Downscaling Satellite-Based Estimates of Ocean Bottom Pressure for Tracking Deep Ocean Mass Transport
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Model
2.2. Methods
3. Results
3.1. Validation with In Situ BPR Data
3.2. Validation with RAPID Meridional Transport
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Talley, L.D. Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr. 2003, 33, 530–560. [Google Scholar] [CrossRef]
- Johns, W.E.; Baringer, M.O.; Beal, L.; Cunningham, S.; Kanzow, T.; Bryden, H.L.; Hirschi, J.; Marotzke, J.; Meinen, C.; Shaw, B.; et al. Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5∘N. J. Clim. 2011, 24, 2429–2449. [Google Scholar] [CrossRef] [Green Version]
- Mazloff, M.R.; Boening, C. Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE. Geophys. Res. Lett. 2016, 43, 3822–3829. [Google Scholar] [CrossRef]
- Cunningham, S.A.; Kanzow, T.; Rayner, D.; Baringer, M.O.; Johns, W.E.; Marotzke, J.; Longworth, H.R.; Grant, E.M.; Hirschi, J.J.M.; Beal, L.M.; et al. Temporal variability of the Atlantic meridional overturning circulation at 26.5 N. Science 2007, 317, 935–938. [Google Scholar] [CrossRef] [Green Version]
- Frajka-Williams, E.; Ansorge, I.J.; Baehr, J.; Bryden, H.L.; Chidichimo, M.P.; Cunningham, S.A.; Danabasoglu, G.; Dong, S.; Donohue, K.A.; Elipot, S.; et al. Atlantic meridional overturning circulation: Observed transport and variability. Front. Mar. Sci. 2019, 6, 260. [Google Scholar] [CrossRef] [Green Version]
- Send, U.; Lankhorst, M.; Kanzow, T. Observation of decadal change in the Atlantic meridional overturning circulation using 10 years of continuous transport data. Geophys. Res. Lett. 2011, 38, L24606. [Google Scholar] [CrossRef] [Green Version]
- Meinen, C.S.; Speich, S.; Perez, R.C.; Dong, S.; Piola, A.R.; Garzoli, S.L.; Baringer, M.O.; Gladyshev, S.; Campos, E.J. Temporal variability of the meridional overturning circulation at 34.5∘S: Results from two pilot boundary arrays in the South Atlantic. J. Geophys. Res. Ocean. 2013, 118, 6461–6478. [Google Scholar] [CrossRef] [Green Version]
- Lozier, M.S.; Bacon, S.; Bower, A.S.; Cunningham, S.A.; De Jong, M.F.; De Steur, L.; Deyoung, B.; Fischer, J.; Gary, S.F.; Greenan, B.J.; et al. Overturning in the Subpolar North Atlantic Program: A new international ocean observing system. Bull. Am. Meteorol. Soc. 2017, 98, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Landerer, F.W.; Wiese, D.N.; Bentel, K.; Boening, C.; Watkins, M.M. North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies. Geophys. Res. Lett. 2015, 42, 8114–8121. [Google Scholar] [CrossRef]
- Bergmann, I.; Dobslaw, H. Short-term transport variability of the Antarctic Circumpolar Current from satellite gravity observations. J. Geophys. Res. Ocean. 2012, 117, C05044. [Google Scholar] [CrossRef] [Green Version]
- Worthington, E.L.; Frajka-Williams, E.; McCarthy, G.D. Estimating the deep overturning transport variability at 26∘N using bottom pressure recorders. J. Geophys. Res. Ocean. 2019, 124, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.A.; Thompson, L.; Lyman, J. The coherence and impact of meridional heat transport anomalies in the Atlantic Ocean inferred from observations. J. Clim. 2014, 27, 1469–1487. [Google Scholar] [CrossRef]
- Koelling, J.; Send, U.; Lankhorst, M. Decadal strengthening of interior flow of North Atlantic Deep Water observed by GRACE satellites. J. Geophys. Res. Ocean. 2020, 125, e2020JC016217. [Google Scholar] [CrossRef]
- Böning, C.; Timmermann, R.; Macrander, A.; Schröter, J. A pattern-filtering method for the determination of ocean bottom pressure anomalies from GRACE solutions. Geophys. Res. Lett. 2008, 35, L18611. [Google Scholar] [CrossRef] [Green Version]
