Hazard Assessment of Rocky Slopes: An Integrated Photogrammetry–GIS Approach Including Fracture Density and Probability of Failure Data
Abstract
:1. Introduction
2. Geological and Geomorphological Setting
3. Material and Methods
3.1. UAV and Topographic Surveys
3.2. Photogrammetric Processing
3.3. Fracture Pattern Analysis
3.4. Engineering–Geological Survey
3.5. Kinematic Stability Analysis
3.6. Dynamic Slope Stability Analysis
3.7. Rockfall Hazard Assesment
4. Results
4.1. 3D Model
4.2. Rockfall Hazard Assesment
4.2.1. Rock Mass Engineering–Geological Characterization
4.2.2. Kinematic Stability Analysis
4.2.3. Probabilistic Dynamic Stability Analysis
4.2.4. Rockfall Hazard Maps
5. Discussion
6. Conclusions
- Methodology based on GIS spatial analysis, which allows hazard assessment of slopes prone to rockfall events, localizing the higher-risk areas in a punctual way. The approach is accurate and does not require complex algorithms to be applied.
- The approach is not time-consuming compared to other approaches, but it requires the direct control of an operator for all the steps of the analysis.
- Semi-automatic procedure for the in-depth study of the fracture pattern, which allows for a complete and deterministic rock mass characterization and for the realization of detailed fracture density maps.
- Creation of reliable hazard maps based on the main three factors that contribute to rockfall instability (kinematic predisposition to rockfall, fracture density distribution, probability of failure).
- Improved rockfall prediction, with detailed, scalable, and accurate hazard maps that allow for the localization of areas in which to prioritize future remediation works.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vanneschi, C.; Eyre, M.; Francioni, M.; Coggan, J. The Use of Remote Sensing Techniques for Monitoring and Characterization of Slope Instability. Proc. Eng. 2017, 191, 150–157. [Google Scholar] [CrossRef]
- Francioni, M.; Salvini, R.; Stead, D.; Coggan, J. Improvements in the integration of remote sensing and rock slope modelling. Nat. Hazards 2017, 90, 975–1004. [Google Scholar] [CrossRef]
- Robiati, C.; Eyre, M.; Vanneschi, C.; Francioni, M.; Venn, A.; Coggan, J. Application of Remote Sensing Data for Evaluation of Rockfall Potential within a Quarry Slope. ISPRS Int. J. Geo-Inf. 2019, 8, 367. [Google Scholar] [CrossRef]
- Vanneschi, C.; Eyre, M.; Burda, J.; Žižka, L.; Francioni, M.; Coggan, J.S. Investigation of landslide failure mechanisms adjacent to lignite mining operations in North Bohemia (Czech Republic) through a limit equilibrium/finite element modelling approach. Geomorphology 2018, 320, 142–153. [Google Scholar] [CrossRef]
- Vanneschi, C.; Eyre, M.; Venn, A.; Coggan, J.S. Investigation and modeling of direct toppling using a three-dimensional distinct element approach with incorporation of point cloud geometry. Landslides 2019, 16, 1453–1465. [Google Scholar] [CrossRef]
- Assali, P.; Grussenmeyer, P.; Villemin, T.; Pollet, N.; Viguier, F. Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection. J. Struct. Geol. 2014, 66, 102–114. [Google Scholar] [CrossRef]
- Singh, S.K.; Raval, S.; Banerjee, B.P. Automated structural discontinuity mapping in a rock face occluded by vegetation using mobile laser scanning. Eng. Geol. 2021, 285, 106040. [Google Scholar] [CrossRef]
- Idrees, M.O.; Pradhan, B. Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. J. Rock Mech. Geotech. Eng. 2018, 10, 534–544. [Google Scholar] [CrossRef]
- Fekete, S.; Diederichs, M. Integration of three-dimensional laser scanning with discontinuum modelling for stability analysis of tunnels in blocky rockmasses. Int. J. Rock Mech. Min. Sci. 2013, 57, 11–23. [Google Scholar] [CrossRef]
