UAVs for Science in Antarctica
Abstract
:1. Introduction
2. Search for Published Documents and Methods
3. A First Snapshot
4. Application Topics
4.1. Terrestrial
4.1.1. Vegetation
4.1.2. Landforms and Soils
4.1.3. Basemaps
4.1.4. Geophysics
4.1.5. Algorithms
4.2. Ice and Snow
4.2.1. Glaciers and Ice-Sheets
4.2.2. Sea-Ice
4.2.3. Snow
4.3. Fauna
4.3.1. Counting Individuals
4.3.2. Morphometrics
4.3.3. Mapping
4.3.4. Interaction
4.4. Technology
4.4.1. Platforms
4.4.2. Sensors
4.4.3. Testing
4.5. Atmosphere
4.5.1. Measurements on the Atmospheric Boundary Layer (ABL)
4.5.2. Air-Surface Coupling
4.5.3. Sampling
4.6. Others
5. Equipment
5.1. UAV Platforms
5.2. Sensors
6. Discussion
6.1. Synthesis
6.2. Operational Problems
6.3. Novel Application Topics and Methodological Developments
6.4. Coordination and Data Sharing
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkins, H. The Wilkins-Hearst Antarctic Expedition, 1928–1929. Geogr. Rev. 1929, 19, 353–376. [Google Scholar] [CrossRef]
- Joerg, W.L.G. The cartographical results of Ellsworth’s Trans-Antarctic flight of 1935. Geogr. Rev. 1937, 27, 430–444. [Google Scholar] [CrossRef]
- Pope, A.; Rees, W.G.; Fox, A.J.; Fleming, A. Open access data in polar and cryospheric remote sensing. Remote Sens. 2014, 6, 6183–6220. [Google Scholar] [CrossRef] [Green Version]
- Southard, R.B.; MacDonald, W.R. ERTS-1 imagery applications in polar regions. Antarct. J. 1974, 9, 61–67. [Google Scholar]
- Lucchitta, B.K.; Bowell, J.-A.; Edwards, K.L.; Eliason, E.M.; Ferguson, H.M. Multispectral Landsat images of Antarctica. USGS Bull. 1987, 1696. [Google Scholar]
- Bindschadler, R.; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, B.; Gorodetzky, D. The Landsat image mosaic of Antarctica. Remote Sens. Environ. 2008, 112, 4214–4226. [Google Scholar] [CrossRef]
- Howat, I.M.; Porter, C.; Smith, B.E.; Noh, M.-J.; Morin, P. The Reference Elevation Model of Antarctica. Cryosphere 2019, 13, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Burton-Johnson, A.; Black, M.; Fretwell, P.T.; Kaluza-Gilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: A new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 2016, 10, 1665–1677. [Google Scholar] [CrossRef] [Green Version]
- Fretwell, P.T.; LaRue, M.A.; Morin, P.; Kooyman, G.L.; Wienecke, B.; Ratcliffe, N.; Fox, A.J.; Fleming, A.H.; Porter, C.; Trathan, P.N. An emperor penguin population estimate: The first global, synoptic survey of a species from space. PLoS ONE 2012, 7, e33751. [Google Scholar] [CrossRef]
- COMNAP (Council of Managers of National Antarctic Programs). Antarctic Unmanned Aerial Systems (UAS) operator’s handbook. Prepared by the COMNAP Unmanned Aerial Systems-Working Group (UAS-WG). In Proceedings of the ATCM-XXXIX Antarctic Treaty Consultive Meeting, Santiago, Chile, 23 May–1 June 2016. [Google Scholar]
- COMNAP (Council of Managers of National Antarctic Programs). Antarctic Remotely Piloted Aircraft Systems (RPAS) Operator’s Handbook; Version 6, 15 September 2021; Prepared by the COMNAP RPAS Working Group; 2021; Available online: https://static1.squarespace.com/static/61073506e9b0073c7eaaf464/t/614955adb8852a75ab0d5641/1632196017702/COMNAP+RPAS+Handbook+15+September+2021.pdf (accessed on 19 February 2022).
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Pajares, G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Sam, L.; Akanksha; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Gaffey, C.; Bhardwaj, A. Applications of unmanned aerial vehicles in cryosphere: Latest advances and prospects. Remote Sens. 2020, 12, 948. [Google Scholar] [CrossRef] [Green Version]
- Funaki, M. Ant-Plane Group. Development of small drones “Ant-Plane” for Antarctic research—Its possibility and difficulty. Antarct. Rec. 2006, 50, 212–230. (In Japanese) [Google Scholar]
- Higashino, S.; Funaki, M.; Hirasawa, N.; Hayashi, M.; Nagasaki, S. Development and operational experiences of UAVs for scientific research in Antarctica. In Autonomous Control Systems and Vehicles; Nonami, K., Kartidjo, M., Yoon, K., Budiyono, A., Eds.; Intelligent Systems, Control and Automation: Science and Engineering; Springer: Tokyo, Japan, 2013; Volume 65, pp. 159–173. [Google Scholar]
- Rodzewicz, M.; Glowacki, D. Study of load spectrum occurring in the course of photogrammetric missions of the UAV. In Structural Integrity in the Age of Additive Manufacturing; Niepokolczycki, A., Komorowski, J., Eds.; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2020; pp. 1112–1127. [Google Scholar]
- Pina, P.; Pereira, F.; Marques, J.S.; Heleno, S. Detection of stone circles in periglacial regions of Antarctica in UAV datasets. In Pattern Recognition and Image Analysis; Morales, A., Fierrez, J., Sánchez, J., Ribeiro, B., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11867, pp. 279–288. [Google Scholar]
- Coronado-Hernández, J.R.; Rios-Angulo, W.A.; Segovia, C.; Urrego-Niño, D.; Romero-Conrado, A.R. Site selection of the Colombian Antarctic Research Station based on Fuzzy-Topsis algorithm. In Advances in Swarm Intelligence; Tan, Y., Shi, Y., Tuba, M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12145, pp. 651–660. [Google Scholar]
- Acuña, R.; Tao, J.; Breen, D.; Breen, B.; Pointing, S.; Gillman, L.; Klette, R. Robust segmentation of aerial image data recorded for landscape ecology studies. In Image and Video Technology—PSIVT 2015 Workshops; Lecture Notes in Computer Science; Huang, F., Sugimoto, A., Eds.; Springer: Cham, Switzerland, 2016; Volume 9555, pp. 61–72. [Google Scholar]
- Matsuoka, K.; Skoglund, A.; Roth, G.; de Pomereu, J.; Griffiths, H.; Headland, R.; Herried, B.; Katsumata, K.; Le Brocq, A.; Licht, K.; et al. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environ. Modell. Softw. 2021, 140, 105015. [Google Scholar] [CrossRef]
- Chary, S.; Amrein, K.; Soeteman, D.I.; Mehta, S.; Christopher, K.B. Gender disparity in critical care publications: A novel Female First Author Index. Ann. Intensive Care 2021, 11, 103. [Google Scholar] [CrossRef]
- Ni, C.; Smith, E.; Yuan, H.; Larivière, V.; Sugimoto, C.R. The gendered nature of authorship. Sci. Adv. 2021, 7, eabe4639. [Google Scholar] [CrossRef]
- Huang, J.; Gates, A.J.; Sinatra, R.; Barabási, A.-L. Historical comparison of gender inequality in scientific careers across countries and disciplines. Proc. Natl. Acad. Sci. USA 2020, 117, 4609–4616. [Google Scholar] [CrossRef] [Green Version]
- Lucieer, A.; Robinson, S.A.; Turner, D. Using an unmanned aerial vehicle (UAV) for ultrahigh resolution mapping of Antarctic moss beds. In Proceedings of the 15th Australasian Remote Sensing and Photogrammetry Conference, Alice Springs, Australia, 14–16 September 2010; pp. 1–12. [Google Scholar]
- Lucieer, A.; Robinson, S.A.; Turner, D. Unmanned aerial vehicle (UAV) remote sensing for hyperspatial terrain mapping of Antarctic moss beds based on structure from motion (SfM) point clouds. In Proceedings of the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–15 April 2011; pp. 1–4. [Google Scholar]
- Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on Structure from Motion (SfM) point clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef] [Green Version]
- Lucieer, A.; Robinson, S.A.; Turner, D.; Harwin, S.; Kelcey, J. Using a micro-UAV for ultra-high resolution multisensor observations of Antarctic moss beds. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012; Volume XXXIX-B1, pp. 429–433. [Google Scholar]
- Lucieer, A.; Malenovský, Z.; Veness, T.; Wallace, L. HyperUAS—Imaging spectroscopy from a multirotor unmanned aircraft system. J. Field Robot. 2014, 31, 571–590. [Google Scholar] [CrossRef] [Green Version]
- Lucieer, A.; Turner, D.; King, D.H.; Robinson, S.A. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int. J. Appl. Earth Obs. 2014, 27, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Bollard-Breen, B.; Brooks, J.D.; Jones, M.R.L.; Robertson, J.; Betschart, S.; Kung, O.; Cary, S.C.; Lee, C.K.; Pointing, S.B. Application of an unmanned aerial vehicle in spatial mapping of terrestrial biology and human disturbance in the McMurdo Dry Valleys, East Antarctica. Polar Biol. 2015, 38, 573–578. [Google Scholar] [CrossRef]
