On the Use of Web Mapping Platforms to Support the Seismic Vulnerability Assessment of Old Urban Areas
Abstract
:1. Introduction
2. Building Survey & Web-Based Mapping Platforms
2.1. State-of-Art: Relevant Experiences
2.2. Key Structural Data for Seismic Vulnerability Assessment
2.3. Web-Based Mapping Platforms vs. Key Structural Data
3. Quantitative Seismic Vulnerability Analysis and Assessment
3.1. Building Approach
3.2. Façade Approach
4. The Historic City Centre of Leiria
5. Assessments and Results
5.1. Building Approach
- a, b, c, and d are constant values 2.5, 3.0, 6.25, and 12.7, respectively, as per Bernardini et al. [41].
- I = seismic hazard described in terms of macroseismic (MMI) intensity.
- V = vulnerability index obtained from the normalized IV index (Equation (5)).
- Q = ductility factor (1 ≤ Q ≤ 4). Following the calibration made by (Ferreira et al., 2014), a value of Q = 2.0 was herein assumed.
- f (V, I) = is a function depending on the vulnerability index and intensity.
5.2. Façade Approach
6. Final Remarks
- The global and local nature of the structural parameter of interest represents the main limitation to the completeness of the survey and the presence of undetectable parameters.
- The availability of pictures of the buildings from different viewpoints, not necessarily aerial, improves the capabilities of the platforms.
- Among the assessed web-mapping platforms, those belonging to the family of Google LLC exhibited superior performance, with or without additional information related to the building.
- The integration of data coming from the web-mapping platforms and the structural knowledge associated with the technical literature and the reconnaissance reports from past earthquakes leads to reasonable and usable results.
- The uncertainties associated with the use of remote sensing platforms can be accounted for by relaxing the requirement of classifying the buildings according to single classes of vulnerability. Conversely, the generation of a lower and an upper class represents an effective guide towards a rational distribution of the resources to be allocated to manage structural risk in extended urban areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RVS | Rapid Visual Screening |
RViSITS | Rapid Visual Survey by Institut Teknologi Sepuluh Nopember |
ML-EHSAPP | Machine Learning-based Earthquake Hazard Safety Assessment of buildings via smartphone App |
LOG-IDEAH | LOGic trees for Identification of Damage due to Earthquakes for Architectural Heritage |
FAST | Fabbricati per l’Agibilità Sintetica post-Terremoto–Buildings for synthetic post-earthquake usability |
AeDES | “Agibilità e Danno nell’Emergenza Sismica”-Usability and damage in the seismic emergency) |
CARTIS | “CARatterizzazione TIpologico-Strutturale dei comparti urbani costituiti da edifici ordinari” |
MIM | Maximum Intensity Maps |
GIS | Geographical Information System |
References
- Dolce, M.; Goretti, A. Building damage assessment after the 2009 Abruzzi earthquake. Bull. Earthq. Eng. 2015, 13, 2241–2264. [Google Scholar] [CrossRef]
- Dolce, M.; Speranza, E.; Giordano, F.; Borzi, B.; Bocchi, F.; Conte, C.; Di Meo, A.; Faravelli, M.; Pascale, V. Observed damage database of past Italian earthquakes: The Da.D.O. WebGIS. Bollettino di Geofisica Teorica ed Applicata 2019, 60, 141–164. [Google Scholar]
- Calvi, G.M.; Pinho, R.; Magenes, G.; Bommer, J.J.; Restrepo-Vélez, L.F.; Crowley, H. Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J. Earthq. Technol. 2006, 43, 75–104. [Google Scholar]
- Marra, A.; Sabino, A.; Bartolomucci, C.; Trizio, I.; Mannella, A.; Fabbrocino, G. On a Rational and Interdisciplinary Framework for the Safety and Conservation of Historical Centres in Abruzzo Region. Int. J. Archit. Herit. 2019, 15, 608–626. [Google Scholar] [CrossRef]
- Marcari, G.; Fabbrocino, G. Seismic assessment of Oratino historical urban area. In Strategies for Reduction of the Seismic Risk; Fabbrocino, G., Santucci, F., Eds.; Structural and Geotechnical Dynamic Laboratory: Ripalimosani, Italy, 2008. [Google Scholar]
