Validation of Four Satellite-Derived Soil Moisture Products Using Ground-Based In Situ Observations over Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Source
2.2.1. Satellite Observation Data Station Observation Data
2.2.2. In Situ Observation Data
2.3. Methodology
3. Results
3.1. Spatial Distribution Characteristics of Soil Moisture Products
3.2. Retrieval Deviation of Soil Moisture Products in Different Seasons
3.3. Retrieval Deviation of Soil Moisture Products in Different Climate Zones
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A. Investigating soil moisture--climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Devereaux, J.A.; Laymon, C.A.; Tsegaye, T.; Houser, P.R.; Jackson, T.J.; Graham, S.T.; Rodell, M.; Oevelen, P.J.V. Ground-based investigation of soil moisture variability within remote sensing footprints During the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resour. Res. 2010, 35, 1839–1851. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; Rosnay, P.D.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophy. 2012, 50, RG2002. [Google Scholar] [CrossRef] [Green Version]
- Su, C.-H.; Narsey, S.; Gruber, A.; Xaver, A.; Chung, D.; Ryu, D.; Wagner, W. Evaluation of post-retrieval de-noising of active and passive microwave satellite soil moisture. Remote Sens. Environ. 2015, 163, 127–139. [Google Scholar] [CrossRef]
- Goward, S.N.; Xue, Y.; Czajkowski, K.P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote Sens. Environ. 2002, 79, 225–242. [Google Scholar] [CrossRef]
- Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agric. For. Meteorol. 2009, 149, 1327–1342. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Dubois, P.C.; Zyl, J. Radar mapping of surface soil moisture. J. Hydrol. 1996, 184, 57–84. [Google Scholar] [CrossRef]
- Kim, S.; Zhang, R.; Pham, H.; Sharma, A. A Review of Satellite-Derived Soil Moisture and Its Usage for Flood Estimation. Remote Sens. Earth Syst. Sci. 2019, 2, 225–246. [Google Scholar] [CrossRef]
- Prigent, C.; Aires, F.; Rossow, W.B.; Robock, A. Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships. J. Geophys. Res.-Atmos. 2005, 110, D11103. [Google Scholar] [CrossRef] [Green Version]
- Pellarin, T.; Calvet, J.-C.; Wagner, W. Evaluation of ERS scatterometer soil moisture products over a half-degree region in southwestern France. Geophys. Res. Lett. 2006, 33, L17401. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, L.; Pan, M.; Wandersa, N.; Kumar, D.N.; Wood, E.F. Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms. Adv. Water Resour. 2017, 109, 106–120. [Google Scholar] [CrossRef]
- Bindlish, R.; Jackson, T.; Wood, E.; Gao, H.; Starks, P.; Bosch, D.; Lakshmi, V. Soil moisture estimates from TRMM Microwave Imager observations over the Southern United States. Remote Sens. Environ. 2003, 85, 507–515. [Google Scholar] [CrossRef]
- Albergel, C.; Rosnay, P.D.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- Parrens, M.; Zakharova, E.; Lafont, S.; Calvet, J.-C.; Kerr, Y.; Wagner, W.; Wigneron, J.-P. Comparing soil moisture retrievals from SMOS and ASCAT over France. Hydrol. Earth Syst. Sci. 2012, 16, 423–440. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, A.K.; Houser, P.R.; Ferguson, C.; Wood, E.F.; Dirmeyer, P.A.; Kafatos, M. Evaluation of AMSR-E soil moisture results using the in-situ data over the Little River Experimental Watershed, Georgia. Remote Sens. Environ. 2008, 112, 3142–3152. [Google Scholar] [CrossRef]
- Draper, C.S.; Walker, J.P.; Steinle, P.J.; Jeu, R.A.M.; Holmes, T.R.H. An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens. Environ. 2009, 113, 703–710. [Google Scholar] [CrossRef]