- Putzke, J.; Ferrari, F.R.; Schaefer, C.E.G.R. Discovery of a large population of Hygrolembidium isophyllum (Lepidoziaceae, Marchantiophyta) in the South Shetland Islands, Antarctica. Polar Res. 2020, 39, 3663. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Lee, E.; Ju, H.; Hyun, C.-U.; Park, S.-J.; Kim, O.-S.; Lee, S.-J.; Kim, J.-S. Time-lapse electrical resistivity structures for the active layer of permafrost terrain at the King Sejong Station: Correlation interpretation with vegetation and meteorological data. Econ. Environ. Geol. 2020, 53, 413–423. (In Korean) [Google Scholar]
- Sotille, M.E.; Bremer, U.F.; Vieira, G.; Velho, L.F.; Petsch, C.; Simões, J.C. Evaluation of UAV and satellite-derived NDVI to map maritime Antarctic vegetation. Appl. Geogr. 2020, 125, 102322. [Google Scholar] [CrossRef]
- Váczi1, P.; Barták, M.; Bednaříková, M.; Hrbáček, F.; Hájek, J. Spectral properties of Antarctic and Alpine vegetation monitored by multispectral camera: Case studies from James Ross Island and Jeseníky Mts. Czech Polar Rep. 2020, 10, 297–312. [Google Scholar] [CrossRef]
- Câmara, P.E.A.S.; Convey, P.; Rangel, S.B.; Konrath, M.; Barreto, C.C.; Pinto, O.H.P.; Silva, M.C.; Henriques, D.K.; Oliveira, H.C.; Rosa, L.H. The largest moss carpet transplant in Antarctica and its bryosphere cryptic biodiversity. Extremophiles 2021, 25, 369–384. [Google Scholar] [CrossRef]
- Bollard, B.; Doshi, A.; Gilbert, N.; Poirot, C.; Gillman, L. Drone technology for monitoring protected areas in remote and fragile environments. Drones 2022, 6, 42. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Malenovský, Z.; King, D.H.; Robinson, S.A. Spatial co-registration of ultra-high resolution visible, multispectral and thermal images acquired with a micro-UAV over Antarctic moss beds. Remote Sens. 2014, 6, 4003–4024. [Google Scholar] [CrossRef] [Green Version]
- Malenovský, Z.; Turnbull, J.D.; Lucieer, A.; Robinson, S.A. Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New Phytol. 2015, 208, 608–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malenovský, Z.; Lucieer, A.; King, D.H.; Turnbull, J.D.; Robinson, S.A. Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol. Evol. 2017, 8, 1842–1857. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Lucieer, A.; Malenovský, Z.; King, D.H.; Robinson, S.A. Assessment of Antarctic moss health from multi-sensor UAS imagery with random forest modelling. Int. J. Appl. Earth Obs. 2018, 62, 168–179. [Google Scholar] [CrossRef]
- Turner, D.; Malenovský, Z.; Lucieer, A.; Turnbull, J.A.; Robinson, S.A. Optimizing spectral and spatial resolutions of unmanned aerial system imaging sensors for monitoring Antarctic vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3813–3825. [Google Scholar] [CrossRef]
- Miranda, V.; Pina, P.; Heleno, S.; Vieira, G.; Mora, C.; Schaefer, C.E.G.R. Monitoring recent changes of vegetation in Fildes Peninsula (King George Island, Antarctica) through satellite imagery guided by UAV surveys. Sci. Total Environ. 2020, 704, 135295. [Google Scholar] [CrossRef]
- Levy, J.; Cary, S.C.; Joy, K.; Lee, C.K. Detection and community-level identification of microbial mats in the McMurdo Dry Valleys using drone-based hyperspectral reflectance imaging. Antarct. Sci. 2020, 32, 367–381. [Google Scholar] [CrossRef]
- Westoby, M.J.; Dunning, S.A.; Woodward, J.; Hein, A.S.; Marrero, S.M.; Winter, K.; Sugden, D.E. Sedimentological characterization of Antarctic moraines using UAVs and structure-from-motion photogrammetry. J. Glaciol. 2015, 61, 1088–1102. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Dunning, S.A.; Woodward, J.; Hein, A.S.; Marrero, S.M.; Winter, K.; Sugden, D.E. Interannual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs. Earth Surf. Dynam. 2016, 4, 515–529. [Google Scholar] [CrossRef] [Green Version]
- Woodward, J.; Hein, A.S.; Winter, K.; Westoby, M.J.; Marrero, S.M.; Dunning, S.A.; Lim, M.; Rivera, A.; Sugden, D.E. Blue-ice moraines formation in the Heritage Range, West Antarctica: Implications for ice sheet history and climate reconstruction. Quat. Sci. Adv. 2022, 6, 100051. [Google Scholar] [CrossRef]
- Akçar, N.; Yesilyurt, S.; Hippe, K.; Christl, M.; Vockenhuber, C.; Yavuz, V.; Ozsoy, B. Build-up and chronology of blue ice moraines in Queen Maud Land, Antarctica. Quat. Sci. Adv. 2020, 2, 100012. [Google Scholar] [CrossRef]
- Kreczmer, K.; Dąbski, M.; Zmarz, A. Terrestrial signature of a recently-tidewater glacier and adjacent periglaciation, Windy Glacier (South Shetland Islands, Antarctic). Front. Earth Sci. 2021, 9, 671985. [Google Scholar] [CrossRef]
- Pereira, F.; Marques, J.S.; Heleno, S.; Pina, P. Detection and delineation of sorted stone circles in Antarctica. Remote Sens. 2020, 12, 160. [Google Scholar] [CrossRef] [Green Version]
- Hein, A.; Marrero, S.; Woodward, J.; Dunning, S.A.; Winter, K.; Westoby, M.J.; Freeman, S.P.H.T.; Shanks, R.P.; Sugden, D.E. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet. Nat. Commun. 2016, 7, 12511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hein, A.; Woodward, J.; Marrero, S.; Dunning, S.A.; Steig, E.J.; Freeman, S.P.H.T.; Stuart, F.M.; Winter, K.; Westoby, M.J.; Sugden, D.E. Evidence for the stability of the West Antarctic ice sheet divide for 1.4 million years. Nat. Commun. 2016, 7, 10325. [Google Scholar] [CrossRef] [Green Version]
- Dąbski, M.; Zmarz, A.; Pabjanek, P.; Korczak-Abshire, M.; Karsznia, I.; Chwedorzewska, K.J. UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island, South Shetland Islands, Antarctica). Geomorphology 2017, 290, 29–38. [Google Scholar] [CrossRef]
- Zmarz, A.; Rodzewicz, M.; Dąbski, M.; Karsznia, I.; Korczak-Abshire, M.; Chwedorzewska, K.J. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sens. Environ. 2018, 217, 375–388. [Google Scholar] [CrossRef]
- Dąbski, M.; Zmarz, A.; Rodzewicz, M.; Korczak-Abshire, M.; Karsznia, I.; Lach, K.M.; Rachlewicz, G.; Chwedorzewska, K.J. Mapping glacier forelands based on UAV BVLOS operation in Antarctica. Remote Sens. 2020, 12, 630. [Google Scholar] [CrossRef] [Green Version]
- Kňažková, M.; Nývlt, D.; Hrbáček, F. Slope processes connected with snow patches in semi-arid ice-free areas of James Ross Island, Antarctic Peninsula. Geomorphology 2021, 373, 107479. [Google Scholar] [CrossRef]
- Ponti, S.; Scipinotti, R.; Pierattini, S.; Guglielmin, M. The spatio-temporal variability of frost blisters in a perennial frozen lake along the Antarctic coast as indicator of the groundwater supply. Remote Sens. 2021, 13, 435. [Google Scholar] [CrossRef]
- Mergelov, N.; Dolgikh, A.; Shorkunov, I.; Zazovskaya, E.; Soina, V.; Yakushev, A.; Fedorov-Davydov, D.; Pryakhin, S.; Dobryansky, A. Hypolithic communities shape soils and organic matter reservoirs in the ice-free landscapes of East Antarctica. Sci. Rep. 2020, 10, 10277. [Google Scholar] [CrossRef] [PubMed]
- Weisleitner, K.; Perras, A.; Moissl-Eichinger, C.; Andersen, D.T.; Sattler, B. Source environments of the microbiome in perennially ice-covered Lake Untersee, Antarctica. Front. Microbiol. 2020, 10, 1019. [Google Scholar] [CrossRef] [PubMed]
- Gyeong, H.; Hyun, C.-H.; Kim, S.C.; Tripathi, B.M.; Yun, J.; Kim, J.; Kang, H.; Kim, J.H.; Kim, S.; Kim, M. Contrasting early successional dynamics of bacterial and fungal communities in recently deglaciated soils of the maritime Antarctic. Mol. Biol. 2021, 30, 4231–4244. [Google Scholar] [CrossRef] [PubMed]
- Abakumov, E.V.; Parnikoza, I.Y.; Zhianski, M.; Yaneva, R.; Lupachev, A.V.; Andreev, M.P.; Vlasov, D.Y.; Riano, J.; Jaramillo, N. Ornithogenic factor of soil formation in Antarctica: A review. Eurasian Soil Sci. 2021, 54, 528–540. [Google Scholar] [CrossRef]
- Bandeira, L.; Pina, P.; Vieira, G. Ultra-high resolution image acquisition with an Unmanned Aerial Vehicle for detailed mapping in Barton Peninsula (King George Island, Antarctica). In Avances, Métodos y Técnicas en el Estudio del Periglaciarismo; Gómez Ortiz, A., Salvador Franch, F., Oliva Franganillo, M., Salvà Catarineu, M., Eds.; Universitat de Barcelona: Barcelona, Spain, 2014; pp. 219–229. [Google Scholar]