- Ricci, P.; Verderame, G.M.; Manfredi, G.; Pollino, M.; Borfecchia, F.; De Cecco, L.; Martini, S.; Pascale, C.; Ristoratore, E.; James, V. Seismic Vulnerability Assessment Using Field Survey and Remote Sensing Techniques BT. In Computational Science and Its Applications—ICCSA 2011; Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 109–124. [Google Scholar]
- Wieland, M.; Pittore, M.; Parolai, S.; Zschau, J.; Moldobekov, B.; Begaliev, U. Estimating building inventory for rapid seismic vulnerability assessment: Towards an integrated approach based on multi-source imaging. Soil Dyn. Earthq. Eng. 2012, 36, 70–83. [Google Scholar] [CrossRef]
- Anniballe, R.; Chini, M.; Pierdicca, N.; Bignami, C.; Stramondo, S.; Noto, F.; Scalia, T.; Martinelli, A.; Mannella, A. Detecting earthquake damage in urban area: Application to COSMO-SkyMed imagery of L’Aquila earthquake. SAR Image Anal. Model. Tech. XV 2015, 9642, 96420C. [Google Scholar] [CrossRef]
- Marra, A.; Fabbrocino, G. Open-access web mapping as a virtual survey tool for cultural heritage: An application to the Armenian religious architecture documented by Paolo Cuneo. Disegnarecon 2020, 13, 7. [Google Scholar] [CrossRef]
- Shah, M.F.; Ahmed, A.; Kegyes, O.; Al-Ghamadi, A.; Ray, R. A Case Study Using Rapid Visual Screening Method to Determine the Vulnerability of Buildings in two Districts of Jeddah, Saudi Arabia. In Proceedings of the 15th International Symposium on New Technologies for Urban Safety of Mega Cities in Asia, Tacloban, Philippines, 7–9 November 2016. [Google Scholar]
- Kassem, M.M.; Beddu, S.; Ooi, J.H.; Tan, C.G.; Mohamad El-Maissi, A.; Mohamed Nazri, F. Assessment of Seismic Building Vulnerability Using Rapid Visual Screening Method through Web-Based Application for Malaysia. Buildings 2021, 11, 485. [Google Scholar] [CrossRef]
- Riyanto, W.; Irawan, D.; Joko Wahyu Adi, T.; Iranata, D.; Rizki Amalia, A. Earthquake Vulnerability Assessment of High-Rise Buildings in Surabaya using RViSITS Android Application. IOP Conf. Ser. Mater. Sci. Eng. 2020, 739, 012040. [Google Scholar] [CrossRef]
- IŞIK, M.; IŞIK, E.; HARİCİHİAN, E. Application of IOS/Android Rapid Evaluation of Post-Earthquake Damages in Masonry Buildings. Gazi J. Eng. Sci. 2021, 7, 36–50. [Google Scholar] [CrossRef]
- Harirchian, E.; Jadhav, K.; Kumari, V.; Lahmer, T. ML-EHSAPP: A prototype for machine learning-based earthquake hazard safety assessment of structures by using a smartphone app. Eur. J. Environ. Civ. Eng. 2021, 2021, 1892829. [Google Scholar] [CrossRef]
- Novelli, V.I.; D’Ayala, D. LOG-IDEAH: LOGic trees for identification of damage due to earthquakes for architectural heritage. Bull. Earthq. Eng. 2015, 13, 153–176. [Google Scholar] [CrossRef]
- Mannella, A.; Fabbrocino, G. Una lettura dell’evoluzione delle procedure di rilievo del danno e sull’agibilità degli edifici ordinari nell’emergenza post-sisma. In Proceedings of the 39th GNTS Congress, Rome, Italy, 22–24 June 2021. [Google Scholar]
- Angeli, P.; Clementi, C.; De Mutiis, D.; Cagnizi, M.; Baldin, R.; Ferro, E.; Fedeli, C.; Nazionale, D. Il Coordinamento dall’emergenza al post sisma: L’esperienza dell’Associazione Ingegneri per la Prevenzione e le Emergenze [Coordination from the emergency to post-earthquake: The experience of the Association Engineers for the Prevention and Emerge]. Progettazione Sismica 2017, 8, 109–124. [Google Scholar] [CrossRef]
- Department of Civil Protection (DPC). Manuale per la Compilazione della Scheda di Primo Livello di Rilevamento di Danno, Pronto Intervento e Agibilità per Edifici Ordinari nell’Emergenza Post-Sismica (AeDES), 2nd ed.; Dolce, M., Papa, F., Pizza, A.G., Eds.; Dipartimento della Protezione Civile: Rome, Italy, 2014. [Google Scholar]
- Civerra, C.; Lemme, A.; Cifani, G. (Eds.) Strumenti per il Rilievo del Danno e della Vulnerabilità Sismica dei Beni Culturali; Tipografia Lampo: Campobasso, Italy, 2007. [Google Scholar]
- Zuccaro, G.; Dolce, M.; De Gregorio, D.; Speranza, E.; Moroni, C. La scheda CARTIS per la caratterizzazione tipologico- strutturale dei comparti urbani costituiti da edifici ordinari. Valu-tazione dell’esposizione in analisi di rischio sismico. In Proceedings of the 35th GNTS Congress, Trieste, Italy, 17–19 November 2015. [Google Scholar]
- HERE WeGo. Available online: https://wego.here.com/?x=ep&map=41.1337,16.85,10,normal (accessed on 28 November 2021).