- An, R.; Zhang, L.; Wang, Z.; Quaye-Ballard, J.A.; You, J.; Shen, X.; Gao, W.; Huang, L.; Zhao, Y.; Ke, Z. Validation of the ESA CCI Soil Moisture Product in China. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 28–36. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Pan, M.; Wanders, N.; Kumar, D.N.; Wood, E.F. Four Decades of Microwave Satellite Soil Moisture Observations: Part 2. Product Validation and Inter-Satellite Comparisons. Adv. Water Resour. 2017, 109, 236–252. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, T.; Lü, H.; Shi, J.; Cosh, M.H.; Ji, D.; Jiang, L.; Cui, Q.; Lu, H.; Yang, K.; et al. Assessment of 24 Soil Moisture Datasets Using a New in Situ Network in the Shandian River Basin of China. Remote Sens. Environ. 2022, 271, 112891. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Meesters, A.G.C.A.; Liu, Y.Y.; Dorigo, W.; Wagner, W.; de Jeu, R.A. Error Estimates for Near-Real-Time Satellite Soil Moisture as Derived From the Land Parameter Retrieval Model. IEEE Geosci. Remote Sens. Lett. 2011, 8, 779–783. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, Y.; Quiring, S.M.; Ford, T.W.; Houston, A.L. A sensitivity study on the response of convection initiation to in situ soil moisture in the central United States. Clim. Dyn. 2020, 54, 2013–2028. [Google Scholar] [CrossRef]
- Helgert, S.; Khodayar, S. Improvement of the soil-atmosphere interactions and subsequent heavy precipitation modelling by enhanced initialization using remotely sensed 1 km soil moisture information. Remote Sens. Environ. 2020, 246, 111812. [Google Scholar] [CrossRef]
- Zhang, A.-Z.; Jia, G.-S.; Wang, H.-S.; Zhao, T.-B.; Feng, J.-M.; Ma, Z.-G. Evaluation of AMSR -E-Derived Soil Moisture over Northern China. Atmos. Ocean. Sci. Lett. 2011, 4, 223–228. [Google Scholar]
- Li, Z.; Wang, L.; Wang, L.; Li, X.; Xiao, G. Top-Layer Soil Moisture Retrieval over the Qinghai-Xizang Plateau in Summer Based on AMSR-E Data. Plateau Meteorol. 2017, 36, 67–78. [Google Scholar]
- Zhang, L.; He, C.; Zhang, M.; Zhu, Y. Evaluation of the SMOS and SMAP soil moisture products under different vegetation types against two sparse in situ networks over arid mountainous watersheds, Northwest China. Sci. China Earth Sci. 2019, 62, 703–718. [Google Scholar] [CrossRef]
- Jing, C.L. Comparative evaluation of SMAP & CCI & CLDAS soil moisture products in typical region of Qinghai-Tibet Plateau. J. Subtrop. Resour. Environ. 2020, 15, 85–94. [Google Scholar]
- Cho, E.; Moon, H.; Choi, M. First Assessment of the Advanced Microwave Scanning Radiometer 2 (AMSR2)Soil Moisture Contents in Northeast Asia. J. Meteor. Soc. Jpn. 2015, 93, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.E.; Escobar, V.M.; Moran, S.; Entekhabi, D.; O’Neill, P.E.; Njoku, E.G.; Doorn, B.; Entin, J. NASA’s Soil Moisture Active Passive (SMAP) Mission and Opportunities for Applications Users. Bull. Am. Meteorol. Soc. 2013, 94, 1125–1128. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.R.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Louvet, S.; Pellarin, T.; Bitar, A.A.; Cappelaere, B.; Galle, S.; Manuela, G.; Gruhier, C.; Kerr, Y.; Lebel, T.; Mialon, A.; et al. SMOS soil moisture product evaluation over West-Africa from local to regional scale. Remote Sens. Environ. 2015, 156, 383–394. [Google Scholar] [CrossRef]
- González-Zamora, Á.; Sánchez, N.; Pablos, M.; Martínez-Fernández, J. CCI soil moisture assessment with SMOS soil moisture and in situ data under different environmental conditions and spatial scales in Spain. Remote Sens. Environ. 2019, 225, 469–482. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Gruber, A.; Scanlon, T.; Schalie, R.V.D.; Wagner, W. Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Wang, A.; Wang, G.; Wang, Y.; Jiang, T. Spatiotemporal Variations of Soil Moisture in the Tarim River Basin, China. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 122–130. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Chen, Y.; Wang, A.; De Maeyer, P. The Spatiotemporal Response of Soil Moisture to Precipitation and Temperature Changes in an Arid Region, China. Remote Sens. 2018, 10, 468. [Google Scholar] [CrossRef] [Green Version]