- Chambers, D.P.; Willis, J.K. Analysis of large-scale ocean bottom pressure variability in the North Pacific. J. Geophys. Res. Ocean. 2008, 113, C11003. [Google Scholar] [CrossRef] [Green Version]
- Chambers, D.P.; Willis, J.K. A global evaluation of ocean bottom pressure from GRACE, OMCT, and steric-corrected altimetry. J. Atmos. Ocean. Technol. 2010, 27, 1395–1402. [Google Scholar] [CrossRef] [Green Version]
- Poropat, L.; Dobslaw, H.; Zhang, L.; Macrander, A.; Boebel, O.; Thomas, M. Time variations in ocean bottom pressure from a few hours to many years: In situ data, numerical models, and GRACE satellite gravimetry. J. Geophys. Res. Ocean. 2018, 123, 5612–5623. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 2016, 52, 7490–7502. [Google Scholar] [CrossRef]
- Hughes, C.W.; Williams, J.; Blaker, A.; Coward, A.; Stepanov, V. A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation. Prog. Oceanogr. 2018, 161, 19–46. [Google Scholar] [CrossRef]
- Wiese, D.N.; Yuan, D.N.; Boening, C.; Landerer, F.W.; Watkins, M.M. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height Release 06 Coastal Resolution Improvement (CRI) Filtered Version 1.0. Available online: https://podaac.jpl.nasa.gov/dataset/TELLUS_GRACE_MASCON_CRI_GRID_RL06_V1 (accessed on 19 May 2019). [CrossRef]
- Bentel, K.; Landerer, F.W.; Boening, C. Monitoring Atlantic overturning circulation and transport variability with GRACE-type ocean bottom pressure observations—A sensitivity study. Ocean. Sci. 2015, 11, 953–963. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113, B08410. [Google Scholar] [CrossRef] [Green Version]
- Peltier, R.W.; Argus, D.F.; Drummond, R. Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. Geophys. Res. Solid Earth 2018, 123, 2019–2028. [Google Scholar] [CrossRef]
- Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Ocean. 1997, 102, 5753–5766. [Google Scholar] [CrossRef] [Green Version]
- Menemenlis, D.; Campin, J.M.; Heimbach, P.; Hill, C.; Lee, T.; Nguyen, A.; Schodlok, M.; Zhang, H. ECCO2: High resolution global ocean and sea ice data synthesis. Mercat. Ocean. Q. Newsl. 2008, 31, 13–21. [Google Scholar]
- Volkov, D.L.; Lee, T.; Fu, L.L. Eddy-induced meridional heat transport in the ocean. Geophys. Res. Lett. 2008, 35, L20601. [Google Scholar] [CrossRef] [Green Version]
- Menemenlis, D.; Hill, C.; Adcrocft, A.; Campin, J.M.; Cheng, B.; Ciotti, B.; Fukumori, I.; Heimbach, P.; Henze, C.; Köhl, A.; et al. NASA supercomputer improves prospects for ocean climate research. Eos Trans. Am. Geophys. Union 2005, 86, 89–96. [Google Scholar] [CrossRef]
- Menemenlis, D.; Fukumori, I.; Lee, T. Using Green’s functions to calibrate an ocean general circulation model. Mon. Weather. Rev. 2005, 133, 1224–1240. [Google Scholar] [CrossRef] [Green Version]
- Meinig, C.; Stalin, S.E.; Nakamura, A.I.; Milburn, H.B. Real-Time Deep-Ocean Tsunami Measuring, Monitoring, and Reporting System: The NOAA DART II Description and Disclosure; NOAA Pacific Marine Environmental Laboratory: Seattle, WA, USA, 2005; pp. 1–15. [Google Scholar]
- Elipot, S.; Hughes, C.; Olhede, S.; Toole, J. Coherence of western boundary pressure at the RAPID WAVE array: Boundary wave adjustments or deep western boundary current advection? J. Phys. Oceanogr. 2013, 43, 744–765. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.W.; Elipot, S.; Morales Maqueda, M.Á.; Loder, J.W. Test of a method for monitoring the geostrophic meridional overturning circulation using only boundary measurements. J. Atmos. Ocean. Technol. 2013, 30, 789–809. [Google Scholar] [CrossRef] [Green Version]
