. 2019, 10, 4640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bujalsky, L.; Jirka, V.; Zemek, F.; Frouz, J. Relationships between the normalised difference vegetation index and temperature fluctuations in post-mining sites. Int. J. Min. Reclam. Environ. 2018, 32, 254–263. [Google Scholar] [CrossRef]
- Li, Z.J.; Yao, X.L.; Yu, J.S.; Sun, W.C.; Li, H. Analysis of Vegetation Changes along the Roadsides Based on Remote Sensing. In Proceedings of the 3rd International Conference on Photonics and Image in Agriculture Engineering (PIAGENG), Sanya, China, 27–28 January 2013. [Google Scholar]
- Chen, H.; Li, S.C.; Zhang, Y.L. Impact of Road Construction on Vegetation alongside Qinghai-Xizang Highway and railway. Chin. Geogr. Sci. 2003, 13, 340–346. [Google Scholar] [CrossRef]
- Li, Q.; Hu, C.; Wang, M. Analysis on the Causes of Eco-environmental Deterioration in Xilinguole Typical Grassland Region and Counter Measures. Acta Sci. Nat. Univ. Neimongol 2003, 34, 166–172. [Google Scholar]
- Ye, D.; Chou, J.; Liu, J.; Zhang, Z.; Wang, Y.; Zhou, Z.; Ju, H.; Huang, Q. Causes of Sand-stormy Weather in Northern China and Contral Measures. Acta Geogr. Sin. 2000, 55, 513–521. [Google Scholar]
- Liu, Y.; Shi, L.; Chang, H.; Xie, Y. Analysis of driving factors that influence the pattern and quality of the ecosystem in Xilingol League. Acta Prataculturae Sin. 2021, 30, 17–26. [Google Scholar]
- Yan, Y.; Hu, Y.F.; Liu, Y.; Yu, G.M.; Haimei, W. The Tendency and its Spatial Pattern of Grassland Changes in the East Xilin Gol from 1975 to 2009. J. Geo Inf. Sci. 2011, 13, 1975–2009. [Google Scholar] [CrossRef]
- Batunacun; Wieland, R.; Lakes, T.; Yunfeng, H.; Nendel, C. Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015. Land Use Policy 2019, 83, 543–559. [Google Scholar] [CrossRef]
- Zhang, R.; Yeh, E.T.; Tan, S. Marketization induced overgrazing: The political ecology of neoliberal pastoral policies in Inner Mongolia. J. Rural Stud. 2021, 86, 309–317. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, A.; Wang, H.; Cao, Y.; Fan, Q. Temporal and spatial variations of EVI and its response to influence of climate with different grassland types in Xilin Gol League. Pratacultural Sci. 2019, 36, 346–358. [Google Scholar]
- Kang, Y.; Guo, E.; Wang, Y.; Bao, Y.; Bao, Y.; Mandula, N. Monitoring Vegetation Change and Its Potential Drivers in Inner Mongolia from 2000 to 2019. Remote Sens. 2021, 13, 3357. [Google Scholar] [CrossRef]
- Feng, J.; Shi, N.-N.; Xiao, N.-W.; Wang, Q.; Gao, X.-Q.; Han, Y.; Quan, Z.-J. Spatio-temporal dynamics of normalized differential vegetation index and its driving factors in Xilin Gol, China. Chin. J. Plant Ecol. 2019, 43, 331–341. [Google Scholar] [CrossRef]
- Xu, J.; Zha, K. Mathematical Methods in Modern Geography, 3rd ed.; Higher Education Press: Beijing, China, 2002. [Google Scholar]
- Li, Y.; Cao, Z.; Long, H.; Liu, Y.; Li, W. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban–rural development: The case of Mu Us Sandy Land, China. J. Clean. Prod. 2017, 142, 697–715. [Google Scholar] [CrossRef]
