Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Interest
2.2. Data
2.3. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DOC | Department of Conservation |
| EBI | Enhanced Bloom Index |
| ESA | European Space Agency |
| EVI | Enhanced Vegetation Index |
| GRVI | Green-Red Vegetation Index |
| NDVI | Normalized Difference Vegetation Index |
| NDYI | Normalized Difference Yellowing Index |
| NZTM | New Zealand Transverse Mercator |
| TOA | Top of Atmosphere |
References
- Heenan, P.B.; Smissen, R.D. Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophozonia, and Trisyngyne (Nothofagaceae). Phytotaxa 2013, 146, 1–31. [Google Scholar] [CrossRef]
- Shepherd, J.R.D.; Ausseil, A.G.; Dymond, J.R. EcoSat Forests: A 1: 750,000 Scale Map of Indigenous Forest Classes in New Zealand; Manaaki Whenua Press: Lincoln, New Zealand, 2005. [Google Scholar]
- Wardle, J.A. The New Zealand Beeches. Ecology, Utilisation and Management; New Zealand Forest Service: Wellington, New Zelaand, 1984; p. 477.
- Elliott, G.; Kemp, J. Large-scale pest control in New Zealand beech forests. Ecol. Manag. Restor. 2016, 17, 200–209. [Google Scholar] [CrossRef]
- Ruscoe, W.A.; Pech, R.P. Rodent Outbreaks: Ecology and Impacts. In Rodent Outbreaks: Ecology and Impacts; Singleton, G., Belmain, S., Brown, P., Hardy, B., Eds.; Internationl Rice Research Institute: Los Baños, Philippines, 2010; pp. 239–251. [Google Scholar]
- King, C.M.; Powell, R.A. Managing an invasive predator pre-adapted to a pulsed resource: A model of stoat (Mustela erminea) irruptions in New Zealand beech forests. Biol. Invasions 2011, 13, 3039–3055. [Google Scholar] [CrossRef]
- Kelly, D.; Geldenhuis, A.; James, A.; Penelope Holland, E.; Plank, M.J.; Brockie, R.E.; Cowan, P.E.; Harper, G.A.; Lee, W.G.; Maitland, M.J.; et al. Of mast and mean: Differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 2013, 16, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.B.; Hurst, J.M.; Portier, J.; Richardson, S.J. Elevation-dependent responses of tree mast seeding to climate change over 45 years. Ecol. Evol. 2014, 4, 3525–3537. [Google Scholar] [CrossRef] [PubMed]
- Bogdziewicz, M.; Kelly, D.; Thomas, P.A.; Lageard, J.G.; Hacket-Pain, A. Climate warming disrupts mast seeding and its fitness benefits in European beech. Nat. Plants 2020, 6, 88–94. [Google Scholar] [CrossRef]
- Bogdziewicz, M.; Hacket-Pain, A.; Kelly, D.; Thomas, P.A.; Lageard, J.; Tanentzap, A.J. Climate warming causes mast seeding to break down by reducing sensitivity to weather cues. Glob. Chang. Biol. 2021, 27, 1952–1961. [Google Scholar] [CrossRef]
- Bolton, D.K.; Gray, J.M.; Melaas, E.K.; Moon, M.; Eklundh, L.; Friedl, M.A. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sens. Environ. 2020, 240, 111685. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of phenological research using sentinel-2 data: A review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. Remote Sensing of Environment A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Dixon, D.J.; Callow, J.N.; Duncan, J.M.; Setterfield, S.A.; Pauli, N. Satellite prediction of forest flowering phenology. Remote Sens. Environ. 2021, 255, 112197. [Google Scholar] [CrossRef]
- Moon, M.; Seyednasrollah, B.; Richardson, A.D.; Friedl, M.A. Using time series of MODIS land surface phenology to model temperature and photoperiod controls on spring greenup in North American deciduous forests. Remote Sens. Environ. 2021, 260, 112466. [Google Scholar] [CrossRef]
- Moon, M.; Richardson, A.D.; Friedl, M.A. Multiscale assessment of land surface phenology from harmonized Landsat 8 and Sentinel-2, PlanetScope, and PhenoCam imagery. Remote Sens. Environ. 2021, 266, 112716. [Google Scholar] [CrossRef]
- Browning, D.M.; Russell, E.S.; Ponce-Campos, G.E.; Kaplan, N.; Richardson, A.D.; Seyednasrollah, B.; Spiegal, S.; Saliendra, N.; Alfieri, J.G.; Baker, J.; et al. Monitoring agroecosystem productivity and phenology at a national scale: A metric assessment framework. Ecol. Indic. 2021, 131, 108147. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Garbulsky, M.; Peñuelas, J.; Peguero, G.; Espelta, J.M. Temporal trends in the enhanced vegetation index and spring weather predict seed production in Mediterranean oaks. Plant Ecol. 2015, 216, 1061–1072. [Google Scholar] [CrossRef]
- Cheng, Y.; Vrieling, A.; Fava, F.; Meroni, M.; Marshall, M.; Gachoki, S. Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sens. Environ. 2020, 248, 112004. [Google Scholar] [CrossRef]