- Google Maps. Available online: https://www.google.it/maps (accessed on 28 November 2021).
- Khan, A.; Chatterjee, S.; Filho, W.L.; Khatun, R.; Dinda, A.; Minhas, A. City-scale Modeling of Urban Heat Islands for Kolkata. In Climate Change Management; Springer: Berlin, Germany, 2020; pp. 89–133. [Google Scholar]
- Microsoft Inc. Bing Maps. Available online: https://www.bing.com (accessed on 28 November 2021).
- Mapillary. Available online: https://www.mapillary.com/ (accessed on 28 November 2021).
- KartaView. Available online: https://kartaview.org/landing (accessed on 28 November 2021).
- Yandex Yandex.Maps. Available online: www.yandex.com (accessed on 28 November 2021).
- Vicente, R. Estratégias e metodologias para intervenções de reabilitação urbana. In Avaliação da Vulnerabilidade e do Risco Sísmico do Edificado da Baixa de Coimbra; Universidade de Aveiro: Aveiro, Portugal, 2008. [Google Scholar]
- Ferreira, T.M.; Vicente, R.; Mendes da Silva, J.A.R.; Varum, H.; Costa, A. Seismic vulnerability assessment of historical urban centres: Case study of the old city centre in Seixal, Portugal. Bull. Earthq. Eng. 2013, 11, 1753–1773. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Maio, R.; Vicente, R. Seismic vulnerability assessment of the old city centre of Horta, Azores: Calibration and application of a seismic vulnerability index method. Bull. Earthq. Eng. 2017, 15, 2879–2899. [Google Scholar] [CrossRef]
- Vicente, R.S.; Mendes da Silva, J.A.R.; Varum, H. Seismic vulnerability assessment of buildings in the old city centre of Coimbra. In Proceedings of the International Conference 250th Anniversary of the 1755 Lisbon Earthquake, Lisbon, Portugal, 1–4 November 2005; pp. 1–4. [Google Scholar]
- Maio, R.; Estêvão, J.M.C.; Ferreira, T.M.; Vicente, R. Casting a new light on the seismic risk assessment of stone masonry buildings located within historic centres. Structures 2020, 25, 578–592. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Costa, A.A.; Vicente, R.; Varum, H. A simplified four-branch model for the analytical study of the out-of-plane performance of regular stone URM walls. Eng. Struct. 2015, 83, 140–153. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Maio, R.; Costa, A.A.; Vicente, R. Seismic vulnerability assessment of stone masonry façade walls: Calibration using fragility-based results and observed damage. Soil Dyn. Earthq. Eng. 2017, 103, 21–37. [Google Scholar] [CrossRef]
- Teves-Costa, P.; Batlló, J.; Matias, L.; Catita, C.; Jiménez, M.J.; García-Fernández, M. Maximum intensity maps (MIM) for Portugal mainland. J. Seismol. 2019, 23, 417–440. [Google Scholar] [CrossRef]
- Fonseca, J.F.B.D. A Reassessment of the Magnitude of the 1755 Lisbon Earthquake. Bull. Seismol. Soc. Am. 2020, 110, 1–17. [Google Scholar] [CrossRef]
- Anglade, E.; Giatreli, A.-M.; Blyth, A.; Di Napoli, B.; Parisse, F.; Namourah, Z.; Rodrigues, H.; Ferreira, T.M. Seismic damage scenarios for the Historic City Center of Leiria, Portugal: Analysis of the impact of different seismic retrofitting strategies on emergency planning. Int. J. Disaster Risk Reduct. 2020, 44, 101432. [Google Scholar] [CrossRef]
- Wald, D.J.; Allen, T.I. Topographic Slope as a Proxy for Seismic Site Conditions and Amplification. Bull. Seismol. Soc. Am. 2007, 97, 1379–1395. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.Y.; Ahmad, S.W.; Adnan, A.; Muthusamy, K.; Ariffin, N.F.; Yahaya, F.M.; Syed Mohsin, S.M. Seismic performance and cost analysis for reinforced concrete school building under different type of soil. Phys. Chem. Earth Parts A/B/C 2020, 120, 102933. [Google Scholar] [CrossRef]
- Esri Support ArcMap 10.8 (10.8.1). Available online: https://support.esri.com/en/Products/Desktop/arcgis-desktop/arcmap/10-8-1 (accessed on 28 November 2021).