- Mastrorocco, G.; Salvini, R.; Vanneschi, C. Fracture mapping in challenging environment: A 3D virtual reality approach combining terrestrial LiDAR and high definition images. Bull. Eng. Geol. Environ. 2017, 77, 691–707. [Google Scholar] [CrossRef]
- Spetsakis, M.; Aloimonos, J.Y. A multi-frame approach to visual motion perception. Int. J. Comput. Vis. 1991, 6, 245–255. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landforms 2013, 38, 421–430. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Giordan, D.; Adams, M.S.; Aicardi, I.; Alicandro, M.; Allasia, P.; Baldo, M.; De Berardinis, P.; Dominici, D.; Godone, D.; Hobbs, P.; et al. The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bull. Eng. Geol. Environ. 2020, 79, 3437–3481. [Google Scholar] [CrossRef]
- O’Banion, M.S.; Olsen, M.J.; Rault, C.; Wartman, J.; Cunningham, K. Suitability of structure from motion for rock-slope assessment. Photogramm. Rec. 2018, 33, 217–242. [Google Scholar] [CrossRef]
- Gallup, D.; Frahm, J.M.; Mordohai, P.; Yang, Q.; Pollefeys, M. Real-time plane-sweeping stereo with multiple sweeping directions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; p. 9. [Google Scholar]
- Goesele, M.; Snavely, N.; Curless, B.; Hoppe, H.; Seitz, S.M. Multi-view stereo for community photo collections. In Proceedings of the IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; p. 8. [Google Scholar]
- Jancosek, M.; Shekhovtsov, A.; Pajdla, T. Scalable multiview stereo. In Proceedings of the IEEE Workshop on 3D Digital Imaging and Modeling, Kyoto, Japan, 27 September–4 October 2009; p. 8. [Google Scholar]
- Sturzenegger, M.; Stead, D. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng. Geol. 2009, 106, 163–182. [Google Scholar] [CrossRef]
- Lato, M.J.; Vöge, M. Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. Int. J. Rock Mech. Min. Sci. 2012, 54, 150–158. [Google Scholar] [CrossRef]
- Manousakis, J.; Zekkos, D.; Saroglou, F.; Clark, M. Comparison of UAV-enabled photogrammetry-based 3D point clouds and interpolated DSMs of sloping terrain for rockfall hazard analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLII-2/W2, 71–77. [Google Scholar] [CrossRef]
- Wilkinson, M.W.W.; Jones, R.R.R.; Woods, C.E.E.; Gilment, S.R.R.; McCaffrey, K.J.W.J.W.; Kokkalas, S.; Long, J.J.J. A comparison of terrestrial laser scanning and structure-from-motion photogrammetry as methods for digital outcrop acquisition. Geosphere 2016, 12, 1865–1880. [Google Scholar] [CrossRef]
- Kong, D.; Saroglou, C.; Wu, F.; Sha, P.; Li, B. Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. Int. J. Rock Mech. Min. Sci. 2021, 141, 104729. [Google Scholar] [CrossRef]
- Tziavou, O.; Pytharouli, S.; Souter, J. Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results. Eng. Geol. 2018, 232, 12–21. [Google Scholar] [CrossRef]
- Gilham, J.; Barlow, J.; Moore, R. Detection and analysis of mass wasting events in chalk sea cliffs using UAV photogrammetry. Eng. Geol. 2019, 250, 101–112. [Google Scholar] [CrossRef]
- Haneberg, W.C. Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bull. Eng. Geol. Environ. 2008, 67, 457–469. [Google Scholar] [CrossRef]
- Salvini, R.; Mastrorocco, G.; Esposito, G.; Di Bartolo, S.; Coggan, J.; Vanneschi, C. Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy). Nat. Hazards Earth Syst. Sci. 2018, 18, 287–302. [Google Scholar] [CrossRef]
- Riquelme, A.; Cano, M.; Tomás, R.; Abellán, A. Identification of Rock Slope Discontinuity Sets from Laser Scanner and Photogrammetric Point Clouds: A Comparative Analysis. Proc. Eng. 2017, 191, 838–845. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, H.; Li, X. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud. Comput. Geosci. 2016, 95, 18–31. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Yang, X.; Zhu, H. Semi-automatic extraction of rock discontinuities from point clouds using the ISODATA clustering algorithm and deviation from mean elevation. Int. J. Rock Mech. Min. Sci. 2018, 110, 76–87. [Google Scholar] [CrossRef]