- Shahriar Pervez, M.; Budde, M.; Rowland, J. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sens. Environ. 2014, 149, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K. On Further Methods of Determining Correlation; Dulau and Company: London, UK, 1907; Volume 16. [Google Scholar]
- Zafer, A.; Nawaz, R.; Iqbal, J. Face recognition with expression variation via robust ncc. In Proceedings of the 2013 IEEE 9th International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 9–10 December 2013; pp. 1–5. [Google Scholar]
- De Winter, J.C.; Gosling, S.D.; Potter, J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychol. Methods 2016, 21, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Jiangwen, F.A.N.; Huaping, Z.; Libo, C.; Wenyan, Z. Some Scientific Problems of Grassland Degradation in Arid and Semi-arid Regions in Northern China. Chin. J. Grassl. 2007, 29, 95–101. [Google Scholar]
- Bai, Z.; Zhou, W.; Wang, J.; Zhao, Z.; Cao, Y.; Zhou, Y. Rethink on Ecosystem Restoration and Rehabilitation of Mining Areas. China Land Sci. 2018, 32, 1–9. [Google Scholar]
- Coffin, A.W. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Sun, J.X.; Li, Z.N.; Lei, J.Q.; Teng, D.X.; Li, S.Y. Study on the Relationship between Land Transport and Economic Growth in Xinjiang. Sustainability 2018, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Rousta, I.; Olafsson, H.; Moniruzzaman, M.; Zhang, H.; Liou, Y.-A.; Mushore, T.D.; Gupta, A. Impacts of Drought on Vegetation Assessed by Vegetation Indices and Meteorological Factors in Afghanistan. Remote Sens. 2020, 12, 2433. [Google Scholar] [CrossRef]
- Rong, A.; Bi, Q.; Dong, Z. Change of grassland vegetation and driving factors based on MODIS/NDVI in Xilingol, China. Resour. Sci. 2019, 41, 1374–1386. [Google Scholar]
- Zhou, Y.; Huang, X.; Xu, G.; Li, J. The coupling and driving forces between urban land expansion and population growth in Yangtze River Delta. Geogr. Res. 2016, 35, 313–324. [Google Scholar]
- Yao, F.; Guli, J.; Bao, A.; Zhang, J.; Li, C.; Liu, J. Damage assessment of the vegetable types based on remote sensing in the open coalmine of arid desert area. China Environ. Sci. 2013, 33, 707–713. [Google Scholar]
Year | NDVI (<0.2) | NDVI (0.2–0.4) | NDVI (0.4–0.6) | NDVI (0.6–0.8) | NDVI (0.8–1.0) |
---|---|---|---|---|---|
2000 | 10.19% | 56.13% | 25.30% | 7.78% | 0.61% |
2001 | 25.14% | 36.86% | 26.80% | 9.73% | 1.47% |
2002 | 12.58% | 39.27% | 29.89% | 16.27% | 1.99% |
2003 | 2.62% | 38.87% | 34.60% | 22.27% | 1.65% |
2004 | 14.35% | 38.04% | 29.60% | 16.11% | 1.90% |
2005 | 24.19% | 27.95% | 30.22% | 14.99% | 2.65% |
2006 | 8.11% | 42.57% | 30.14% | 16.67% | 2.51% |
2007 | 11.92% | 55.71% | 26.61% | 5.26% | 0.51% |
2008 | 8.67% | 35.36% | 32.71% | 20.11% | 3.15% |
2009 | 15.83% | 56.46% | 20.93% | 5.71% | 1.06% |
2010 | 16.57% | 43.82% | 29.90% | 8.53% | 1.17% |
2011 | 15.92% | 36.20% | 27.06% | 18.63% | 2.19% |
2012 | 1.51% | 32.45% | 32.46% | 29.75% | 3.84% |
2013 | 11.32% | 33.11% | 31.48% | 20.59% | 3.51% |
2014 | 21.32% | 29.58% | 31.21% | 14.58% | 3.31% |
2015 | 14.60% | 34.39% | 31.21% | 16.20% | 3.60% |