- Phadia, E.G. Minimax Estimation of a Cumulative Distribution Function. Ann. Stat. 1973, 1, 1149–1157. [Google Scholar] [CrossRef]
- Hyndman, R.; Koehler, A. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.-Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Zhuang, Y.; Shi, C.; Shen, R.; Jiang, L.; Wang, S. Quality Evaluation of Multi-Microwave Remote Sensing Soil Moisture Products over China. J. Meteorol. Sci. 2015, 35, 289–296. [Google Scholar]
- Liu, W.; Zhang, Q.; Fu, Z. Variation Characteristics of Precipitation and Its Affecting Factors in Northwest China over the Past 55 Years. Plateau Meteorol. 2017, 36, 1533–1545. [Google Scholar]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.; Wang, J. Evaluation of satellite and reanalysis soil moisture products over Southwest China using ground-based measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef] [Green Version]
- Gruhier, C.; Rosnay, P.D.; Hasenauer, S.; Holmes, T.R.H.; Jeu, R.D.; Kerr, Y.; Mougin, E.; Njoku, E.G.; Timouk, F.; Wagner, W.; et al. Soil moisture active and passive microwave products: Intercomparison and evaluation over a Sahelian site. Hydrol. Earth Syst. Sci. 2010, 14, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.; Crow, W.; Cosh, M.H. Estimating spatial sampling errors in coarse-scale soil moisture estimates derived from point-scale observations. J. Hydrometeorol. 2010, 11, 1423–1429. [Google Scholar] [CrossRef]
- Hain, C.R.; Crow, W.T.; Mecikalski, J.R.; Anderson, M.C.; Holmes, T. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res.-Atmos. 2011, 116, D15107. [Google Scholar] [CrossRef]
- Isla, T.; Srivastava, P.K.; Dai, Q.; Gupta, M.; Zhuo, L. An introduction to factor analysis for radio frequency interference detection on satellite observations. Meteorol. Appl. 2015, 22, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.K. Satellite Soil Moisture: Review of Theory and Applications in Water Resources. Water Resour. Manag. 2017, 31, 3161–3176. [Google Scholar] [CrossRef]
- Mecklenburg, S.; Drusch, M.; Kerr, Y.; Martin-Neira, M.; Steven, D.; Buenadicha, G.; Reul, N.; Daganzo, E.; Oliva, R.; Crapolicchio, R. ESA’s soil moisture and ocean salinity mission: Mission performance and operations. IEEE Trans. Geosci. Remote 2012, 50, 1354–1366. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, M.; Johnson, J.T. A study of SMOS RFI over North America. IEEE Geosci. Remote Sens. Lett. 2013, 10, 515–519. [Google Scholar] [CrossRef]
- Spencer, M.W.; Chen, C.W.; Ghaemi, H.; Chan, S.F.; Belz, J.E. RFI characterization and mitigation for the SMAP radar. IEEE Trans. Geosci. Remote 2013, 51, 4973–4982. [Google Scholar] [CrossRef]
- Piepmeier, J.R.; Johnson, J.T.; Mohammed, P.; Bradley, D.; Ruf, C.; Aksoy, M.; García, R.; Hudson, D.; Miles, L.; Wong, M. Radio-frequency interference mitigation for the soil moisture active passive microwave radiometer. IEEE Trans. Geosci. Remote 2014, 52, 761–775. [Google Scholar] [CrossRef]
- Sawada, Y.; Tsutsui, H.; Koike, T.; Rasmy, M.; Fujii, H. A Field Verification of an Algorithm for Retrieving Vegetation Water Content From Passive Microwave Observations. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2082–2095. [Google Scholar] [CrossRef]
- Zwieback, S.; Colliander, A.; Cosh, M.H.; Martínez-Fernández, J.; McNairn, H.; Starks, P.; Thibeault, M.; Berg, A. Estimating time-dependent vegetation biases in the SMAP soil moisture product. Hydrol. Earth Syst. Sci. 2018, 22, 4473–4489. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Zeng, X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res.-Atmos. 2012, 117, d05102. [Google Scholar] [CrossRef]