- Salvini, R.; Vanneschi, C.; Coggan, J.S.; Mastrorocco, G. Evaluation of the Use of UAV Photogrammetry for Rock Discontinuity Roughness Characterization. Rock Mech. Rock Eng. 2020, 53, 3699–3720. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Chen, J.; Zhu, H. Automatic characterization of rock mass discontinuities using 3D point clouds. Eng. Geol. 2019, 259, 105131. [Google Scholar] [CrossRef]
- Ünlüsoy, D.; Süzen, M.L. A new method for automated estimation of joint roughness coefficient for 2D surface profiles using power spectral density. Int. J. Rock Mech. Min. Sci. 2020, 125, 104156. [Google Scholar] [CrossRef]
- Francioni, M.; Salvini, R.; Stead, D.; Giovannini, R.; Riccucci, S.; Vanneschi, C.; Gull, D. An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: Slope stability assessment through kinematic and numerical methods. Comput. Geotech. 2015, 67. [Google Scholar] [CrossRef]
- Park, H.-J.; Lee, J.-H.; Kim, K.-M.; Um, J.-G. Assessment of rock slope stability using GIS-based probabilistic kinematic analysis. Eng. Geol. 2016, 203, 56–69. [Google Scholar] [CrossRef]
- He, L.; Coggan, J.; Francioni, M.; Eyre, M. Maximizing Impacts of Remote Sensing Surveys in Slope Stability—A Novel Method to Incorporate Discontinuities into Machine Learning Landslide Prediction. ISPRS Int. J. Geo-Inf. 2021, 10, 232. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Baillifard, F.; Philippossian, F.; Rouiller, J.-D. Assessing fracture occurrence using the “weighted fracturing density”: A step towards estimating rock instability hazard. Nat. Hazards Earth Syst. Sci. 2004, 4, 83–93. [Google Scholar] [CrossRef]
- Duncan, J.M. State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. J. Geotech. Eng. 1996, 122, 577–596. [Google Scholar] [CrossRef]
- Jiang, S.H.; Huang, J.; Yao, C.; Yang, J. Quantitative risk assessment of slope failure in 2-D spatially variable soils by limit equilibrium method. Appl. Math. Model. 2017, 47, 710–725. [Google Scholar] [CrossRef]
- Liu, T.; Ding, L.; Meng, F.; Li, X.; Zheng, Y. Stability analysis of anti-dip bedding rock slopes using a limit equilibrium model combined with bi-directional evolutionary structural optimization (BESO) method. Comput. Geotech. 2021, 134, 104116. [Google Scholar] [CrossRef]
- Deng, D. Limit equilibrium solution for the rock slope stability under the coupling effect of the shear dilatancy and strain softening. Int. J. Rock Mech. Min. Sci. 2020, 134, 104421. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Lane, P.A. Slope stability analysis by finite elements. Geotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Park, H.-J.; West, T.R.; Woo, I. Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Interstate Highway 40, Western North Carolina, USA. Eng. Geol. 2005, 79, 230–250. [Google Scholar] [CrossRef]
- Camanni, G. Geological-Structural Analysis and 3D Modelling of the Fontane Talc Mineralization (Germanasca Valley, Inner Cottian Alps); University of Turin: Turin, Italy, 2010. [Google Scholar]
- Damiano, A. Studio Geologico delle Mineralizzazioni a Talco Nelle Valli Germanasca, Chisone e Pellice (Massiccio Dora-Maira, Alpi Cozie); University of Turin: Turin, Italy, 1997. [Google Scholar]
- Borghi, A.; Sandrone, R. Structural and metamorphic constraints to the evolution of a NW sector of the Dora-Maira Massif (Western Alps). Boll. Soc. Geol. It. 1992, 45, 135–141. [Google Scholar]
- Cadoppi, P.; Camanni, G.; Balestro, G.; Perrone, G. Geology of the Fontane talc mineralization (Germanasca valley, Italian Western Alps). J. Maps 2016, 12, 1170–1177. [Google Scholar] [CrossRef]
- Leica Geosystems AG. Leica Infinity, Version 3.4.2. Leica Geosystems AG—Part of Hexagon. 2021. Available online: https://leica-geosystems.com/products/gnss-systems/software/leica-infinity(accessed on 29 January 2022).
