Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake
Abstract
1. Introduction
1.1. Case Study
1.2. Data
2. Methodology
3. Observations
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geller, R.J. Earthquake prediction: A critical review. Geophys. J. Int. 1997, 131, 425–450. [Google Scholar] [CrossRef]
- Parrot, M. Use of satellites to detect seismo-electromagnetic effects, Main phenomenological features of ionospheric precursors of strong earthquakes. Adv. Space Res. 1995, 15, 1337–1347. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A. Seismo- Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling. In Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Terra Scientific Publishing Co.: Tokyo, Japan, 2002; p. 477. [Google Scholar]
- Pulinets, S.; Boyarchuk, K.A. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Freund, F. Stress-activated positive hole charge carriers in rocks and the generation of pre-earthquake signals. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 41–96. [Google Scholar]
- Pulinets, S.; Ouzounov, D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Pokhotelov, O.A. Model for the VLF/LF radio signal anomalies formation associated with earthquakes. Adv. Space Res. 2014, 54, 2532–2539. [Google Scholar] [CrossRef]
- Liu, J.Y. Seismo-ionospheric precursors of the 2017 M7.3 Iran-Iraq Border Earthquake and the 2018 M5.9 Osaka Earthquake observed by FORMOSAT-5/AIP. In Proceedings of the EMSEV 2018, International Workshop Integrating Geophysical Observations from Ground to Space for Earthquake and Volcano Investigations Potenza, Basilicata, Italy, 17–21 September 2018. [Google Scholar]
- Akhoondzadeh, M.; Parrot, M.; Saradjian, M.R. Electron and ion density variations before strong earthquakes (M > 6.0) using DEMETER and GPS data. Nat. Hazards Earth Syst. Sci. 2010, 10, 7–18. [Google Scholar] [CrossRef]
- De Santis, A.; De Franceschi, G.; Spogli, L.; Perrone, L.; Alfonsi, L.; Qamili, E.; Cianchini, G.; Di Giovambattista, R.; Salvi, S.; Filippi, E.; et al. Geospace perturbations induced by the Earth: The state of the art and future trends. Phys. Chem. Earth 2015, 85-86, 17–33. [Google Scholar] [CrossRef]
- Deb, A.; Gazi, M.; Barman, C. Anomalous soil radon fluctuations—signal of earthquakes in Nepal and eastern India regions. J. Earth Syst. Sci. 2016, 125, 1657–1665. [Google Scholar] [CrossRef]
- Kojima, H.; Yoshino, C.; Nemoto, K.; Hattori, K.; Konishi, T.; Furuya, R. Multi-channel singular spectrum analysis of underground Rn concentration at Asahi station, Boso Peninsula, Japan: Preliminary report on relation between the variation of underground Rn flux and the local seismic activity. JAE Lett. 2020, 39, 46–51. [Google Scholar] [CrossRef]
- Freund, F.; Ouillon, G.; Scoville, J.; Sornette, D. Earthquake precursors in the light of peroxy defects theory: Critical review of systematic observations. Eur. Phys. J. Spec. Top. 2021, 230, 7–46. [Google Scholar] [CrossRef]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. A MLP neural network as an investigator of TEC time series to detect seismo-ionospheric anomalies. Adv. Space Res. 2013, 51, 2048–2057. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. Anomalous TEC variations associated with the powerful Tohoku earthquake of 11 March 2011. Nat. Hazards Earth Syst. Sci. 2012, 12, 1453–1462. [Google Scholar] [CrossRef][Green Version]
- Liu, X.; Zhao, D. Upper and lower plate controls on the great 2011 Tohoku-oki earthquake. Sci. Adv. 2018, 4, eaat4396. [Google Scholar] [CrossRef] [PubMed]
- Bagiya, M.S.; Thomas, D.; Astafyeva, E.; Bletery, Q.; Lognonné, P.; Ramesh, D.S. The Ionospheric view of the 2011 Tohoku-Oki earthquake seismic source: The first 60 seconds of the rupture. Sci. Rep. 2020, 10, 5232. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Seismicity of the Earth and Associated Phenomena, 2nd ed.; Princeton, N.J., Ed.; Princeton University Press: Princeton, NJ, USA, 1954. [Google Scholar]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Hulot, G. Swarm: A constellation to study the Earth’s magnetic field, Earth. Planets Space 2006, 58, 351–358. [Google Scholar] [CrossRef]
- Léger, J.M.; Jager, T.; Bertrand, F.; Hulot, G.; Brocco, L.; Vigneron, P.; Lalanne, X.; Chulliat, A.; Fratter, I. In-flight performance of the Absolute Scalar Magnetometer vector mode on board the Swarm satellites. Earth Planets Space 2015, 67, 57. [Google Scholar] [CrossRef]
- Merayo, J.M.; Jørgensen, J.L.; Friis-Christensen, E.; Brauer, P.; Primdahl, F.; Jørgensen, P.S.; Allin, T.H.; Denver, T. The Swarm Magnetometry Package. In Small Satellites for Earth Observation; Sandau, R., Röser, H.P., Valenzuela, A., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Knudsen, D.J.; Burchill, J.K.; Buchert, S.C.; Eriksson, A.I.; Gill, R.; Wahlund, J.-E.; Åhlen, L.; Smith, M.; Moffat, B. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys Res. Space Phys. 2017, 122, 2655–2673. [Google Scholar] [CrossRef]
- Haagmans, R.; Bock, R.; Rider, H. Swarm; ESA’s Magnetic Field Mission. 2013. Available online: https://earth.esa.int/documents/700255/1805948/ESA+magnetic+field+mission/36942f02-b2d4-4787-af81-eb19efb74265 (accessed on 15 January 2022).