- Androsov, A.; Boebel, O.; Schröter, J.; Danilov, S.; Macrander, A.; Ivanciu, I. Ocean Bottom Pressure Variability: Can It Be Reliably Modeled? J. Geophys. Res. Ocean. 2020, 125, e2019JC015469. [Google Scholar] [CrossRef]
- Rhein, M.; Mertens, C.; Roessler, A. Observed transport decline at 47∘N, western Atlantic. J. Geophys. Res. Ocean. 2019, 124, 4875–4890. [Google Scholar] [CrossRef]
- Smeed, D.; McCarthy, G.; Rayner, D.; Moat, B.I.; Johns, W.E.; Baringer, M.O.; Meinen, C.S. Atlantic Meridional Overturning Circulation Observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) Array at 26N from 2004 to 2017; British Oceanographic Data Centre, Natural Environment Research Council: Liverpool, UK, 2017. [Google Scholar] [CrossRef]
- Kanzow, T.; Cunningham, S.A.; Rayner, D.; Hirschi, J.J.M.; Johns, W.E.; Baringer, M.O.; Bryden, H.L.; Beal, L.M.; Meinen, C.S.; Marotzke, J. Observed flow compensation associated with the MOC at 26.5∘N in the Atlantic. Science 2007, 317, 938–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, G.D.; Smeed, D.A.; Johns, W.E.; Frajka-Williams, E.; Moat, B.I.; Rayner, D.; Baringer, M.O.; Meinen, C.S.; Collins, J.; Bryden, H.L. Measuring the Atlantic meridional overturning circulation at 26∘N. Prog. Oceanogr. 2015, 130, 91–111. [Google Scholar] [CrossRef] [Green Version]
- Ducet, N.; Le Traon, P.Y.; Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J. Geophys. Res. Ocean. 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Delman, A.S.; Lee, T.; Qiu, B. Interannual to multidecadal forcing of mesoscale eddy kinetic energy in the subtropical southern Indian Ocean. J. Geophys. Res. Ocean. 2018, 123, 8180–8202. [Google Scholar] [CrossRef]
- Delman, A.; Lee, T. A new method to assess mesoscale contributions to meridional heat transport in the North Atlantic Ocean. Ocean. Sci. 2020, 16, 979–995. [Google Scholar] [CrossRef]
- Smith, W.H.; Sandwell, D.T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 1997, 277, 1956–1962. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.D. A Global Ocean Tide Model from TOPEX/POSEIDON Altimetry: GOT99. 2; National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 1999. [Google Scholar]
- Dobslaw, H.; Bergmann-Wolf, I.; Dill, R.; Poropat, L.; Thomas, M.; Dahle, C.; Esselborn, S.; König, R.; Flechtner, F. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys. J. Int. 2017, 211, 263–269. [Google Scholar] [CrossRef] [Green Version]
Number of Sites | ||
---|---|---|
Correlation Improvement | Model Cov. Only | Depth-Adjusted Cov. |
<0 | 15 | 9 |
0–0.05 | 17 | 19 |
0.05–0.1 | 7 | 8 |
0.1–0.2 | 3 | 6 |
>0.2 | 1 | 1 |
Total sites | 43 | 43 |
Total > 0 | 28 | 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delman, A.; Landerer, F. Downscaling Satellite-Based Estimates of Ocean Bottom Pressure for Tracking Deep Ocean Mass Transport. Remote Sens. 2022, 14, 1764. https://doi.org/10.3390/rs14071764
Delman A, Landerer F. Downscaling Satellite-Based Estimates of Ocean Bottom Pressure for Tracking Deep Ocean Mass Transport. Remote Sensing. 2022; 14(7):1764. https://doi.org/10.3390/rs14071764
Chicago/Turabian StyleDelman, Andrew, and Felix Landerer. 2022. "Downscaling Satellite-Based Estimates of Ocean Bottom Pressure for Tracking Deep Ocean Mass Transport" Remote Sensing 14, no. 7: 1764. https://doi.org/10.3390/rs14071764
APA StyleDelman, A., & Landerer, F. (2022). Downscaling Satellite-Based Estimates of Ocean Bottom Pressure for Tracking Deep Ocean Mass Transport. Remote Sensing, 14(7), 1764. https://doi.org/10.3390/rs14071764