- CISIS. ConveRgo, Version 2.04; CISIS: Roma, Italy, 2012. Available online: https://www.cisis.it/?page_id=3214(accessed on 29 January 2022).
- Agisoft LLC. Agisoft Metashape Professional, Version 1.7.1; Agisoft LLC: St. Petersburg, Russia, 2021. Available online: https://www.agisoft.com/(accessed on 29 January 2022).
- GPL Software. CloudCompare, Version 2. 2021. Available online: http://www.cloudcompare.org/(accessed on 29 January 2022).
- Dewez, T.J.B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J. Facets: A Cloudcompare Plugin to Extract Geological Planes from Unstructured 3d Point Clouds. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, XLI-B5, 799–804. [Google Scholar] [CrossRef]
- Bar, N.; Barton, N. The Q-Slope Method for Rock Slope Engineering. Rock Mech. Rock Eng. 2017, 50, 3307–3322. [Google Scholar] [CrossRef]
- Barton, N.; Lien, R.; Lunde, J. Engineering classification of rock masses for the design of tunnel support. Rock Mech. Felsmechanik Mécanique Roches 1974, 6, 189–239. [Google Scholar] [CrossRef]
- Deere, D.U.; Hendron, A.J.; Patton, F.D.; Cording, E.J. Design of Surface and Near-Surface Construction in Rock. In Proceedings of the 8th U.S. Symposium on Rock Mechanics (USRMS), Minneapolis, MN, USA, 15–17 September 1966; Society of Mining Engineers, American Institute of Mining, Metallurgical and Petroleum Engineers: Minneapolis, MN, USA, 1966; pp. 237–302. [Google Scholar]
- Markland, J.T. A Useful Technique for Estimating the Stability of Rock Slopes When the Rigid Wedge Sliding Type of Failure is Expected; Tylers Green, H.W., Ed.; Imperial College of Science and Technology: London, UK, 1972; Volume 19. [Google Scholar]
- Brideau, M.A.; Stead, D. Evaluating Kinematic Controls on Planar Translational Slope Failure Mechanisms Using Three-Dimensional Distinct Element Modelling. Geotech. Geol. Eng. 2012, 30, 991–1011. [Google Scholar] [CrossRef]
- ESRI. ArcGIS, Version 10.8; ESRI: West Redlands, CA, USA, 2021.
- RocScience Inc. Dips, Graphical and Statistical Analysis of Orientation Data, Version 8; RocScience Inc.: Toronto, ON, Canada, 2021.
- RocScience Inc. RocPlane, Planar Wedge Analysis for Slopes, Version 4; RocScience Inc.: Toronto, ON, Canada, 2021.
- RocScience Inc. SWedge, Surface Wedge Analysis for Slopes, Version 7; RocScience Inc.: Toronto, ON, Canada, 2021.
- RocScience Inc. RocTopple, Toppling Stability Analysis for Slopes, Version 2; RocScience Inc.: Toronto, ON, Canada, 2021.
- Iman, R.L.; Davenport, J.M.; Zeigler, D.K. Latin Hypercube Sampling (a Program User’s Guide); Sandia Labs: Albuquerque, NM, USA, 1980.
- Startzman, R.A. An Improved Computation Procedure for Risk Analysis Problems with Unusual Probability Functions. In Proceedings of the SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, TX, USA, 9–10 March 1989; Society of Petroleum Engineers: Dallas, TX, USA, 1985. [Google Scholar]
- Barton, N. Review of a new shear-strength criterion for rock joints. Eng. Geol. 1973, 7, 287–332. [Google Scholar] [CrossRef]
- Barton, N.; Choubey, V. The shear strength of rock joints in theory and practice. Rock Mech. Felsmechanik Mec. Roches 1977, 10, 1–54. [Google Scholar] [CrossRef]
- Barton, N.R.; Bandis, S.C. Review of predictive capabilities of JRC-JCS model in engineering practice. In Proceedings of the International Symposium on Rock Joints, Leon, Norway, 4–6 June 1990; pp. 603–610. [Google Scholar]
- Barton, N. The shear strength of rock and rock joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 255–279. [Google Scholar] [CrossRef]
- Barton, N. Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. J. Rock Mech. Geotech. Eng. 2013, 5, 249–261. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: London, UK, 2018; ISBN 9781315140919. [Google Scholar]
- ESRI. ArcGIS PRO, Version 2.9; ESRI: West Redlands, CA, USA, 2021.