- Suganuma, Y.; Kaneda, H.; Koyama, T.; Hokada, T.; Akada, Y. Report on geomorphologic and geologic field surveys in central Dronning Maud Land, 2015–2016 (JARE-57). Antarct. Rec. 2016, 60, 73–116. (In Japanese) [Google Scholar]
- Suganuma, Y.; Kawamata, M.; Shiramizu, K.; Koyama, T.; Doi, K.; Kaneda, H.; Aoyama, Y.; Hayakawa, H.; Obanawa, H. Unmanned aerial vehicle (UAV)-based survey in Antarctica for high-definition topographic measurements. J. Geogr. 2017, 126, 1–24. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Park, H.L.; Park, S.-Y.; Hyun, C.-H.; Kim, H.-C.; Hong, S.G.; Lee, R. UAV based very-high-resolution imaging on Barton Peninsula Antarctica. In Proceedings of the 34th EARSeL Symposium 2014, Warsaw, Poland, 16–20 June 2014; pp. 11.1–11.4. [Google Scholar]
- Lamsters, K.; Karušs, J.; Krievāns, M.; Ješkins, J. 2020. High-resolution orthophoto map and digital surface models of the largest Argentine Islands (the Antarctic) from unmanned aerial vehicle photogrammetry. J. Maps 2020, 16, 335–347. [Google Scholar] [CrossRef]
- Tabares, W.A. Peligros de la operación aérea en la Antártida para gestionar la seguridad operacional de la Fuerza Aérea Colombiana. Rev. Relac. Int. Estrateg. Segur. 2021, 16, 77–109. (In Spanish) [Google Scholar] [CrossRef]
- Liu, E.J.; Wood, K.; Aiuppa, A.; Giudice, G.; Bitteto, M.; Fischer, T.P.; Kilbride, B.T.M.; Plank, T.; Hart, T. Volcanic activity and gas emissions along the South Sandwich Arc. Bull. Volcanol. 2021, 83, 3. [Google Scholar] [CrossRef]
- Kuznetsova, M.R.; Priakhina, G.V.; Grigoreva, S.D.; Kiniabaeva, E.R. Formation factors of surface inflow to Antarctic lakes of the Larsemann Hills oasis. Arct. Antarct. Res. 2021, 67, 293–309. (In Russian) [Google Scholar] [CrossRef]
- Tovar-Sánchez, A.; Román, A.; Roque-Atienza, D.; Navarro, G. Applications of unmanned aerial vehicles in Antarctic environmental research. Sci. Rep. 2021, 11, 21717. [Google Scholar]
- Faucher, B.; Lacelle, D.; Marsh, N.B.; Fisher, D.A.; Andersen, D.T. Ice-covered ponds in the Untersee Oasis (East Antarctica): Distribution, chemical composition, and trajectory under a warming climate. Arct. Antarct. Alp. Res. 2021, 53, 324–339. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Cheng, X.; Zhu, L.; Li, B.; Li, X. Retreating shorelines as an emerging hreat to Adélie Penguins on Inexpressible Island. Remote Sens. 2021, 13, 4718. [Google Scholar] [CrossRef]
- Funaki, M.; Higashino, S.-I.; Sakanaka, S.; Iwata, N.; Nakamura, N.; Hirasawa, N.; Obara, N.; Kuwabara, M. Aeromagnetic and aerial photographic survey in the South Shetland Islands, Antarctica, conducted by a small unmanned aerial vehicle (Ant-Plane). Antarct. Rec. 2013, 57, 209–242. (In Japanese) [Google Scholar]
- Funaki, M.; Higashino, S.-I.; Sakanaka, S.; Iwata, N.; Nakamura, N.; Hirasawa, N.; Obara, N.; Kuwabara, M. Small unmanned aerial vehicles for aeromagnetic surveys and their flights in the South Shetland Islands, Antarctica. Polar Sci. 2014, 8, 342–356. [Google Scholar] [CrossRef] [Green Version]
- Catalán, M.; Martos, Y.M.; Galindo-Zaldívar, J.; Funaki, M. Monitoring the evolution of Deception Island volcano from magnetic anomaly data (South Shetland Islands, Antarctica). Glob. Planet. Change 2014, 123, 199–212. [Google Scholar] [CrossRef]
- Popov, S.V.; Pryakhin, S.S.; Bliakharskii, D.P.; Belkov, A.D.; Kuznetsov, V.L.; Kashkevich, M.P.; Tyurin, S.V. Main results of the engineering survey in the area of stations Mirny and Progress and field base Molodezhnaya, East Antarctica, in the field season of 62 RAE (2016/17). Arct. Antarct. Res. 2017, 4, 86–97. (In Russian) [Google Scholar] [CrossRef]
- Bliakharskii, D.P.; Florinsky, I.V. Unmanned aerial survey for modelling glacier topography in Antarctica: First results. In Proceedings of the 4th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM2018), Madeira, Portugal, 17–19 March 2018; pp. 319–326. [Google Scholar]
- Bliakharskii, D.P.; Florinsky, I.V.; Skrypitsyna, T.N. Modelling glacier topography in Antarctica using unmanned aerial survey: Assessment of opportunities. Int. J. Remote Sens. 2019, 40, 2517–2541. [Google Scholar] [CrossRef]
- Karušs, J.; Lamsters, K.; Chernov, A.; Krievāns, M.; Ješkins, J. Subglacial topography and thickness of ice caps on the Argentine Islands. Antarct. Sci. 2019, 31, 332–344. [Google Scholar] [CrossRef]
- Lamsters, K.; Karušs, J.; Krievāns, M.; Ješkins, J. Application of unmanned aerial vehicles for glacier research in the Arctic and Antarctic. In Proceedings of the 12th International Scientific and Practical Conference “Environment. Technology. Resources”, Rezekne, Latvia, 20–22 June 2019; Volume 1, pp. 131–135. [Google Scholar]
- Cárdenas, C.; Casassa, G.; Aguilar, X.; Mojica, D.; Johnson, E.; Brondi, F. From Space to Earth: Physical and biological impacts of glacier dynamics in the marine system by means of remote sensing at Almirantazgo Bay, Antarctica. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 21–26 March 2020; pp. 308–312. [Google Scholar]
- Florinsky, I.V.; Skrypitsyna, T.N.; Bliakharskii, D.P.; Ishalina, O.T.; Kiseleva, A.S. Towards the modeling of glacier microtopography using high resolution data from unmanned aerial survey. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1065–1071. [Google Scholar] [CrossRef]
- Yuan, X.; Qiao, G.; Li, Y.; Li, H.; Xu, R. Modelling of glacier and ice sheet micro-topography based on unmanned aerial vehicle data, Antarctica. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 919–923. [Google Scholar] [CrossRef]
- Li, R.; Li, H.; Hao, T.; Qiao, G.; Cui, H.; He, Y.; Hai, G.; Xie, H.; Cheng, Y.; Li, B. Assessment of ICESat-2 ice surface elevations over the Chinese Antarctic Research Expedition (CHINARE) route, East Antarctica, based on coordinated multi-sensor observations. Cryosphere 2021, 15, 3083–3099. [Google Scholar] [CrossRef]
- He, Y.; Qiao, G.; Li, H.; Yuan, X.; Li, Y. Unmanned aerial vehicle derived 3D model evaluation based on ICESat-2 for ice surface micro-topography analysis in East Antarctica. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2021, 43, 463–468. [Google Scholar] [CrossRef]
- Pudełko, R.; Angiel, P.J.; Potocki, M.; Jędrejek, A.; Kozak, M. Fluctuation of glacial retreat rates in the eastern part of Warszawa Icefield, King George Island, Antarctica, 1979–2018. Remote Sens. 2018, 10, 892. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, K.A.; Bialik, R.J.; Osińska, M.; Figielski, M. Investigation of sediment-rich glacial meltwater plumes using a high-resolution multispectral sensor mounted on an unmanned aerial vehicle. Water 2019, 11, 2405. [Google Scholar] [CrossRef] [Green Version]
- Wójcik-Długoborska, K.A.; Bialik, R.J. The influence of shadow effects on the spectral characteristics of glacial meltwater. Remote Sens. 2021, 13, 36. [Google Scholar] [CrossRef]
- Marusazh, K.I.; Hlotov, V.M.; Siejka, Z. Monitoring of glacier frontal parts on Galindez and Winter islands (the Argentine Islands) in 2018–2019. Ukr. Antarct. J. 2019, 4, 18–28. [Google Scholar] [CrossRef]
- Marusazh, K.I. Volume changes of glacier frontal parts on Galindez and Winter islands in 2013–2019. In Proceedings of the Geoterrace2020, International Conference of Young Professionals, Lviv, Ukraine, 7–9 December 2020; pp. 1–5. [Google Scholar]
- Osińska, M.; Bialik, R.J.; Wójcik, K.A. Interrelation of quality parameters of surface waters in five tidewater glacier coves of King George Island, Antarctica. Sci. Total Environ. 2021, 771, 144780. [Google Scholar] [CrossRef]
- Alvarez, M.; Bello, A.B.; Raposo, J.; Miranda, M. Drones in Antarctica. Livingston Island glaciers case study. In Proceedings of the 16th Iberian Conference on Information Systems and Technologies (CISTI), Chaves, Portugal, 23–26 June 2021; pp. 1–3. [Google Scholar]