- Garcia, M.; Zuckerberg, B.; Lamontagne, J.M.; Townsend, P.A. Landsat-based detection of mast events in white spruce (Picea glauca) forests. Remote Sens. Environ. 2021, 254, 112278. [Google Scholar] [CrossRef]
- Noumonvi, K.D.; Oblišar, G.; Žust, A.; Vilhar, U. Empirical approach for modelling tree phenology in mixed forests using remote sensing. Remote Sens. 2021, 13, 3015. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Panuju, D.R.; Paull, D.J.; Griffin, A.L. Change detection techniques based on multispectral images for investigating land cover dynamics. Remote Sens. 2020, 12, 1781. [Google Scholar] [CrossRef]
- Chen, B.; Jin, Y.; Brown, P. An enhanced bloom index for quantifying floral phenology using multi-scale remote sensing observations. ISPRS J. Photogramm. Remote Sens. 2019, 156, 108–120. [Google Scholar] [CrossRef]
- Dymond, J.R.; Shepherd, J.R.D. The spatial distribution of indigenous forest and its composition in the Wellington region, New Zealand, from ETM+ satellite imagery. Remote Sens. Environ. 2004, 90, 116–125. [Google Scholar] [CrossRef]
- Landcare Research Ltd. EcoSat Forests (North Island); Landcare Research Ltd.: Lincoln, New Zealand, 2014. [Google Scholar] [CrossRef]
- Landcare Research Ltd. EcoSat Forest (South Island); Landcare Research Ltd.: Lincoln, New Zealand, 2014. [Google Scholar] [CrossRef]
- Department of Conservation. Flowering and Fruit Production; Department of Conservation: Wellington, New Zealand, 2019.
- Department of Conservation. Department of Conservation Te Papa Atawhai Annual Report 2019; Technical Report; Department of Conservation: Wellington, New Zealand, 2019.
- Shepherd, J.R.D.; Schindler, J.; Dymond, J.R. Automated Mosaicking of Sentinel-2 Satellite Imagery. Remote Sens. 2020, 12, 3680. [Google Scholar] [CrossRef]
- Rouse, W.; Haas, H.; Deering, W. Monitoring vegetation systems in the Great Plains with ERTS. In Goddard Space Flight Center 3d ERTS-1 Symposium; NASA: Greenbelt, MD, USA, 1974. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared l, lnear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for remote sensing of vegetation phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Shepherd, J.R.D.; Dymond, J.R.; Cuff, J.R. Monitoring scrub weed change in the Canterbury region using satellite imagery. N. Z. Plant Prot. 2007, 60, 137–140. [Google Scholar] [CrossRef]
- Card, D.H. Using Known Map Category Marginal Frequencies to Improve Estimates of Thematic Map Accuracy. Photgrammetric Eng. Remote Sens. 1982, 48, 431–439. [Google Scholar]
- Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 1: Literature review. Remote Sens. 2021, 13, 2450. [Google Scholar] [CrossRef]
- Uscoe, W.E.A.R.; Latt, K.E.H.P.; Richardson, S.J.; Allen, R.B.; Whitehead, D.; Carswell, F.E.; Ruscoe, W.A.; Platt, K.H. Climate and net carbon availability determine temporal patterns of seed production by Nothofagus. Ecology 2005, 86, 972–981. [Google Scholar]
- Thapa, S.; Millan, V.E.G.; Eklundh, L. Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, phenocam) and satellite (MODIS, sentinel-2) remote sensing. Remote Sens. 2021, 13, 1597. [Google Scholar] [CrossRef]
- Peng, D.; Wang, Y.; Xian, G.; Huete, A.R.; Huang, W.; Shen, M.; Wang, F.; Yu, L.; Liu, L.; Xie, Q.; et al. Investigation of land surface phenology detections in shrublands using multiple scale satellite data. Remote Sens. Environ. 2021, 252, 112133. [Google Scholar] [CrossRef]





| Reference Flowering | ||||
|---|---|---|---|---|
| Detected | Not Det. | Precision | ||
| Mapped flowering | Detected | 0.316 | 0.034 | 0.904 |
| Not Det. | 0.059 | 0.592 | 0.910 | |
| Recall | 0.844 | 0.946 | ||
| F1-Score | 0.873 | 0.928 | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jolly, B.; Dymond, J.R.; Shepherd, J.D.; Greene, T.; Schindler, J. Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery. Remote Sens. 2022, 14, 1573. https://doi.org/10.3390/rs14071573
Jolly B, Dymond JR, Shepherd JD, Greene T, Schindler J. Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery. Remote Sensing. 2022; 14(7):1573. https://doi.org/10.3390/rs14071573
Chicago/Turabian StyleJolly, Ben, John R. Dymond, James D. Shepherd, Terry Greene, and Jan Schindler. 2022. "Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery" Remote Sensing 14, no. 7: 1573. https://doi.org/10.3390/rs14071573
APA StyleJolly, B., Dymond, J. R., Shepherd, J. D., Greene, T., & Schindler, J. (2022). Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery. Remote Sensing, 14(7), 1573. https://doi.org/10.3390/rs14071573