- Barton, N. Some new Q-value correlations to assist in site characterisation and tunnel design. Int. J. Rock Mech. Min. Sci. 2002, 39, 185–216. [Google Scholar] [CrossRef]
Aspect Class | Dip Direction Range (°) | Average Dip Direction Value (°) |
---|---|---|
1 | 0–24 | 12 |
2 | 24–48 | 36 |
3 | 48–72 | 60 |
4 | 72–96 | 84 |
5 | 96–120 | 108 |
6 | 120–144 | 132 |
7 | 144–168 | 156 |
8 | 168–192 | 180 |
9 | 192–216 | 204 |
10 | 216–240 | 228 |
11 | 240–264 | 252 |
12 | 264–288 | 276 |
13 | 288–312 | 300 |
14 | 312–336 | 324 |
15 | 336–360 | 348 |
Probability of Failure | |||||
---|---|---|---|---|---|
Level 1 Hazard | Low | Medium | High | Very High | |
Low | 1 | 1 | 2 | 2 | |
Medium | 1 | 2 | 2 | 3 | |
High | 2 | 2 | 3 | 3 |
System | J1 | J2 | J3 | J4 | J5 | J6 | S1 |
---|---|---|---|---|---|---|---|
Dip | 55 | 55 | 51 | 51 | 80 | 51 | 50 |
Dip Dir | 073 | 349 | 192 | 303 | 090 | 138 | 260 |
K Fisher | 46 | 61 | 37 | 44 | 162 | 24 | 41 |
Spacing (cm) | 100 | 50 | 100 | 50 | 100 | 100 | 50 |
Persistence (m) | >30 | >10 | 3 | >10 | >30 | 5 | 1 |
Aperture (mm) | 5 | 1 | 2 | 2 | 5 | 2 | 5 |
Infilling (mm, type) | <5 Soft | <5 Soft | <5 Soft | <5 Soft | <5 Soft | <5 Soft | <5 Soft |
JRC | 8–10 | 10–12 | 8–10 | 8–10 | 8–10 | 8–10 | 6–8 |
Weathering | Slightly weathered | Unweathered | Unweathered | Slightly weathered | Unweathered | Slightly weathered | Slightly weathered |
Humidity | Dry | Dry | Dry | Dry | Dry | Dry | Dry |
RQD | Jn | Jr | Ja | O-Factor | Jwice | SFRslope | Qslope |
---|---|---|---|---|---|---|---|
82 | 12 | 1.5 | 1 | 0.5 | 0.7 | 5 | 0.71 |
PoF (%) | Slope Angle (°) |
---|---|
1 | 62 |
15 | 64 |
30 | 67 |
50 | 70 |
Slope Dip Dir (°) | Set | Limit Angle (°) | Set | Limit Angle (°) |
---|---|---|---|---|
0–24 | - | - | - | - |
24–48 | - | - | - | - |
48–72 | J1 | 55 | J5 | 80 |
72–96 | J1 | 55 | J5 | 80 |
96–120 | J5 | 80 | - | - |
120–144 | J6 | 51 | - | - |
144–168 | J6 | 51 | - | - |
168–192 | J3 | 51 | - | - |
192–216 | J3 | 51 | - | - |
216–240 | - | - | - | - |
240–264 | S1 | 50 | - | - |
264–288 | S1 | 50 | - | - |
288–312 | J4 | 51 | - | - |
312–336 | J4 | 51 | - | - |
336–360 | J2 | 55 | - | - |
Slope Dip Dir (°) | Combination | Limit Angle (°) | Combination | Limit Angle (°) | Combination | Limit Angle (°) |
---|---|---|---|---|---|---|
0–24 | J1/J2 | 48 | J2/J5 | 52 | J2/J4 | 66 |
24–48 | J1/J2 | 47 | J2/J5 | 53 | J2/J4 | 76 |