- Popov, S.V.; Pryakhin, S.S.; Bliakharskii, D.P.; Pryakhina, V.; Tyurin, S.V. Vast ice depression in Dålk Glacier, East Antarctica. Led Sneg 2017, 57, 427–432. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Florinsky, I.V.; Bliakharskii, D.P. The 2017 catastrophic subsidence in the Dålk Glacier, East Antarctica: Unmanned aerial survey and terrain modelling. Remote Sens. Lett. 2019, 10, 333–342. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, J.; Ma, C.; Li, T.; Cheng, X.; Liu, L. UAV photogrammetric monitoring of Antarctic ice doline formation. J. Beijing Norm. Univ. 2019, 55, 19–24. (In Chinese) [Google Scholar]
- Li, T.; Zhang, B.; Xiao, W.; Cheng, X.; Li, Z.; Zhao, J. UAV-based photogrammetry and LiDAR for the characterization of ice morphology evolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4188–4199. [Google Scholar] [CrossRef]
- Skrypitsyna, T.N.; Zakharov, V.G.; Kiseleva, A.S.; Bliakharskii, D.P.; Qiao, G.; Yuan, X.; Florinsky, I.V. Topography evolution of the Dalk outlet glacier (Pridz Bay, East Antarctica) based on data from unmanned aerial surveys performed in 2017–2019. Izv. Vuzov Geod. Aerophotosurveying 2021, 65, 517–528. (In Russian) [Google Scholar]
- Florinsky, I.V.; Bliakharskii, D.P. Crevasse detection by geomorphometric modelling of data from unmanned aerial survey. In Proceedings of the International Youth Scientific Conference on the Polar Geodesy, Glaciology, Hydrology and Geophysics, Sankt Petersburg, Russia, 17–19 May 2018; pp. 247–255. [Google Scholar]
- Florinsky, I.V.; Bliakharskii, D.P. Detection of crevasses by geomorphometric treatment of data from unmanned aerial surveys. Remote Sens. Lett. 2019, 10, 323–332. [Google Scholar] [CrossRef]
- Bliakharskii, D.P.; Ishalina, O.T.; Tyurin, S.V. Decoding of crevasses on date from unmanned aerial surveys near the station Progress (East Antarctica). Izv. Vuzov Geod. Aerophotosurveying 2020, 64, 45–53. (In Russian) [Google Scholar]
- Ishalina, O.; Bliakharskii, D.; Florinsky, I. Detection of crevasses using high-resolution digital elevation models: Comparison of geomorphometric modeling and texture analysis. In Proceedings of the Geomorphometry 2020 Conference, Perugia, Italy, 22–26 June 2020; pp. 9–12. [Google Scholar]
- Ishalina, O.; Bliakharskii, D.; Florinsky, I. Recognition of crevasses with high-resolution digital elevation models: Application of geomorphometric modeling and texture analysis. Trans. GIS 2021, 25, 2529–2552. [Google Scholar] [CrossRef]
- Markov, A.; Polyakov, S.; Sun, B.; Lukin, V.; Popov, S.; Yang, H.; Zhang, T.; Cui, X.; Guo, J.; Cui, P.; et al. The conditions of the formation and existence of “Blue Ice Areas” in the ice flow transition region from the Antarctic ice sheet to the Amery ice shelf in the Larsemann Hills area. Polar Sci. 2019, 22, 100478. [Google Scholar] [CrossRef]
- Zhuravskiy, D.M.; Prokhorova, U.V.; Ivanov, B.V.; Yanjura, A.S.; Kuprikov, N.M.; Kurapov, M.V. Field Tests of photogrammetric evaluation technique of snow-glacial surface albedo. Issled. Zemli Kosmosa 2019, 4, 18–28. (In Russian) [Google Scholar] [CrossRef]
- Zhuravskiy, D.M.; Prokhorova, U.V.; Ivanov, B.V.; Yanjura, A.S.; Kuprikov, N.M.; Kurapov, M.V. Field Tests of of the procedure for a photogrammetric estimation of snow-glacial surface albedo. Izv. Atmos. Ocean. Phys. 2020, 56, 927–935. [Google Scholar] [CrossRef]
- Grigoreva, S.D.; Kiniabaeva, E.R.; Kuznetsova, M.R.; Popov, S.V.; Kashkevich, M.P. Structure of snow-ice dams of the outburst lakes in the Broknes Peninsula (Larsemann Hills, East Antarctica) based on ground-penetrating radar data. Led Sneg 2021, 61, 291–300. (In Russian) [Google Scholar]
- Leuschen, C.; Hale, R.; Keshmiri, S.; Yan, J.B.; Rodriguez-Morales, F.; Mahmood, A.; Gogineni, S. UAS-based radar sounding of the polar ice sheets. IEEE Geosc. Remote Sens. Mag. 2014, 2, 8–17. [Google Scholar] [CrossRef]
- Bello, C.; Santillan, N.; Cochachin, A.; Arias, S.; Suarez, W. ICE thickness using ground penetrating radar at Znosko Glacier on King George Island. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 21–26 March 2020; pp. 539–541. [Google Scholar]
- Arnold, E.; Leuschen, C.; Rodriguez-Morales, F.; Li, J.; Paden, J.; Hale, R.; Keshmiri, S. CReSIS airborne radars and platforms for ice and snow sounding. Ann. Glaciol. 2020, 61, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.; Turner, D.; Maksym, T.; Singh, H. Near-coincident mapping of sea ice from above and below with UAS and AUV. In Proceedings of the UAV2018—2018 IEEE/OES Autonomous Underwater Vehicle Workshop (IEEE AUV 2018), Porto, Portugal, 6–9 November 2018; pp. 1–6. [Google Scholar]
- Li, T.; Zhang, B.; Cheng, X.; Westoby, M.J.; Li, Z.; Ma, C.; Hui, F.; Shokr, M.; Liu, Y.; Chen, Z.; et al. Resolving fine-scale surface features on polar sea ice: A first assessment of UAS photogrammetry without ground control. Remote Sens. 2019, 11, 784. [Google Scholar] [CrossRef] [Green Version]
- McGill, P.R.; Reisenbichler, K.R.; Etchemendy, S.A.; Dawe, T.C.; Hobson, B.W. Aerial surveys and tagging of free-drifting icebergs using an unmanned aerial vehicle (UAV). Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1318–1326. [Google Scholar] [CrossRef]
- Guan, Z.; Cheng, X.; Liu, Y.; Li, T.; Zhang, B.; Yu, Z. Effectively extracting iceberg freeboard using bi-temporal Landsat-8 panchromatic image shadows. Remote Sens. 2021, 13, 430. [Google Scholar] [CrossRef]
- Williams, G.D.; Fraser, A.D.; Lucieer, A.; Turner, D.; Cougnon, E.; Kimball, P.; Toyota, T.; Maksym, T.; Singh, H.; Nitsche, F.; et al. Drones in a cold climate. Eos 2016, 97. [Google Scholar] [CrossRef]
- Ackley, S.F.; Stammerjohn, S.; Maksym, T.; Smith, M.; Cassano, J.; Guest, P.; Tison, J.-L.; Delille, B.; Loose, B.; Sedwick, P.; et al. Sea-ice production and air/ice/ocean/biogeochemistry interactions in the Ross Sea during the PIPERS 2017 autumn field campaign. Ann. Glaciol. 2020, 61, 181–195. [Google Scholar] [CrossRef]
- Tan, A.E.-C.; Eccleston, K.W.; Platt, I.; Woodhead, I. Microwave measurements of snow over sea-ice in Antarctica. In Proceedings of the 12th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA2018), Lublin, Poland, 4–7 June 2018; pp. 1–4. [Google Scholar]
- Tan, A.E.-C.; McCulloch, J.; Rack, W.; Platt, I.; Woodhead, I. Snow depth measurements from an octo-copter mounted radar. In Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 984–987. [Google Scholar]
- Tan, A.E.-C.; McCulloch, J.; Rack, W.; Platt, I.; Woodhead, I. Radar measurements of snow depth over sea ice on an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1868–1875. [Google Scholar] [CrossRef]
- Hrbáček, F.; Engel, Z.; Kňažková, M.; Smolíková, J. Effect of summer snow cover on the active layer thermal regime and thickness on CALM-S JGM site, James Ross Island, eastern Antarctic Peninsula. Catena 2021, 207, 105608. [Google Scholar] [CrossRef]
- Tarca, G.; Guglielmin, M.; Convey, P.; Worland, M.R.; Cannone, N. Small-scale spatial–temporal variability in snow cover and relationships with vegetation and climate in maritime Antarctica. Catena 2022, 208, 105739. [Google Scholar] [CrossRef]
- Gardner, S.; LeRoi, D.; Perryman, W. A penguin population polar express: NOAA’s quest to count penguin breeds speeds up with a VTOL UAS. Unmanned Syst. 2011, 29, 30–35. [Google Scholar]
- Zmarz, A.; Korczak-Abshire, M.; Storvold, R.; Rodzewicz, M.; Kędzierska, I. Indicator species population monitoring in Antarctica with UAV. In the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4. In Proceedings of the International Conference on Unmanned Aerial Vehicles in Geomatics, Toronto, ON, Canada, 30 August–2 September 2015; pp. 189–193. [Google Scholar]
- Hodgson, J.C.; Baylis, S.M.; Mott, R.; Herrod, A.; Clarke, R.H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 2016, 6, 22574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowicz, A.; McDowall, P.; Youngflesh, C.; Sayre-McCord, T.; Clucas, G.; Herman, R.; Forrest, S.; Rider, M.; Schwaller, M.; Hart, T.; et al. Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 2018, 8, 3926. [Google Scholar] [CrossRef] [PubMed]