- Bernardini, A.; Giovinazzi, S.; Lagomarsino, S.; Parodi, S. The vulnerability assessment of current buildings by a macroseismic approach derived from the EMS-98 scale. In Proceedings of the 3rd Congreso National de Ingeniería Sismíca, Girona, Spain, 8–11 May 2007; pp. 1–15. [Google Scholar]
- Lourenço, P.B.; Mendes, N.; Ramos, L.F.; Oliveira, D.V. Analysis of Masonry Structures Without Box Behavior. Int. J. Archit. Herit. 2011, 5, 369–382. [Google Scholar] [CrossRef]
- Athmani, A.E.; Gouasmia, A.; Ferreira, T.M.; Vicente, R.; Khemis, A. Seismic vulnerability assessment of historical masonry buildings located in Annaba city (Algeria) using non ad-hoc data survey. Bull. Earthq. Eng. 2015, 13, 2283–2307. [Google Scholar] [CrossRef]
Id | Parameters |
---|---|
1 | Position in the urban context |
2 | Total number of floors, including underground floors |
3 | Average floor height and average floor area |
4 | Masonry characteristics |
5 | Presence of tie rods or perimeter concrete belts |
6 | Connection between orthogonal walls |
7 | Average wall thickness and distance between walls |
8 | Floors characteristics |
9 | Mixed structures in reinforced concrete, presence of additions with different construction techniques |
10 | Mortar type |
11 | Presence of porch/arcade |
12 | Presence of specific elements of vulnerability, including non-structural elements |
13 | Roof type |
14 | Wall Façade openings |
15 | Regularity in plan and height |
16 | Structural interventions in time |
17 | Status of conservation |
18 | Foundations |
Tool | Strengths | Shortcomings |
---|---|---|
Google Maps | High-quality photo Capillary Street view coverage 3D model of the entire world Tool for measuring height, width, and building area | Availability of images bound to access of Google acquisition media |
Bing Maps | Alternative view of the territory: Bird’s Eye 3D model of several cities in the world | Availability of images bound to access of Microsoft acquisition media Street-side coverage is reduced Lower photo resolution than competitors |
Mapillary | Crowdsourcing model Shared upload Photos and sequences can be taken anywhere and by anyone Continuous updating | Small photo database Image display is not 360° |
OpenStreetCam | ||
Yandex Maps | Street view function is particularly advanced and higher than competitors | Reduced coverage of western Europe (most of the data refer to Russia and eastern European countries) |
Parameter | Bing Maps | Open-Street Cam | Mapillary | ||
---|---|---|---|---|---|
1 | Position in the urban context | ✓ | ✓ | ✓ | ✓ |
2 | Total number of floors | ✓ | ✓ | ✓ | ✓ |
3 | Average floor height and average floor area | ✓ | × | × | × |
4 | Masonry characteristics | × | × | × | × |
5 | Presence of tie rods or perimeter concrete belts | ✓ | × | ✓ | ✓ |
6 | Connection between orthogonal walls | ✓ | × | ✓ | ✓ |
7 | Average wall thickness and distance between walls | × | × | × | × |
8 | Floors characteristics | × | × | × | × |
9 | Mixed structures in reinforced concrete | ✓ | ✓ | ✓ | ✓ |
10 | Mortar type | × | × | × | × |
11 | Presence of porch/arcade | ✓ | ✓ | ✓ | ✓ |
12 | Presence of specific elements of vulnerability | ✓ | × | ✓ | ✓ |
13 | Roof type | × | × | × | × |
14 | Wall Façade openings | ✓ | ✓ | ✓ | ✓ |
15 | Regularity in plan and height | ✓ | ✓ | × | ✓ |
16 | Structural interventions in time | ✓ | × | ✓ | ✓ |
17 | Status of conservation | ✓ | × | ✓ | ✓ |
18 | Foundations | × | × | × | × |
Total of non-evaluable parameters | 6 | 12 | 8 | 7 |