48–72 | J1/J2 | 50 | J1/J6 | 60 | J2/J5 | 62 |
72–96 | J3/J1 | 49 | J1/J6 | 52 | J1/J2 | 58 |
96–120 | J3/J1 | 39 | J1/J6 | 49 | J6/J3 | 68 |
120–144 | J3/J1 | 33 | J1/J6 | 49 | J6/J5-J6/J3-J3/J5 | 53 |
144–168 | J3/J1 | 34 | S1/J6 | 42 | J6/J5-J6/J3-J3/J5 | 48 |
168–192 | S1/J6 | 31 | J3/J1 | 43 | J6/J5-J6/J3-J3/J5 | 47 |
192–216 | S1/J6 | 30 | J3/J4 | 45 | S1/J3-J6/J5-J6/J3-J3/J5 | 49 |
216–240 | S1/J6 | 34 | J3/J4 | 36 | S1/J3 | 46 |
240–264 | J3/J4 | 34 | S1/J6 | 43 | S1/J3 | 47 |
264–288 | J3/J4 | 38 | S1/J2 | 45 | S1/J4 | 48 |
288–312 | S1/J2 | 43 | J4/J3 | 45 | S1/J4 | 49 |
312–336 | S1/J2 | 44 | J4/J2 | 50 | S1/J4 | 56 |
336–360 | J1/J2-J5/J2 | 54 | J2/J4-S1/J2 | 55 | S1/J4 | 73 |
Slope Dip Dir (°) | Combination | Limit Angle (°) | Combination | Limit Angle (°) |
---|---|---|---|---|
0–24 | J3/J5-J5/J6-S1/J6 (basal plane J2) | 54 | - | - |
24–48 | - | - | - | - |
48–72 | J3/J4-S1/J3 (basal plane J1) | 54 | - | - |
72–96 | J3/J4 (basal plane J1) | 54 | J3/J2 (basal plane J1) | 75 |
96–120 | J3/J2-S1/J4-S1/J2 (basal plane J5) | 80 | - | - |
120–144 | S1/J2-J4/J2(basal plane J6) | 51 | - | - |
144–168 | J4/J2(basal plane J6) | 51 | - | - |
168–192 | J2/J5 (basal plane J3) | 50 | J1/J4 (basal plane J3) | 60 |
192–216 | J2/J1-J2/J5(basal plane J3) | 50 | J4/J1-J4/J5-J1/J5 (basal plane J3) | 60 |
216–240 | - | - | - | - |
240–264 | - | - | - | - |
264–288 | J6/J1 (basal plane S1) | 49 | - | - |
288–312 | J6/J1 (basal plane J4) | 50 | J3/J1 (basal plane J4) | 56 |
312–336 | J3/J1 (basal plane J4) | 56 | - | - |
336–360 | J3/J6-J5/J6-J5/J3 (basal plane J2) | 54 | - | - |
Discontinuity Set | J1 | J2 | J3 | |||
---|---|---|---|---|---|---|
Block average volume (m3) | 0.6 | 0.6 | 0.6 | |||
Sliding plane dip (°) | 55 (DS 5°) | 55 (DS 5°) | 51 (DS 5°) | |||
(°) | 23 (DS 1.6°) | 22 (DS 1.6°) | 23 (DS 1.6°) | |||
JRC | 9 (DS 1.6) | 11 (DS 1.6) | 9 (DS 1.6) | |||
JCS (MPa) | 55 (DS 1.6 MPa) | 50 (DS 1.6 MPa) | 55 (DS 1.6 MPa) | |||
Condition | Static | Seismic | Static | Seismic | Static | Seismic |
Average FS | 1.25 | 1.13 | 1.66 | 1.5 | 1.4 | 1.27 |
PoF FS < 1.2 | 42% | 56% | 14% | 24% | 26% | 39% |
Discontinuity Set | J4 | J5 | J6 | |||
---|---|---|---|---|---|---|
Average block volume (m3) | 0.6 | 0.5 | 0.6 | |||
Sliding plane dip (°) | 51 (DS 5°) | 80 (DS 3°) | 51 (DS 5°) | |||
(°) | 23 (DS 1.6°) | 25 (DS 1.6°) | 23 (DS 1.6°) | |||