- Korczak-Abshire, M.; Zmarz, A.; Rodzewicz, M.; Kycko, M.; Karsznia, I.; Chwedorzewska, K.J. Study of fauna population changes on Penguin Island and Turret Point Oasis (King George Island, Antarctica) using an unmanned aerial vehicle. Polar Biol. 2019, 42, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, C.; Barbosa, A.; Mustafa, O.; Peter, H.-U.; Rümmler, M.-C.; Brenning, A. Using fixed-wing UAV for detecting and mapping the distribution and abundance of penguins on the South Shetlands Islands, Antarctica. Drones 2019, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Bird, C.; Dawn, A.H.; Dale, J.; Johnston, D.W. A semi-automated method for estimating Adélie penguin colony abundance from a fusion of multispectral and thermal imagery collected with unoccupied aircraft systems. Remote Sens. 2020, 5, 3692. [Google Scholar] [CrossRef]
- Shah, K.; Ballard, G.; Schmidt, A.; Schwager, M. Multidrone aerial surveys of penguin colonies in Antarctica. Sci. Robot. 2020, 5, eabc3000. [Google Scholar] [CrossRef]
- Strycker, N.; Wethington, M.; Borowicz, A.; Forrest, S.; Witharana, C.; Hart, T.; Lynch, H.J. A global population assessment of the Chinstrap penguin (Pygoscelis antarctica). Sci. Rep. 2020, 10, 10474. [Google Scholar] [CrossRef]
- Herman, R.; Borowicz, A.; Lynch, M.; Trathan, P.; Hart, T.; Lynch, H. Update on the global abundance and distribution of breeding Gentoo penguins (Pygoscelis papua). Polar Biol. 2020, 43, 1947–1956. [Google Scholar] [CrossRef]
- Strycker, N.; Borowicz, A.; Wethington, M.; Forrest, S.; Shah, V.; Liu, Y.; Singh, H.; Lynch, H.J. Fifty-year change in penguin abundance on Elephant Island, South Shetland Islands, Antarctica: Results of the 2019–2020 census. Polar Biol. 2021, 44, 45–56. [Google Scholar] [CrossRef]
- Liu, Y.; Shah, V.; Borowicz, A.; Wethington, M.; Strycker, N.; Forrest, S.; Lynch, H.; Singh, H. Towards efficient machine learning methods for penguin counting in unmanned aerial system imagery. In Proceedings of the 2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), St. Johns, NL, Canada, 30 September–2 October 2020; pp. 1–7. [Google Scholar]
- Dunn, M.J.; Adlard, S.; Taylor, A.P.; Wood, A.G.; Trathan, P.N.; Ratcliffe, N. Un-crewed aerial vehicle population survey of three sympatrically breeding seabird species at Signy Island, South Orkney Islands. Polar Biol. 2021, 44, 717–727. [Google Scholar] [CrossRef]
- Mustafa, O.; Braun, C.; Esefeld, J.; Knetsch, S.; Maercker, J.; Pfeifer, C.; Rümmler, M.-C. Detecting Antarctic seals and flying seabirds by UAV. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Fudala, K.; Bialik, R.J. Breeding colony dynamics of southern elephant seals at Patelnia Point, King George Island, Antarctica. Remote Sens. 2020, 12, 2964. [Google Scholar] [CrossRef]
- Hyun, C.-U.; Park, M.; Lee, W.Y. Remotely Piloted Aircraft System (RPAS)-based wildlife detection: A review and case studies in Maritime Antarctica. Animals 2020, 10, 2387. [Google Scholar] [CrossRef]
- Dickens, J.; Hollyman, P.R.; Hart, T.; Clucas, G.V.; Murphy, E.J.; Poncet, S.; Trathan, P.N.; Collins, M.A. Developing UAV monitoring of South Georgia and the South Sandwich Islands’ iconic land-based marine predators. Front. Mar. Sci. 2021, 8, 654215. [Google Scholar] [CrossRef]
- Krause, D.J.; Hinke, J.T. Finally within reach: A drone census of an important, but practically inaccessible, Antarctic fur seal colony. Aquat. Mamm. 2021, 47, 349–354. [Google Scholar] [CrossRef]
- Oosthuizen, W.C.; Krüger, L.; Jouanneau, W.; Lowther, A.D. Unmanned aerial vehicle (UAV) survey of the Antarctic shag (Leucocarbo bransfieldensis) breeding colony at Harmony Point, Nelson Island, South Shetland Islands. Polar Biol. 2020, 43, 187–191. [Google Scholar] [CrossRef]
- Pfeifer, C.; Rümmler, M.-C.; Mustafa, O. Assessing colonies of Antarctic shags by unmanned aerial vehicle (UAV) at South Shetland Islands, Antarctica. Antarct. Sci. 2021, 33, 133–149. [Google Scholar] [CrossRef]
- Fudala, K.; Bialik, R.J. The use of drone-based aerial photogrammetry in population monitoring of Southern Giant Petrels in ASMA 1, King George Island, maritime Antarctica. Glob. Ecol. Conserv. 2022, 33, e01990. [Google Scholar] [CrossRef]
- Goebel, M.E.; Perryman, W.L.; Hinke, J.T.; Krause, D.J.; Hann, N.A.; Gardner, S.; LeRoi, D.J. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 2015, 38, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Krause, D.J.; Hinke, J.T.; Perryman, W.L.; Goebel, M.E.; LeRoi, D.J. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS ONE 2017, 12, e0187465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durban, J.W.; Fearnbach, H.; Paredes, A.; Hickmott, L.S.; LeRoi, D.J. Size and body condition of sympatric killer whale ecotypes around the Antarctic Peninsula. Mar. Ecol. Prog. Ser. 2021, 677, 209–217. [Google Scholar] [CrossRef]
- Gough, W.T.; Smith, H.J.; Savoca, M.S.; Czapanskiy, M.F.; Fish, F.E.; Potvin, J.; Bierlich, K.C.; Cade, D.E.; Di Clemente, J.; Kennedy, J.; et al. Scaling of oscillatory kinematics and Froude efficiency in baleen whales. J. Exp. Biol. 2021, 224, jeb237586. [Google Scholar] [CrossRef]
- Bierlich, K.C.; Hewitt, J.; Bird, C.N.; Schick, R.S.; Friedlaender, A.; Torres, L.G.; Dale, J.; Goldbogen, J.; Read, A.J.; Calambokidis, J.; et al. Comparing uncertainty associated with 1-, 2-, and 3D aerial photogrammetry-based body condition measurements of baleen whales. Front. Mar. Sci. 2021, 8, 749943. [Google Scholar] [CrossRef]
- Firla, M.; Mustafa, O.; Pfeifer, C.; Senf, M.; Hese, S. Intraseasonal variability of guano stains in a remotely sensed penguin colony using UAV and satellite. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Korczak-Abshire, M.; Kidawa, A.; Zmarz, A.; Storvold, R.; Karlsen, S.R.; Rodzewicz, M.; Chwedorzewska, K.; Znój, A. Preliminary study on nesting Adélie penguins disturbance by unmanned aerial vehicles. CCAMLR Sci. 2016, 23, 1–16. [Google Scholar]
- Rümmler, M.-C.; Mustafa, O.; Maercker, J.; Peter, H.-U.; Esefeld, J. Measuring the influence of unmanned aerial vehicles on Adélie penguins. Polar Biol. 2016, 39, 1329–1334. [Google Scholar] [CrossRef]
- Rümmler, M.-C.; Mustafa, O.; Maercker, J.; Peter, H.-U.; Esefeld, J. Sensitivity of Adélie and Gentoo penguins to various flight activities of a micro UAV. Polar Biol. 2018, 41, 2481–2493. [Google Scholar] [CrossRef]
- Weimerskirch, H.; Prudor, A.; Schull, Q. Flights of drones over sub-Antarctic seabirds show species and status-specific behavioural and physiological responses. Polar Biol. 2018, 41, 259–266. [Google Scholar] [CrossRef]
- Mustafa, O.; Barbosa, A.; Krause, D.J.; Peter, H.-U.; Vieira, G.; Rümmler, M.-C. State of knowledge: Antarctic wildlife response to unmanned aerial systems. Polar Biol. 2018, 41, 2387. [Google Scholar] [CrossRef]
- Laborie, J.; Christiansen, F.; Beedholm, K.; Madsen, P.T.; Heerah, K. Behavioural impact assessment of unmanned aerial vehicles on Weddell seals (Leptonychotes weddellii). J. Exp. Mar. Biol. Ecol. 2021, 536, 151509. [Google Scholar] [CrossRef]
- Krause, D.J.; Hinke, J.T.; Goebel, M.E.; Perryman, W.L. Drones minimize Antarctic predator responses relative to ground survey methods: An appeal for context in policy advice. Front. Mar. Sci. 2021, 8, 648772. [Google Scholar] [CrossRef]
- Rümmler, M.-C.; Esefeld, J.; Hallabrin, M.T.; Pfeifer, C.; Mustafa, O. Emperor penguin reactions to UAVs: First observations and comparisons with effects of human approach. Remote Sens. Appl. Soc. Environ. 2021, 23, 100558. [Google Scholar] [CrossRef]
- Rümmler, M.-C.; Esefeld, J.; Pfeifer, C.; Mustafa, O. Effects of UAV overflight height, UAV type, and season on the behaviour of emperor penguin adults and chicks. Remote Sens. Appl. Soc. Environ. 2021, 23, 100545. [Google Scholar] [CrossRef]
- Johnston, D.W. Unoccupied aircraft systems in marine science and conservation. Annu. Rev. Mar. Sci. 2019, 11, 439–463. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, B.; Barnagaud, J.-Y.; Poupard, M.; Glotin, H.; Gauffier, P.; Torres Ortiz, S.; Lisney, T.J.; Campagna, S.; Rasmussen, M.; Célérieret, A. Behavioural responses of humpback whales to food-related chemical stimuli. PLoS ONE 2019, 14, e0212515. [Google Scholar] [CrossRef]
- Chen, D.; Wang, T.; Liang, J.; Wang, T. The design and application of a sUAV system for Antarctic expedition. In Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, 22–25 February 2009; pp. 1129–1134. [Google Scholar]