- Leroux, D.J.; Kerr, Y.H.; Richaume, P.; Fieuzal, R. Spatial distribution and possible sources of SMOS errors at the global scale. Remote Sens. Environ. 2013, 13, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Yee, M.S.; Walker, J.P.; Rüdiger, C.; Parinuss, R.M.; Koike, T.; Kerr, Y.H. A comparison of SMOS and AMSR2 soil moisture using representative sites of the OzNet monitoring network. Remote Sens. Environ. 2017, 195, 297–312. [Google Scholar] [CrossRef]
- McColl, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Liu, W.; Fu, Z.; Chen, X.; Qu, J.; Wang, J.; Peng, X. Inhomogeneity of precipitation and its influencing factors in Northwest China from 1961 to 2015. Theor. Appl. Clim. 2019, 138, 1831–1844. [Google Scholar] [CrossRef]
- Gruber, A.; Lannoy, G.D.; Albergel, C.; Al-Yaari, A.; Wagner, W. Validation Practices for Satellite Soil Moisture Retrievals: What Are (the) Errors? Remote Sens. Environ. 2020, 244, 111806. [Google Scholar] [CrossRef]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al. The International Soil Moisture Network: Serving Earth System Science for over a Decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. [Google Scholar] [CrossRef]
- Sutanudjaja, E.H.; Van Beek, L.P.; De Jong, S.M.; Van Geer, F.C.; Bierkens, M.F. Calibrating a large-extent high-resolution coupled groundwater-land surface model using soil moisture and discharge data. Water Resour. Res. 2014, 50, 687–705. [Google Scholar] [CrossRef]
- Enenkel, M.; Reimer, C.; Dorigo, W.; Wagner, W.; Pfeil, I.; Parinussa, R.; Jeu, R.D. Combining satellite observations to develop a global soil moisture product for near-real-time applications. Hydrol. Earth Syst. Sci. 2016, 20, 4191–4208. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.; Wagner, W.; McCabe, M.F.; Evans, J.P.; Van Dijk, A.I. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Cheng, M.; Zhong, L.; Ma, Y.; Zou, M.; Ge, N.; Wang, X.; Hu, Y. A study on the assessment of multi-source satellite soil moisture products and reanalysis data for the Tibetan Plateau. Remote Sens. 2019, 11, 1196. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Shen, H.; Li, X.; Zeng, C.; Liu, H.; Lei, F. Extending the SMAP 9-km soil moisture product using a spatio-temporal fusion model. Remote Sens. Environ. 2019, 231, 111224. [Google Scholar]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Deshon, J.; Niemann, J.; Green, T.; Jones, A.; Grazaitis, P. Stochastic analysis and probabilistic downscaling of soil moisture in small catchments. J. Hydrol. 2020, 585, 124711. [Google Scholar] [CrossRef]
- Xu, C.; Qu, J.J.; Hao, X.; Cosh, M.H.; Prueger, J.H.; Zhu, Z.; Gutenberg, L. Downscaling of Surface Soil Moisture Retrieval by Combining MODIS/Landsat and In Situ Measurements. Remote Sens. 2018, 10, 210. [Google Scholar] [CrossRef] [Green Version]
- Verhoest, N.; van den Berg, M.; Martens, B.; Lievens, H.; Wood, E.; Pan, M.; Kerr, Y.; Bitar, A.; Tomer, S.; Drusch, M.; et al. Copula-Based Downscaling of Coarse-Scale Soil Moisture Observations With Implicit Bias Correction. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3507–3521. [Google Scholar] [CrossRef]
- Montzka, C.; Rötzer, K.; Bogena, H.R.; Sanchez, N.; Vereecken, H. A New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability. Remote Sens. 2018, 10, 427. [Google Scholar] [CrossRef] [Green Version]
- Das, N.; Entekhabi, D.; Dunbar, R.; Njoku, E.; Yueh, S. Uncertainty estimates in the SMAP combined active-passive downscaled brightness temperature. IEEE Trans. Geosci. Remote Sens. 2016, 54, 640–650. [Google Scholar] [CrossRef]
- Walker, J.; Houser, P. Requirements of a global near-surface soil moisture satellite mission: Accuracy, repeat time, and spatial resolution. Adv. Water Resour. 2004, 27, 785–801. [Google Scholar] [CrossRef]