2016 | 10.33% | 54.24% | 25.10% | 8.33% | 1.99% |
2017 | 16.19% | 38.70% | 25.23% | 17.76% | 2.12% |
2018 | 2.18% | 27.67% | 33.55% | 32.21% | 4.39% |
2019 | 10.10% | 42.29% | 30.59% | 14.21% | 2.82% |
2020 | 1.55% | 36.88% | 38.28% | 20.03% | 3.28% |
Mean | 7.84% | 41.18% | 37.54% | 12.15% | 1.30% |
Max | 0.29% | 22.78% | 28.27% | 40.70% | 7.95% |
Level | Classification | Area (km2) | Percentage | Range of S |
---|---|---|---|---|
Lv1 | Significantly negative | 257.43 | 0.13% | −0.054523 to −0.009223 |
Lv2 | Moderately negative | 9444.75 | 4.73% | −0.009223 to −0.001361 |
Lv3 | Slightly negative | 41,352.19 | 20.70% | −0.001361–0.001259 |
Lv4 | Stable | 60,636.56 | 30.35% | 0.001259–0.003131 |
Lv5 | Slightly positive | 56,135.94 | 28.09% | 0.003131–0.005752 |
Lv6 | Moderately positive | 27,084.00 | 13.55% | 0.005752–0.00987 |
Lv7 | Significantly positive | 4905.43 | 2.45% | 0.00987–0.040943 |
2000 | 2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FaL 1 | FL 1 | GL 1 | BL 1 | WeL 1 | WaA 1 | AS 1 | BL 1 | Total (2000) | Loss | Net Gain | |
FaL | 2.157 | 0.004 | 0.938 | 0.001 | 0.005 | 0.001 | 0.041 | 0.005 | 3.153 | 0.996 | −0.425 |
FL | 0.004 | 0.418 | 0.268 | 0.005 | 0.003 | 0.001 | 0.002 | 0.001 | 0.701 | 0.283 | −0.068 |
GL | 0.545 | 0.196 | 81.405 | 0.505 | 0.360 | 0.074 | 0.331 | 1.703 | 85.119 | 3.714 | 3.053 |
BL | 0.002 | 0.003 | 0.409 | 0.316 | 0.007 | 0.001 | 0.001 | 0.046 | 0.785 | 0.469 | 0.073 |
WeL | 0.003 | 0.008 | 0.296 | 0.013 | 0.156 | 0.037 | 0.008 | 0.133 | 0.652 | 0.497 | 0.082 |
WaA | 0.002 | 0.004 | 0.106 | 0.004 | 0.185 | 0.157 | 0.006 | 0.110 | 0.575 | 0.418 | −0.297 |
AS | 0.007 | 0.000 | 0.051 | 0.000 | 0.000 | 0.000 | 0.134 | 0.001 | 0.193 | 0.060 | 0.359 |
BL | 0.007 | 0.000 | 4.699 | 0.014 | 0.017 | 0.008 | 0.030 | 4.046 | 8.821 | 4.775 | −2.776 |
Total (2020) | 2.728 | 0.633 | 88.172 | 0.858 | 0.734 | 0.277 | 0.553 | 6.045 | 100.000 | ||
Gain | 0.571 | 0.216 | 6.766 | 0.542 | 0.579 | 0.121 | 0.419 | 1.999 | 11.212 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, J.; Chen, Z.; Ye, B.; Shi, C.; Bai, Z. Remote Sensing Monitoring of the Spatial Pattern of Greening and Browning in Xilin Gol Grassland and Its Response to Climate and Human Activities. Remote Sens. 2022, 14, 1765. https://doi.org/10.3390/rs14071765
Hui J, Chen Z, Ye B, Shi C, Bai Z. Remote Sensing Monitoring of the Spatial Pattern of Greening and Browning in Xilin Gol Grassland and Its Response to Climate and Human Activities. Remote Sensing. 2022; 14(7):1765. https://doi.org/10.3390/rs14071765
Chicago/Turabian StyleHui, Jiawei, Zanxu Chen, Baoying Ye, Chu Shi, and Zhongke Bai. 2022. "Remote Sensing Monitoring of the Spatial Pattern of Greening and Browning in Xilin Gol Grassland and Its Response to Climate and Human Activities" Remote Sensing 14, no. 7: 1765. https://doi.org/10.3390/rs14071765
APA StyleHui, J., Chen, Z., Ye, B., Shi, C., & Bai, Z. (2022). Remote Sensing Monitoring of the Spatial Pattern of Greening and Browning in Xilin Gol Grassland and Its Response to Climate and Human Activities. Remote Sensing, 14(7), 1765. https://doi.org/10.3390/rs14071765