- Agte, J.; Borer, N.; de Weck, O. Design of long-endurance systems with inherent robustness to partial failures during operations. J. Mech. Des. 2012, 134, 100903. [Google Scholar] [CrossRef]
- Goraj, Z. A specialized UAV for surveillance in windy, turbulent environment of the Antarctic coast. In Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences (ICAS’2014), St. Petersburg, Russia, 7–12 September 2014; pp. 1–12. [Google Scholar]
- Goetzendorf-Grabowski, T.; Rodzewicz, M. Design of UAV for photogrammetric mission in Antarctic area. J. Aerosp. Eng. 2017, 231, 1660–1675. [Google Scholar] [CrossRef]
- Rodzewicz, M.; Goraj, Z.; Tomaszewski, A. Design and testing of three tailless unmanned aerial vehicle configurations built for surveillance in Antarctic environment. J. Aerosp. Eng. 2018, 232, 2598–2614. [Google Scholar] [CrossRef]
- Higashino, S.; Funaki, M.; Hirasawa, N. Development of Ant-Plane UAVs for observation and scientific missions in Antarctica. In Proceedings of the AIAA Infotech@Aerospace 2007 Conference and Exhibit, Ronhert Park, CA, USA, 7–10 May 2007; pp. 1–8. [Google Scholar]
- Funaki, M.; Hirasawa, N.; Ant-Plane Group. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antarctic research. Polar Sci. 2008, 2, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Lei, X.; Wang, S.; Wu, Y.; Wang, T. A small unmanned aerial vehicle for polar research. In Proceedings of the 2008 IEEE International Conference on Automation and Logistics, Qingdao, China, 1–3 September 2008; pp. 1178–1183. [Google Scholar]
- Garcia, G.; Keshmiri, S. Adaptive and resilient flight control system for a small unmanned aerial system. Int. J. Aerosp. Eng. 2013, 2013, 289357. [Google Scholar] [CrossRef] [Green Version]
- Blake, W.; Ledford, J.; Allen, C.; Leuschen, C.; Gogineni, S.; Rodriguez-Morales, F.; Shi, L. A VHF radar for deployment on a UAV for basal imaging of polar ice. In Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’2008), Boston, MA, USA, 6–11 July 2008; Volume IV, pp. 498–501. [Google Scholar]
- Lewis, C.; Patel, A.; Owen, H.; Rodriguez-Morales, F.; Leuschen, C.; Seguin, S.A.; Ledford, J.; Player, K.; Gogineni, S. A radar suite for ice sheet accumulation measurements and near-surface internal layer mapping. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’2009), Cape Town, South Africa, 12–17 July 2009; Volume V, pp. 441–444. [Google Scholar]
- Crocker, R.I.; Maslanik, J.A.; Adler, J.J.; Palo, S.E.; Herzfeld, U.C.; Emery, W.J. A sensor package for ice surface observations using small unmanned aircraft systems. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1033–1047. [Google Scholar] [CrossRef]
- Uribe, J.; Zamora, R.; Gacitúa, G.; Rivera, A.; Ulloa, D. A low power consumption radar system for measuring ice thickness and snow/firn accumulation in Antarctica. Ann. Glaciol. 2014, 55, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Tan, A.; Eccleston, K.; Platt, I.; Woodhead, I. The design of a UAV mounted snow depth radar. Results of measurements on Antarctic sea ice. In Proceedings of the 2017 IEEE Conference on Antenna Measurements & Applications (CAMA), Tsukuba, Japan, 4–6 December 2017; pp. 316–319. [Google Scholar]
- Lan, C.-T.E.; Keshmiri, S.; Hale, R. Fuzzy-logic modeling of a rolling unmanned vehicle in Antarctica wind shear. J. Guid. Control Dyn. 2012, 35, 1538–1547. [Google Scholar] [CrossRef]
- Higashino, S.; Funaki, M. Development and flights of Ant-Plane UAVs for aerial filming and geomagnetic survey in Antarctica. J. Unmanned Syst. Technol. 2013, 1, 37–42. [Google Scholar]
- Smith, N.; Lykins, R.; Keshmiri, S. Effect of competing V-Tail models on a UAS 6-DOF nonlinear simulation. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 1330–1337. [Google Scholar]
- Keane, A.; Scanlan, J.; Lock, A.; Ferraro, M.; Spillane, P.; Breen, J. Maritime flight trials of the Southampton University Laser Sintered Aircraft—Project Albatross. Aeronaut. J. 2017, 121, 1502–1529. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Morales, F.; Arnold, E.; Hale, R.; Keshmiri, S.; Leuschen, C.; Paden, J. Multi-spectral radar measurements of ice and snow using manned and unmanned aircraft. In Proceedings of the 2017 First IEEE International Symposium on Geoscience and Remote Sensing (GRSS-Chile), Valdivia, Chile, 15–16 June 2017; pp. 124–127. [Google Scholar]
- Rodzewicz, M.; Glowacki, D.; Hajduk, J. Some dynamic aspects of photogrammetry missions performed by “PW-ZOOM”—The UAV of Warsaw University of Technology. Arch. Mech. Eng. 2017, 44, 37–55. [Google Scholar] [CrossRef]
- McKinnis, A.; LaGue, J.; Benyamen, H.; Keshmiri, S. Dynamic modeling and flight test validation of an in-house design UAS built for polar research. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–7. [Google Scholar]
- Inoue, J.; Sato, K. Toward sustainable meteorological profiling in polar regions: Case studies using an inexpensive UAS on measuring lower boundary layers with quality of radiosondes. Environ. Res. 2022, 205, 112468. [Google Scholar] [CrossRef]
- Lei, X.; Bai, L.; Dua, Y.; Miao, C.; Chen, Y.; Wang, T. A small unmanned polar research aerial vehicle based on the composite control method. Mechatronics 2011, 21, 821–830. [Google Scholar] [CrossRef]
- Glowacki, D.; Hajduk, J.; Rodzewicz, M. Methods of flight-path planning for UAV photogrammetry missions with consideration of aircraft dynamic properties. In Proceedings of the 5th Challenges in European Aerospace Conference (CEAS’2015), Delft, The Netherlands, 7–11 September 2015; pp. 1–14. [Google Scholar]
- Van den Kroonenberg, A.C.; Spiess, T.; Buschmann, M.; Martin, T.; Anderson, P.S.; Beyrich, F.; Bange, J. Boundary layer measurements with the autonomous mini-UAV M2AV. In Proceedings of the DACH Conference on Meteorology, Hamburg, Germany, 10–14 September 2007; pp. 1–10. [Google Scholar]
- Van den Kroonenberg, A.; Spiess, T.; Bange, J. First wind measurements with the Meteorological UAV ‘M2AV Carolo’. In Proceedings of the 18th Symposium on Boundary Layers and Turbulence, Stockholm, Sweden, 9–13 June 2008; pp. 1–9. [Google Scholar]
- Van den Kroonenberg, A.; Martin, T.; Buschmann, M.; Bange, J.; Vörsmann, P. Measuring the wind vector using the autonomous mini aerial vehicle M2AV. J. Atmos. Oceanic Technol. 2008, 25, 1969–1982. [Google Scholar] [CrossRef]
- Knuth, S.L.; Cassano, J.J. An analysis of near-surface winds, air temperature, and cyclone activity in Terra Nova Bay, Antarctica, from 1993 to 2009. J. Appl. Meteorol. Climatol. 2011, 50, 662–680. [Google Scholar] [CrossRef]
- Knuth, S.L.; Cassano, J.J.; Maslanik, J.A.; Herrmann, P.D.; Kernebone, P.A.; Crocker, R.I.; Logan, N.J. Unmanned aircraft system measurements of the atmospheric boundary layer over Terra Nova Bay, Antarctica. Earth Syst. Sci. Data 2013, 5, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Cassano, J.J. Observations of atmospheric boundary layer temperature profiles with a small unmanned aerial vehicle. Antarct. Sci. 2014, 26, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Jonassen, M.O.; Tisler, P.; Altstädter, B.; Scholtz, A.; Vihma, T.; Lampert, A.; König-Langlo, G.; Lüpkes, C. Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice in winter. Polar Res. 2015, 34, 25651. [Google Scholar] [CrossRef] [Green Version]
- Wille, J.D.; Bromwich, D.H.; Cassano, J.D.; Nigro, M.A.; Mateling, M.E.; Lazzara, M.A. Evaluation of the AMPS boundary layer simulations on the Ross Ice Shelf, Antarctica, with unmanned aircraft observations. J. Appl. Meteorol. Climatol. 2017, 56, 2239–2258. [Google Scholar] [CrossRef]
- Lampert, A.; Altstädter, B.; Bärfuss, K.; Bretschneider, L.; Sandgaard, J.; Michaelis, J.; Lobitz, L.; Asmussen, M.; Damm, E.; Käthner, R.; et al. Unmanned aerial systems for investigating the polar atmospheric boundary layer—Technical challenges and examples of applications. Atmosphere 2020, 11, 416. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Vihma, T.; Jonassen, M.O.; Zhang, Z. Impact of assimilation of radiosonde and UAV observations from the Southern Ocean in the Polar WRF Model. Adv. Atmos. Sci. 2020, 37, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Cassano, J.J.; Nigro, M.A.; Seefeldt, M.W.; Katurji, M.; Guinn, K.; Williams, G.; DuVivier, A. Antarctic atmospheric boundary layer observations with the Small Unmanned Meteorological Observer (SUMO). Earth Sys. Sci. Data 2021, 13, 969–982. [Google Scholar] [CrossRef]