Station | Location | Climate Type/ Climate Zone | Mean Annual Precipitation |
---|---|---|---|
Beijing | 39.80° N, 116.47° E, 32.5 m | MR/C6 | 524.0 mm |
Changchun | 43.90° N, 125.22° E, 238.5 m | MR/C7 | 585.6 mm |
Tacheng | 46.73° N, 83.00° E, 536.6 m | AR/C1 | 303.8 mm |
Hotan | 37.13° N, 79.93° E, 1374.9 m | AR/C2 | 68.7 mm |
Zhangye | 38.93° N, 100.43° E, 1484.1 m | AR/C3 | 151.6 mm |
Haidong | 36.50° N, 102.10° E, 2125.0 m | MTZ/C4 | 343.6 mm |
Yulin | 38.27° N, 109.78° E, 1157.8 m | MTZ/C5 | 415.0 mm |
Ulanhot | 46.08° N, 111.05° E, 276.0 m | MTZ/C8 | 439.3 mm |
AMSR2 | CCI | SMAP | SMOS | ||
---|---|---|---|---|---|
Spring | BIAS | 0.128 | 0.035 | −0.044 | −0.056 |
RMSE | 0.160 | 0.085 | 0.089 | 0.096 | |
Summer | BIAS | 0.077 | 0.026 | −0.041 | −0.035 |
RMSE | 0.121 | 0.085 | 0.097 | 0.095 | |
Autumn | BIAS | 0.167 | 0.042 | −0.056 | −0.045 |
RMSE | 0.196 | 0.086 | 0.094 | 0.089 | |
Winter | BIAS | 0.245 | 0.084 | −0.036 | −0.068 |
RMSE | 0.264 | 0.110 | 0.101 | 0.092 |
AMSR2 | CCI | SMAP | SMOS | ||
---|---|---|---|---|---|
C1 (northern Xinjiang) | BIAS | 0.021 | 0.001 | −0.032 | −0.073 |
RMSE | 0.111 | 0.107 | 0.113 | 0.123 | |
C2 (southern Xinjiang) | BIAS | −0.046 | −0.044 | −0.096 | −0.119 |
RMSE | 0.112 | 0.110 | 0.144 | 0.160 | |
C3 (Hexi Corridor) | BIAS | 0.063 | 0.043 | −0.012 | −0.026 |
RMSE | 0.128 | 0.108 | 0.107 | 0.105 | |
C4 (Qinghai-Tibet Plateau Slope) | BIAS | 0.151 | 0.101 | 0.013 | 0.006 |
RMSE | 0.196 | 0.134 | 0.095 | 0.092 | |
C5 (northern Loess Plateau) | BIAS | 0.164 | 0.054 | −0.040 | −0.002 |
RMSE | 0.196 | 0.107 | 0.101 | 0.097 | |
C6 (North China Plain) | BIAS | 0.158 | 0.040 | −0.063 | −0.053 |
RMSE | 0.194 | 0.093 | 0.115 | 0.118 | |
C7 (eastern Northeast Plain) | BIAS | 0.230 | 0.048 | −0.078 | −0.085 |
RMSE | 0.280 | 0.102 | 0.122 | 0.137 | |
C8 (western Northeast Plain) | BIAS | 0.133 | 0.048 | −0.034 | −0.059 |
RMSE | 0.175 | 0.104 | 0.098 | 0.109 |
Vegetation Types | AMSR2 | CCI | SMAP | SMOS | |
---|---|---|---|---|---|
L1 (Gobi desert) | BIAS | 0.012 | 0.044 | 0.01 | −0.027 |
RMSE | 0.131 | 0.117 | 0.106 | 0.102 | |
r | −0.245 * | −0.203 * | 0.063 * | −0.033 * | |
n | 10,234 | 10,234 | 10,234 | 10,234 | |
L2 (grassland) | BIAS | 0.127 | 0.067 | −0.001 | −0.034 |
RMSE | 0.162 | 0.109 | 0.088 | 0.089 | |
r | −0.123 * | 0.117 * | 0.205 * | 0.423 * | |
n | 26,316 | 26,316 | 26,316 | 26,316 | |
L3 (forest) | BIAS | 0.242 | 0.044 | −0.054 | −0.096 |
RMSE | 0.274 | 0.129 | 0.133 | 0.16 | |
r | 0.374 * | 0.432 * | 0.402 * | 0.569 * | |
n | 7310 | 7310 | 7310 | 7310 | |
L4 (farmland) | BIAS | 0.155 | 0.029 | −0.076 | −0.062 |
RMSE | 0.183 | 0.085 | 0.118 | 0.122 | |
r | 0.136 * | 0.388 * | 0.025 * | 0.196 * | |
n | 237,575 | 237,575 | 237,575 | 237,575 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, J.; Xu, F.; Li, C.; Xian, T. Validation of Four Satellite-Derived Soil Moisture Products Using Ground-Based In Situ Observations over Northern China. Remote Sens. 2022, 14, 1419. https://doi.org/10.3390/rs14061419
Liu W, Wang J, Xu F, Li C, Xian T. Validation of Four Satellite-Derived Soil Moisture Products Using Ground-Based In Situ Observations over Northern China. Remote Sensing. 2022; 14(6):1419. https://doi.org/10.3390/rs14061419
Chicago/Turabian StyleLiu, Weicheng, Jixin Wang, Falei Xu, Chenrui Li, and Tao Xian. 2022. "Validation of Four Satellite-Derived Soil Moisture Products Using Ground-Based In Situ Observations over Northern China" Remote Sensing 14, no. 6: 1419. https://doi.org/10.3390/rs14061419
APA StyleLiu, W., Wang, J., Xu, F., Li, C., & Xian, T. (2022). Validation of Four Satellite-Derived Soil Moisture Products Using Ground-Based In Situ Observations over Northern China. Remote Sensing, 14(6), 1419. https://doi.org/10.3390/rs14061419