JRC | 9 (DS 1.6) | 9 (DS 1.6) | 9 (DS 1.6) | |||
JCS (MPa) | 55 (DS 1.6 MPa) | 68 (DS 1.6 MPa) | 55 (DS 1.6 MPa) | |||
Condition | Static | Seismic | Static | Seismic | Static | Seismic |
Average FS | 1.4 | 1.27 | 0.49 | 0.34 | 1.4 | 1.27 |
PoF FS < 1.2 | 26% | 39% | 100% | 100% | 26% | 39 % |
Discontinuity Sets | J1-J2 | J6-J5 | J1-J6 | |||
---|---|---|---|---|---|---|
Average block volume (m3) | 1 | 0.7 | 0.7 | |||
Slope Dip Dir (°) | 84 (DS 4°) | 132 (DS 4°) | 60 (DS 4°) | |||
Joint 1 Dip Dir (°) | 73 (DS 6.5°) | 138 (DS 10°) | 73 (DS 6.5°) | |||
Joint 1 Dip (°) | 55 (DS 5°) | 51 (DS 5°) | 55 (DS 5°) | |||
(°) | 23 (DS 1.6°) | 23 (DS 1.6°) | 23 (DS 1.6°) | |||
Joint 1 JRC | 9 (DS 1.6) | 9 (DS 1.6) | 9 (DS 1.6) | |||
Joint 1 JCS (MPa) | 55 (DS 1.6 MPa) | 55 (DS 1.6 MPa) | 55 (DS 1.6 MPa) | |||
Joint 2 Dip Dir (°) | 349 (DS 5°) | 138 (DS 10°) | 138 (DS 10°) | |||
Joint 2 Dip (°) | 55 (DS 5°) | 51 (DS 5°) | 51 (DS 5°) | |||
(°) | 22 (DS 1.6°) | 23 (DS 1.6°) | 23 (DS 1.6°) | |||
Joint 2 JRC | 11 (DS 1.6) | 9 (DS 1.6) | 9 (DS 1.6) | |||
Joint 2 JCS (MPa) | 50 (DS 1.6 MPa) | 55 (DS 1.6 MPa) | 55 (DS 1.6 MPa) | |||
Condition | Static | Seismic | Static | Seismic | Static | Seismic |
Average FS | 1.4 | 1.3 | 1.5 | 1.4 | 1.4 | 1.3 |
PoF FS < 1.2 | 14.36% | 31.6% | 5.1% | 17.8% | 10.3% | 27.2% |
Discontinuity Sets | J6-J5 | J6-J5 | ||
---|---|---|---|---|
Average block volume (m3) | 2.6 | 2.3 | ||
Slope Dip Dir (°) | 156 (DS 4°) | 180 (DS 4°) | ||
Joint 1 Dip Dir (°) | 138 (DS 10°) | 138 (DS 10°) | ||
Joint 1 Dip (°) | 51 (DS 5°) | 51 (DS 5°) | ||
(°) | 23 (DS 1.6°) | 23 (DS 1.6°) | ||
Joint 1 JRC | 9 (DS 1.6) | 9 (DS 1.6) | ||
Joint 1 JCS (MPa) | 55 (DS 1.6 MPa) | 55 (DS 1.6 MPa) | ||
Joint 2 Dip Dir (°) | 138 (DS 10°) | 138 (DS 10°) | ||
Joint 2 Dip (°) | 51 (DS 5°) | 51 (DS 5°) | ||
(°) | 23 (DS 1.6°) | 23 (DS 1.6°) | ||
Joint 2 JRC | 9 (DS 1.6) | 9 (DS 1.6) | ||
Joint 2 JCS (MPa) | 55 (DS 1.6 MPa) | 55 (DS 1.6 MPa) | ||
Condition | Static | Seismic | Static | Seismic |
Average FS | 1.6 | 1.4 | 1.6 | 1.4 |
PoF FS < 1.2 | 3.9% | 14.6% | 5.6% | 16.8% |
Discontinuity Sets | J3-J2, Basal Plane J5 | S1-J4, Basal Plane J5 | S1-J2, Basal Plane J5 | |||
---|---|---|---|---|---|---|
Slope Dip (°) | 80 (DS 5°) | 80 (DS 5°) | 80 (DS 5°) | |||
Spacing (m) | 0.5 (DS 0.2 m) | 0.5 (DS 0.2 m) | 0.5 (DS 0.21 m) | |||