- Kremser, S.; Harvey, M.; Kuma, P.; Hartery, S.; Saint-Macary, A.; McGregor, J.; Schuddeboom, A.; von Hobe, M.; Lennartz, S.T.; Geddes, A.; et al. Southern Ocean cloud and aerosol data: A compilation of measurements from the 2018 Southern Ocean Ross Sea Marine Ecosystems and Environment voyage. Earth Sys. Sci. Data 2021, 13, 3115–3153. [Google Scholar] [CrossRef]
- Cassano, J.; Maslanik, J.A.; Zappa, C.J.; Gordon, A.L.; Cullather, R.I.; Knuth, S.L. Observations of Antarctic polynya. Eos 2010, 91, 245–246. [Google Scholar] [CrossRef] [Green Version]
- Knuth, S.L.; Cassano, J.J. Estimating sensible and latent heat fluxes using the integral method from in situ aircraft measurements. J. Atmos. Ocean. Technol. 2014, 31, 1964–1981. [Google Scholar] [CrossRef]
- Wenta, M.; Cassano, J.J. The atmospheric boundary layer and surface conditions during katabatic wind events over the Terra Nova Bay polynya. Remote Sens. 2020, 12, 4160. [Google Scholar] [CrossRef]
- Cassano, J.J.; Seefeldt, M.W.; Palo, S.; Knuth, S.L.; Bradley, A.C.; Herrman, P.D.; Kernebone, P.A.; Logan, N.J. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems. Earth Sys. Sci. Data 2016, 8, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Stenmark, A.; Hole, L.R.; Voss, P.; Reuder, J.; Jonassen, M.O. The influence of nunataks on atmospheric boundary layer convection during summer in Dronning Maud Land, Antarctica. J. Geophys. Res. Atmos. 2014, 119, 6537–6548. [Google Scholar] [CrossRef]
- Higashino, S.-I.; Hayashi, M.; Nagasaki, S.; Umemoto, S.; Nishimura, M. A balloon-assisted gliding UAV for aerosol observation in Antarctica. Trans. Jpn. Soc. Aeronaut. Space Sci. 2014, 12, a35–a41. [Google Scholar] [CrossRef]
- Higashino, S.-I.; Hayashi, M.; Nagasaki, S.; Umemoto, S.; Nishimura, M. Development of balloon-assisted gliding unmanned aerial vehicle system for atmospheric observation and spatiotemporal aerosol variations in summer troposphere over Syowa Station. Antarct. Rec. 2021, 65, 21–44. (In Japanese) [Google Scholar]
- Higashino, S.-I.; Hayashi, M.; Okada, T.; Nagasaki, S.; Shiraishi, K.; Ozuka, K. The Antarctic stratospheric aerosol observation and sample-return system using two-stage separation method of a balloon-assisted unmanned aerial vehicle. Atmos. Meas. Tech. Discuss. 2021. [Google Scholar] [CrossRef]
- Leary, D. Drones on ice: An assessment of the legal implications of the use of unmanned aerial vehicles in scientific research and by the tourist industry in Antarctica. Polar Rec. 2017, 53, 343–357. [Google Scholar] [CrossRef]
- Ratcliffe, N.; Guihen, D.; Robst, J.; Crofts, S.; Stanworth, A.; Enderlein, P. A protocol for the aerial survey of penguin colonies using UAVs. J. Unmanned Veh. Sys. 2015, 3, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.M.; Herata, H.; Hertel, F. Environmental guidelines for operation of Remotely Piloted Aircraft Systems (RPAS): Experience from Antarctica. Biol. Conserv. 2019, 236, 521–531. [Google Scholar] [CrossRef]
- Sheridan, I. Drones and global navigation satellite systems: Current evidence from polar scientists. Royal Soc. Open Sci. 2020, 7, 191494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Zhang, B.G.; Cheng, X.; Hui, F.; Li, Y. Leveraging the UAV to support Chinese Antarctic expeditions: A new perspective. Adv. Polar Sci. 2021, 32, 67–74. [Google Scholar]
- Harvey, R. The origin and significance of antarctic meteorites. Chem. Erde 2003, 63, 93–147. [Google Scholar] [CrossRef]
- Wadhwa, M.; McCoy, T.J.; Schrader, D.L. Advances in cosmochemistry enabled by Antarctic meteorites. Annu. Rev. Earth Planet. Sci. 2020, 48, 233–258. [Google Scholar] [CrossRef] [Green Version]
- Jenssen, R.O.R.; Eckerstorfer, M.; Jacobsen, S. Drone-mounted ultrawideband radar for retrieval of snowpack properties. IEEE Trans. Instrum. Meas. 2020, 69, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Carlson, D.F.; Pasma, J.; Jacobsen, M.E.; Hansen, M.H.; Thomsen, S.; Lillethorup, J.P.; Tirsgaard, F.S.; Flytkjær, A.; Melvad, C.; Laufer, K.; et al. Retrieval of ice samples using the Ice Drone. Front. Earth Sci. 2019, 7, 287. [Google Scholar] [CrossRef] [Green Version]
- Pina, P.; Vieira, G.; Bandeira, L.; Mora, C. Accurate determination of surface reference data in digital photographs in ice-free surfaces of Maritime Antarctica. Sci. Total Environ. 2016, 573, 290–302. [Google Scholar] [CrossRef]
- King, D.H.; Wasley, J.; Ashcroft, M.B.; Ryan-Colton, E.; Lucieer, A.; Chisholm, L.A.; Robinson, S.A. Semi-automated analysis of digital photographs for monitoring East Antarctic vegetation. Front. Plant Sci. 2020, 11, 766. [Google Scholar] [CrossRef]
- Barbat, M.M.; Rackow, T.; Hellmer, H.H.; Wesche, C.; Mata, M.M. Three years of near-coastal Antarctic iceberg distribution from a machine learning approach applied to SAR imagery. J. Geophys. Res. Ocean. 2019, 124, 6658–6672. [Google Scholar] [CrossRef]
- Barbat, M.M.; Wesche, C.; Werhli, A.V.; Mata, M.M. An adaptive machine learning approach to improve automatic iceberg detection from SAR images. ISPRS J. Photogramm. Remote Sens. 2019, 156, 247–259. [Google Scholar] [CrossRef]
- Mohajerani, Y.; Wood, M.; Velicogna, I.; Rignot, E. Detection of glacier calving margins with convolutional neural networks: A case study. Remote Sens. 2019, 11, 74. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, H.-C.; Im, J.; Lee, S.; Han, H. Object-based landfast sea ice detection over West Antarctica using time series ALOS PALSAR data. Remote Sens. Environ. 2020, 242, 111782. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.-H.; Kim, H.-C.; Kim, B.-K.; Bae, D.; Jo, Y.-H.; Jo, N.; Lee, S.H. Reconstruction of ocean color data using machine learning techniques in polar regions: Focusing on off Cape Hallett, Ross Sea. Remote Sens. 2019, 11, 1366. [Google Scholar] [CrossRef] [Green Version]
- Dirscherl, M.; Dietz, A.J.; Kneisel, C.; Kuenzer, C. Automated mapping of Antarctic supraglacial lakes using a machine learning approach. Remote Sens. 2020, 12, 1203. [Google Scholar] [CrossRef] [Green Version]
- Leong, W.J.; Horgan, H.J. DeepBedMap: Using a deep neural network to better resolve the bed topography of Antarctica. Cryosphere 2020, 14, 3687–3705. [Google Scholar] [CrossRef]
- Dye, B.C.; Morra, G. Machine learning as a detection method of Strombolian eruptions in infrared images from Mount Erebus, Antarctica. Phys. Earth Planet. Inter. 2020, 305, 106508. [Google Scholar] [CrossRef]
Publication Type | Number | % |
---|---|---|
Journal | 147 | 77.4 |
Proceedings | 36 | 18.9 |
Book chapter | 5 | 2.6 |
Magazine | 2 | 1.1 |
Topic | Number | % |
---|---|---|
Terrestrial | 54 | 28.4 |
Ice and Snow | 45 | 23.7 |
Fauna | 39 | 20.5 |
Technology | 27 | 14.2 |
Atmosphere | 20 | 10.6 |
Others | 5 | 2.6 |
Total | 190 |
Topic | Male (M) | Female (F) | % M-F |
---|---|---|---|
Terrestrial | 45 | 9 | 83-17 |
Ice and Snow | 31 | 14 | 69-31 |
Fauna | 27 | 12 | 69-31 |
Technology | 27 | 0 | 100-0 |
Atmosphere | 10 | 10 | 50-50 |
Others | 5 | 0 | 100-0 |
Total | 145 | 45 | 76-24 |
Continent | Countries |
---|---|
Africa (1) | South Africa (1) |
America (49) | United Sates of America (38), Brazil (3), Chile (3), Colombia (2), Canada (1), Mexico (1) and Peru (1) |
Asia (31) | China (13), Japan (13) and South Korea (5) |
Europe (87) | Poland (20), Russia (18), Germany (13), United Kingdom (12), Portugal (4), Czech Republic (3), Latvia (3), Spain (3), France (2), Ukraine (2), Austria (1), Denmark (1), Finland (1), Italy (2), Norway (1) and Switzerland (1) |
Oceania (22) | Australia (15) and New Zealand (7) |
Topic | Number of Countries | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Terrestrial | 38 (71.7) | 12 (22.6) | 2 (3.8) | 1 (1.9) |
Ice and Snow | 33 (73.3) | 7 (15.6) | 5 (11.1) | - |
Fauna | 29 (72.5) | 6 (15.0) | 2 (5.0) | 3 (7.5) |
Technology | 26 (96.3) | 1 (3.7) | - | - |
Atmosphere | 11 (55.0) | 5 (25.0) | 3 (15.0) | 1 (5.0) |