- van den IJssel, J.; Forte, B.; Montenbruck, O. Impact of Swarm GPS receiver updates on POD performance. Earth Planets Space 2016, 68, 85. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Shen, X. Swarm-TEC Satellite Measurements as a Potential Earthquake Precursor Together with Other Swarm and CSES Data: The Case of Mw7.6 2019 Papua New Guinea Seismic Event. Front. Earth Sci. 2022, 10, 820189. Available online: https://www.frontiersin.org/articles/10.3389/feart.2022.820189 (accessed on 15 January 2022). [CrossRef]
- De Santis, A.; Balasis, G.; Pavón-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Earth Planet Sci. Lett. 2017, 461, 119–126. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Cianchini, G. Multi precursors analysis associated with the powerful Ecuador (Mw = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Adv. Space Res. 2018, 61, 248–263. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Jin, S. Anomalous seismo-LAI variations potentially associated with the 2017 Mw = 7.3 Sarpol-e Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data. Adv. Space Res. 2019, 64, 143–158. [Google Scholar] [CrossRef]
- Marchetti, D.; Akhoondzadeh, M. Analysis of Swarm satellites data showing seismo-ionospheric anomalies around the time of the strong Mexico (Mw=8.2) earthquake of 08 September 2017. Adv. Space Res. 2018, 62, 614–623. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; D’Arcangelo, S.; Poggio, F.; Piscini, A.; Campuzano, S.; De Carvalho, W.V.J.O. Pre-earthquake chain processes detected from ground to satellite altitude in preparation of the 2016–2017 seismic sequence in Central Italy. Remote Sens. Environ. 2019, 229, 93–99. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Shen, X.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Giovambattista, R.D.; Jin, S.; Ippolito, A.; Cianchini, G.; et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw = 7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- De Santis, A.; Cianchini, G.; Marchetti, D.; Piscini, A.; Sabbagh, D.; Perrone, L.; Campuzano, S.A.; Inan, S. A multiparametric approach to study the preparation phase of the 2019 M7.1 Ridgecrest (California, USA) Earthquake. Front. Earth Sci. 2020, 8, 540398. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Matzka, J.; Bronkalla, O.; Tornow, K.; Elger, K.; Stolle, C. Geomagnetic Kp index. V. 1.0. GFZ Data Serv. 2021. [Google Scholar] [CrossRef]
- Nose, M.; Iyemori, T.; Sugiura, M.; Kamei, T. World Data Center for Geomagnetism. Geomagn. Dst Index 2015. [Google Scholar] [CrossRef]
- Dobrovolsky, I.R.; Zubkov, S.I.; Myachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Thébault, E.; Finlay, C.C.; Beggan, C.D.; Alken, P.; Aubert, J.; Barrois, O.; Bertrand, F.; Bondar, T.; Boness, A.; Brocco, L.; et al. International Geomagnetic Reference Field: The 12th generation. Earth Planets Space 2015, 67, 79. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), American Meteorological Society—Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) special collection. J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, C.L. Aqua: An Earth-Observing Satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens. 2003, 41, 173–183. [Google Scholar] [CrossRef]