Basal plane dip (°) | 80 (DS 5°) | 80 (DS 5°) | 80 (DS 5°) | |||
(°) | 25 (DS 1.6°) | 25 (DS 1.6°) | 25 (DS 1.6°) | |||
Basal plane JRC | 9 (DS 1.6) | 9 (DS 1.6) | 9 (DS 1.6) | |||
Basal plane JCS (MPa) | 68 (DS 1.6 MPa) | 68 (DS 1.6 MPa) | 68 (DS 1.6 MPa) | |||
(°) | 23 (DS 1.6°) | 50 (DS 6.5°) | 50 (DS 6.5°) | |||
Toppling joint JRC | 9 (DS 1.6) | 20 (DS 1.6°) | 20 (DS 1.6°) | |||
Toppling joint JCS (MPa) | 55 (DS 1.6 MPa) | 7 (DS 1.6) | 7 (DS 1.6) | |||
Condition | Static | Seismic | Static | Seismic | Static | Seismic |
Average FS | 0.9 | 0.8 | 0.8 | 0.7 | 0.8 | 0.7 |
PoF FS < 1.2 | 66.9% | 73.9% | 69.6% | 77.2% | 69.6% | 77.2% |
Discontinuity Sets | J1-J2, Basal J3 | S1-J2, Basal J6 | ||
---|---|---|---|---|
Slope Dip (°) | 80 (DS 5°) | 80 (DS 5°) | ||
Spacing (m) | 0.5 (DS 0.21 m) | 0.5 (DS 0.2 m) | ||
Basal plane dip (°) | 51 (DS 5°) | 51 (DS 5°) | ||
(°) | 23 (DS 1.6°) | 23 (DS 1.6°) | ||
Basal plane JRC | 9 (DS 1.6) | 9 (DS 1.6) | ||
Basal plane JCS (MPa) | 55 (DS 1.6 MPa) | 55 (DS 1.6 MPa) | ||
(°) | 23 (DS 1.6°) | 50 (DS 6.5°) | ||
Toppling joint JRC | 9 (DS 1.6) | 20 (DS 1.6°) | ||
Toppling joint JCS (MPa) | 55 (DS 1.6 MPa) | 7 (DS 1.6) | ||
Condition | Static | Seismic | Static | Seismic |
Average FS | 0.8 | 0.7 | 1.3 | 1.2 |
PoF FS < 1.2 | 69.6% | 77.2% | 10% | 16% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanneschi, C.; Rindinella, A.; Salvini, R. Hazard Assessment of Rocky Slopes: An Integrated Photogrammetry–GIS Approach Including Fracture Density and Probability of Failure Data. Remote Sens. 2022, 14, 1438. https://doi.org/10.3390/rs14061438
Vanneschi C, Rindinella A, Salvini R. Hazard Assessment of Rocky Slopes: An Integrated Photogrammetry–GIS Approach Including Fracture Density and Probability of Failure Data. Remote Sensing. 2022; 14(6):1438. https://doi.org/10.3390/rs14061438
Chicago/Turabian StyleVanneschi, Claudio, Andrea Rindinella, and Riccardo Salvini. 2022. "Hazard Assessment of Rocky Slopes: An Integrated Photogrammetry–GIS Approach Including Fracture Density and Probability of Failure Data" Remote Sensing 14, no. 6: 1438. https://doi.org/10.3390/rs14061438
APA StyleVanneschi, C., Rindinella, A., & Salvini, R. (2022). Hazard Assessment of Rocky Slopes: An Integrated Photogrammetry–GIS Approach Including Fracture Density and Probability of Failure Data. Remote Sensing, 14(6), 1438. https://doi.org/10.3390/rs14061438