Others | 4 (80.0) | 1 (20.0) | - | - |
Total | 141 (74.2) | 32 (16.9) | 12 (6.3) | 5 (2.6) |
Main Topic | Specific Topic | References |
---|---|---|
Vegetation (20) | Mapping | Lucieer et al. (2010) [28], Lucieer et al. (2011) [29], Turner et al. (2012) [30], Lucieer et al. (2012) [31], Lucieer et al. (2014) [32], Lucieer et al. (2014) [33], Bollard-Breen et al. (2015) [34], Putzke et al. (2020) [35], Kim et al. (2020) [36], Sotille et al. (2020) [37], Váczi et al. (2020) [38], Câmara et al. (2021) [39], Bollard et al. (2022) [40] |
Health assessment | Turner et al. (2014) [41], Malenovský et al. (2015) [42], Malenovský et al. (2017) [43], Turner et al. (2018) [44], Turner et al. (2019) [45] | |
Change detection | Miranda et al. (2020) [46], Levy et al. (2020) [47] | |
Landforms (18) | Moraines and glacier fronts | Westoby et al. (2015) [48], Westoby et al. (2016) [49], Woodward et al. (2022) [50], Akçar et al. (2020) [51], Kreczmer et al. (2021) [52] |
Patterned ground | Pina et al. (2019) [21], Pereira et al. (2020) [53] | |
Other | Hein et al. (2016) [54], Hein et al. (2016) [55], Dąbski et al. (2017) [56], Zmarz et al. (2018) [57], Dąbski et al. (2020) [58], Kňažková et al. (2021) [59], Ponti et al. (2020) [60] | |
Soils | Mergelov et al. (2020) [61], Weisleitner et al. (2020) [62], Gyeong et al. (2021) [63], Abakumov et al. (2021) [64] | |
Basemaps (12) | Mosaics and DEM | Bandeira et al. (2014) [65], Suganuma et al. (2016) [66], Suganuma et al. (2017) [67], Park et al. (2014) [68], Lamsters et al. (2020) [69], Coronado-Hernández et al. (2020) [22], Tabares (2021) [70], Liu et al. (2021) [71], Kuznetsova et al. (2021) [72], Tovar-Sánchez et al. [73], Faucher et al. (2021) [74], Chen et al. (2021) [75] |
Geophysics (3) | Magnetic anomalies | Funaki et al. (2013) [76], Funaki et al. (2014) [77], Catalán et al. (2014) [78] |
Algorithms (1) | Image processing | Acuña et al. (2016) [23] |
Main Topic | Specific Topic | References |
---|---|---|
Glacier ice (34) | Topography | Popov et al. (2017a) [79], Bliakharskii et al. (2018) [80], Bliakharskii et al. (2019) [81], Karušs et al. (2019) [82], Lamsters et al. (2019) [83], Cárdenas et al. (2020) [84], Florinsky et al. (2020) [85], Yuan et al. (2020) [86], Li et al. (2021) [87], He et al. (2021) [88] |
Ice-sheets and glaciers | Pudełko et al. (2018) [89], Wójcik et al. (2019) [90], Wójcik-Długoborska and Bialik (2021) [91], Marusazh et al. (2019) [92], Marusazh (2020) [93], Osińska et al. (2021) [94], Alvarez et al. (2021) [95] | |
Subsidence | Popov et al. (2017b) [96], Florinsky et al. (2019a) [97], Zhang et al. (2019) [98], Li et al. (2020) [99], Skrypitsyna et al. (2021) [100] | |
Crevasses | Florinsky et al. (2018) [101], Florinsky et al. (2019b) [102], Bliakharskii et al. (2020) [103], Ishalina et al. (2020) [104], Ishalina et al. (2021) [105] | |
Mapping | Markov et al. (2019) [106], Zhuravskiy et al. (2019) [107], Zhuravskiy et al. (2020) [108], Grigoreva et al. (2021) [109] | |
Thickness | Leuschen et al. (2014) [110], Bello et al. (2020) [111], Arnold et al. (2020) [112] | |
Sea-ice (6) | Topography | Williams et al. (2018) [113], Li et al. (2019) [114] |
Icebergs | McGill et al. (2011) [115], Guant et al. (2021) [116] | |
Pancake-ice | Williams et al. (2016) [117] | |
Production | Ackley et al. (2020) [118] | |
Snow (5) | Surface/depth | Tan et al. (2018) [119], Tan et al. (2020) [120], Tan et al. (2021) [121], Hrbáček et al. (2021) [122], Tarca et al. (2022) [123] |
Main Topic | Specific Topic | References |
---|---|---|
Counting (22) | Penguins | Gardner et al. (2011) [124], Zmarz et al. (2015) [125], Hodgson et al. (2016) [126], Borowicks et al. (2018) [127], Korczak-Abshire et al. (2019) [128], Pfeifer et al. (2019) [129], Bird et al. (2020) [130], Shah et al. (2020) [131], Strycker et al. (2020) [132], Herman et al. (2020) [133], Strycker et al. (2021) [134], Liu et al. (2020) [135], Dunn et al. (2021) [136] |
Seals | Mustafa et al. (2019) [137], Fudala and Bialik (2020) [138], Hyun et al. (2020) [139], Dickens et al. (2021) [140], Krause and Hinke (2021) [141] | |
Flying birds | Oosthuizen et al. (2020) [142], Pfeifer et al. (2021) [143], Fudala and Bialik (2022) [144] | |
Morphometrics (5) | Seals | Goebel et al. (2015) [145], Krause et al. (2017) [146] |
Whales | Durban et al. (2021) [147], Gough et al. (2021) [148], Bierlich et al. (2021) [149] | |
Mapping (1) | Guano stains | Firla et al. (2019) [150] |
Interaction (11) | Disturbance | Korczak-Abshire et al. (2016) [151], Rümmler et al. (2016) [152], Rümmler et al. (2018) [153], Weimerskirch et al. (2018) [154], Mustafa et al. (2018) [155], Laborie et al. (2021) [156], Krause et al. (2021) [157], Rümmler et al. (2021a) [158], Rümmler et al. (2021b) [159] |
Behaviour | Johnston (2019) [160], Bouchard et al. (2019) [161] |
Main Topic | Specific Topic | References |
---|---|---|
Platforms (10) | Design | Chen et al. (2009) [162], Agte et al. (2012) [163], Goraj (2014) [164], Goetzendorf-Grabowski and Rodzewicz (2017) [165], Rodzewicz et al. (2018) [166] |
Development | Funaki et al. (2006) [18], Higashino et al. (2007) [167], Funaki et al. (2008) [168], Liang et al. (2008) [169], Garcia and Keshmiri (2013) [170] | |
Sensors (5) | Design and development | Blake et al. (2008) [171], Lewis et al. (2009) [172], Crocker et al. (2012) [173], Uribe et al. (2014) [174], Tan et al. (2017) [175] |
Testing (12) | Simulations and field trials | Lan et al. (2012) [176], Higashino and Funaki (2013) [177], Higashino et al. (2013) [19], Smith et al. (2015) [178], Keane et al. (2017) [179], Rodriguez-Morales et al. (2017) [180], Rodzewicz et al. (2017) [181], Mckinnis et al. (2020) [182], Inoue and Sato (2022) [183] |
Control and Navigation | Lei et al. (2011) [184], Glowacki et al. 2015 [185] | |
Fatigue evaluation | Rodzewicz et al. (2020) [20] |
Main Topic | Specific Topic | References |
---|---|---|
Measurements (12) | Meteorology | van den Kroonenberg et al. (2007) [186], van den Kroonenberg et al. (2008) [187], van den Kroonenberg et al. (2008) [188], Knuth et al. (2011) [189], Knuth et al. (2013) [190], Cassano et al. (2014) [191], Jonassen et al. (2015) [192], Wille et al. (2017) [193], Lampert et al. (2020) [194], Sun et al. (2020) [195], Cassano et al. (2021) [196], Kremser et al. (2021) [197] |
Air-surface coupling (5) | Polynya | Cassano et al. (2010) [198], Knuth et al. (2014) [199], Wenta and Cassano (2020) [200] |
Sea-ice | Cassano et al. (2016) [201] | |
Nunataks | Stenmark et al. (2014) [202] | |
Sampling (3) | Aerosols | Higashino et al. (2014) [203], Higashino et al. (2021) [204], Higashino et al. (2021) [205] |
Main Topic | Specific Topic | References |
---|---|---|
Legislation (1) | Legal implications | Leary et al. (2017) [206] |
Guidelines (2) | Operations | Ratcliff et al. (2015) [207] and Harris et al. (2019) [208] |
User surveys (1) | GNSS | Sheridan (2020) [209] |
Support to logistics (1) | Field expeditions | Li et al. (2021) [210] |
UAV Type | Total | Terrestrial | Ice-Snow | Fauna | Technology | Atmosphere | Others |
---|---|---|---|---|---|---|---|
Fixed-wing | 97 (51.1) | 22 (40.7) | 25 (55.6) | 10 (25.2) | 23 (85.2) | 17 (85.0) | - |
Multi-rotor | 74 (38.9) | 27 (50.0) | 17 (37.8) | 26 (66.7) | 2 (7.4) | 1 (5.0) | 1 (20.0) |
Both | 8 (4.2) | - | 2 (4.4) | 2 (5.1) | - | 2 (10.0) | 2 (40.0) |
Unspecified | 6 (3.2) | 4 (7.4) | 1 (2.2) | 1 (2.6) | - | - | - |
Not used | 5 (2.6) | 1 (1.9) | - | - | 2 (7.4) | - | 2 (40.0) |
Total | 190 | 54 | 45 | 39 | 27 | 20 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pina, P.; Vieira, G. UAVs for Science in Antarctica. Remote Sens. 2022, 14, 1610. https://doi.org/10.3390/rs14071610
Pina P, Vieira G. UAVs for Science in Antarctica. Remote Sensing. 2022; 14(7):1610. https://doi.org/10.3390/rs14071610
Chicago/Turabian StylePina, Pedro, and Gonçalo Vieira. 2022. "UAVs for Science in Antarctica" Remote Sensing 14, no. 7: 1610. https://doi.org/10.3390/rs14071610
APA StylePina, P., & Vieira, G. (2022). UAVs for Science in Antarctica. Remote Sensing, 14(7), 1610. https://doi.org/10.3390/rs14071610