- Piscini, A.; Marchetti, D.; De Santis, A. Multi-parametric climatological analysis associated with global significant volcanic eruptions during 2002–2017. Pure Appl. Geophys. 2019, 176, 3629–3647. [Google Scholar] [CrossRef]
- Scholz, C. The Mechanics of Earthquakes and Faulting, 3rd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Rikitake, T. Earthquake precursors in Japan: Precursor time and detectability. Tectonophysics 1987, 136, 265–282. [Google Scholar] [CrossRef]
- Piscini, A.; De Santis, A.; Marchetti, D.; Cianchini, G. A Multiparametric Climatological Approach to Study the 2016 Amatrice–Norcia (Central Italy) Earthquake Preparatory Phase. Pure Appl. Geophys. 2017, 174, 3673–3688. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. The Possibility of Earthquake Forecasting; Learning from Nature; IOP Publ.: Bristol, UK, 2018. [Google Scholar]
Parameter | Value |
---|---|
Layers | 3 |
No. of features in sequence input layer | 1 |
No. of hidden units in LSTM layer | 200 |
No. of responses in fully connected layer | 1 |
Max epochs | 300 |
Initial learning rate | 0.005 |
Solver | Adam |
Gradient threshold | 1 |
Detected Anomalies Using Median/Interquartile Method | |||||
---|---|---|---|---|---|
Satellite | Measured Parameter (D: Day, N: Night) | Anomalous Day | Sorted by Voting | ||
Day | Rank | ||||
Swarm Alpha | Electron Density | D | −13 | −32 −31 −6 −8 −1 −13 −18 −9 −15 −5 −20 −21 −23 −27 −30 −4 −11 −16 −24 −2 −12 −25 −26 −28 −33 −36 −3 −10 −14 −22 −29 −17 −34 −35 | (13) (12) (11) (9) (8) (8) (7) (6) (6) (5) (5) (5) (5) (5) (5) (4) (4) (4) (4) (3) (3) (3) (3) (3) (3) (3) (2) (2) (2) (2) (2) (1) (1) (1) |
N | −31, −32 | ||||
Electron Temperature | D | −12 to −16 | |||
N | −−− | ||||
Magnetic Scalar | D | −2, −4, −5, −6, −8, −9, −18 | |||
N | −11, −22, −31 to −33 | ||||
Magnetic Vector x | D | −4, −5, −6, −8, −9, −18 | |||
N | −11, −22, −31 to −33 | ||||
Magnetic Vector y | D | −6, −8, −9, −20, −27 | |||
N | −1, −8, −13, −32 | ||||
Magnetic Vector z | D | −1, −34 | |||
N | −3, −21, −31 | ||||
Slant TEC | D | −11, −13, −21 | |||
N | −12, −16, −20, −31 | ||||
Vertical TEC | D | −21, −36 | |||
N | −5, −20 | ||||
Swarm Bravo | Electron Density | D | −24, −32 | ||
N | −1, −4, −32 | ||||
Electron Temperature | D | −6, −18, −23, −27 | |||
N | −15, −23 | ||||
Magnetic Scalar | D | −6, −18 | |||
N | −1, −10, −31, −32 | ||||
Magnetic Vector x | D | −6, −18 | |||
N | −10, −23, −31 to −33 | ||||
Magnetic Vector y | D | −−−−− | |||
N | −1, −8, −22, −23, −35 | ||||
Magnetic Vector z | D | −−−−− | |||
N | −−−−− | ||||
Slant TEC | D | −30, −32 | |||
N | −−−−− | ||||
Vertical TEC | D | −20, −24, −30, −32 | |||
N | −5, −8 | ||||
Swarm Charlie | Electron Density | D | −6, −13 | ||
N | −31, −32, −36 | ||||
Electron Temperature | D | −1, −3, −8, −9, −13 to −18, −27 to −30 | |||
N | −16, −23 to −30 | ||||
Magnetic Scalar | D | −2, −4, −5, −6, −8, −9, −18, −26 | |||
N | −11, −24, −31, −32 | ||||
Magnetic Vector x | D | −5, −6, −8, −9, −18 | |||
N | −31, −32 | ||||
Magnetic Vector y | D | −6, −20, −27 | |||
N | −1, −10, −32 | ||||
Magnetic Vector z | D | −1, −6, −25, −31 | |||
N | −21, −31 | ||||
Slant TEC | D | −33 | |||
N | −15 | ||||
Vertical TEC | D | −21, −36 | |||
N | −11 | ||||