Parameters | Weight | Relative Weight | ||||
---|---|---|---|---|---|---|
A | B | C | D | |||
Group 1. Structural building system | 50/100 | |||||
P1. Type of resisting system | 0 | 5 | 20 | 50 | 2.50 | 16.67 |
P2. Quality of the resisting system | 0 | 5 | 20 | 50 | 2.50 | 16.67 |
P3. Conventional strength | 0 | 5 | 20 | 50 | 1.00 | 6.67 |
P4. Maximum distance between walls | 0 | 5 | 20 | 50 | 0.50 | 3.33 |
P5. Number of floors | 0 | 5 | 20 | 50 | 0.50 | 3.33 |
P6. Location and soil conditions | 0 | 5 | 20 | 50 | 0.50 | 3.33 |
Group 2. Irregularities and interaction | 20/100 | |||||
P7. Aggregate position and interaction | 0 | 5 | 20 | 50 | 1.50 | 10.0 |
P8. Plan configuration | 0 | 5 | 20 | 50 | 0.50 | 0.33 |
P9. Height regularity | 0 | 5 | 20 | 50 | 0.50 | 0.33 |
P10. Wall Façade openings and alignment | 0 | 5 | 20 | 50 | 0.50 | 0.33 |
Group 3. Floor slabs and roofs | 18/100 | |||||
P11. Horizontal diaphragms | 0 | 5 | 20 | 50 | 0.75 | 4.91 |
P12. Roofing system | 0 | 5 | 20 | 50 | 2.00 | 13.09 |
Group 4. Conservation and other elements | 12/100 | |||||
P13. Fragilities and conservation status | 0 | 5 | 20 | 50 | 1.00 | 6.86 |
P14. Non-structural elements | 0 | 5 | 20 | 50 | 0.75 | 5.14 |
Parameters | Weight | Relative Weight | ||||
---|---|---|---|---|---|---|
A | B | C | D | pi | ||
Group 1. Façade geometry, openings, and interaction | 16.7/100 | |||||
P1. Geometry of Façade | 0 | 5 | 20 | 50 | 0.50 | |
P2. Maximum slenderness | 0 | 5 | 20 | 50 | 0.50 | |
P3. Area of openings | 0 | 5 | 20 | 50 | 0.50 | |
P4. Misalignment of openings | 0 | 5 | 20 | 50 | 0.50 | |
P5. Interaction between continuous Façades | 0 | 5 | 20 | 50 | 0.25 | |
Group 2. Masonry materials and conservation | 31.5/100 | |||||
P6. Quality of materials | 0 | 5 | 20 | 50 | 2.00 | |
P7. State of conservation | 0 | 5 | 20 | 50 | 2.00 | |
P8. Replacement of original flooring system | 0 | 5 | 20 | 50 | 0.25 | |
Group 3. Connection efficiency to other structural elements | 33.3/100 | |||||
P9. Connection to orthogonal walls | 0 | 5 | 20 | 50 | 2.00 | |
P10. Connection to horizontal diaphragms | 0 | 5 | 20 | 50 | 0.50 | |
P11. Impulsive nature of the roofing system | 0 | 5 | 20 | 50 | 2.00 | |
Group 4. Conservation status and other elements | 18.5/100 | |||||
P12. Elements connected to the Façade | 0 | 5 | 20 | 50 | 0.50 | |
P13. Improving elements | 0 | 5 | 20 | 50 | −2.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Columbro, C.; Eudave, R.R.; Ferreira, T.M.; Lourenço, P.B.; Fabbrocino, G. On the Use of Web Mapping Platforms to Support the Seismic Vulnerability Assessment of Old Urban Areas. Remote Sens. 2022, 14, 1424. https://doi.org/10.3390/rs14061424
Columbro C, Eudave RR, Ferreira TM, Lourenço PB, Fabbrocino G. On the Use of Web Mapping Platforms to Support the Seismic Vulnerability Assessment of Old Urban Areas. Remote Sensing. 2022; 14(6):1424. https://doi.org/10.3390/rs14061424
Chicago/Turabian StyleColumbro, Cosimo, Rafael Ramírez Eudave, Tiago Miguel Ferreira, Paulo B. Lourenço, and Giovanni Fabbrocino. 2022. "On the Use of Web Mapping Platforms to Support the Seismic Vulnerability Assessment of Old Urban Areas" Remote Sensing 14, no. 6: 1424. https://doi.org/10.3390/rs14061424
APA StyleColumbro, C., Eudave, R. R., Ferreira, T. M., Lourenço, P. B., & Fabbrocino, G. (2022). On the Use of Web Mapping Platforms to Support the Seismic Vulnerability Assessment of Old Urban Areas. Remote Sensing, 14(6), 1424. https://doi.org/10.3390/rs14061424