Swarm Alpha-Charlie | Electron Density | D | −6, −8, −9, −13, −15 | ||
N | −2, −4, −31 | ||||
Electron Temperature | D | −12, −13, −15, −26, −30 | |||
N | −25, −28 |
Detected Anomalies Using LSTM Method | |||||
---|---|---|---|---|---|
Satellite | Measured Parameter (D: Day, N: Night) | Anomalous Day | Sorted by Voting | ||
Day | Rank | ||||
Swarm Alpha | Electron Density | D | −6, −13 | −31 −32 −8 −5 −13 −1 −23 −6 −21 −9 −22 −3 −12 −15 −18 −4 −24 −2 −14 −16 −17 −25 −20 −26 −30 −35 −10 −28 −29 −33 | (18) (14) (13) (12) (11) (10) (10) (9) (8) (7) (7) (6) (5) (5) (5) (4) (4) (4) (4) (3) (3) (3) (3) (2) (2) (2) (1) (1) (1) (1) |
N | −1, −4, −31, −32 | ||||
Electron Temperature | D | −12, −13, −15 | |||
N | −1, −8, −24 | ||||
Magnetic Scalar | D | −2, 4, −5, −6, −8, −9, −26 | |||
N | −11, −22, −31, −32 | ||||
Magnetic Vector x | D | −1, −3, −6 | |||
N | −11, −18, −22, −31, −32 | ||||
Magnetic Vector y | D | −6, −8 | |||
N | −1, −18, −32 | ||||
Magnetic Vector z | D | −5, −11, −35 | |||
N | −3, −6, −18, −21, −29, −31 | ||||
Slant TEC | D | −3, −5, −11, −13, −21 | |||
N | −5, −16, −20, −31 | ||||
Vertical TEC | D | −11, −21, −26 | |||
N | −5, −13, | ||||
Swarm Bravo | Electron Density | D | −6, −11, −21, −22, −24, −32 | ||
N | −1, −3, −4, −16,−20, −31, −32 | ||||
Electron Temperature | D | −6, −18, −23,−31, −32, −35 | |||
N | −15, −16, −23 | ||||
Magnetic Scalar | D | −6, −17 | |||
N | −1, −31, −32 | ||||
Magnetic Vector x | D | −6 | |||
N | −1, −22, −23, −31, −32 | ||||
Magnetic Vector y | D | −12, −13, −25 | |||
N | −1, −15, −20, −22, −23, −30, −31, −42 | ||||
Magnetic Vector z | D | −8, −13, −18 | |||
N | −23 | ||||
Slant TEC | D | −21, −31, −32 | |||
N | −5, −8, −11, −31 | ||||
Vertical TEC | D | −30, −32 | |||
N | −5, −32 | ||||
Swarm Charlie | Electron Density | D | −8, −9,−13, −14, −22, −23 | ||
N | −5, −8, −9, −31, −32 | ||||
Electron Temperature | D | −1, −3 | |||
N | −16 | ||||
Magnetic Scalar | D | −4, −6, −8, −9 | |||
N | −11, −24, −31, −32 | ||||
Magnetic Vector x | D | −1, −3, −22, −23, −24, −25 | |||
N | −11, −22, −31, −32 | ||||
Magnetic Vector y | D | −8, −9 | |||
N | −1, −10, −32 | ||||
Magnetic Vector z | D | −5, −8, −9, −13, −14 | |||
N | −18, −31 | ||||
Slant TEC | D | −3, −5, −14, −21 | |||
N | −15, −33 | ||||
Vertical TEC | D | −21, −31 | |||
N | −2, −5, −8 | ||||
Swarm Alpha-Charlie | Electron Density | D | 5, −9, −13, −15 | ||
N | −23, −31 | ||||
Electron Temperature | D | −6, −8, −12, −13, −15, −34 | |||
N | −25, −28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Wang, T. Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake. Remote Sens. 2022, 14, 1582. https://doi.org/10.3390/rs14071582
Akhoondzadeh M, De Santis A, Marchetti D, Wang T. Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake. Remote Sensing. 2022; 14(7):1582. https://doi.org/10.3390/rs14071582
Chicago/Turabian StyleAkhoondzadeh, Mehdi, Angelo De Santis, Dedalo Marchetti, and Ting Wang. 2022. "Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake" Remote Sensing 14, no. 7: 1582. https://doi.org/10.3390/rs14071582
APA StyleAkhoondzadeh, M., De Santis, A., Marchetti, D., & Wang, T. (2022). Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake. Remote Sensing, 14(7), 1582. https://doi.org/10.3390/rs14071582