A Two-Source Normalized Soil Thermal Inertia Model for Estimating Field-Scale Soil Moisture from MODIS and ASTER Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. DFSDAF
2.2. TNSTI for the Vegetated Surfaces
3. Study Area and Datasets
3.1. Study Area and Ground-Based Measurements
3.2. Remote-Sensing Data and Other SM Products
4. Results and Analysis
4.1. Validation of Night ASTER-like LSTs from DFSDAF
4.2. Validation of SMs from TNSTI for the Vegetated Surfaces
5. Discussion
5.1. Analysis of the Possible Reasons for the Correlations at Different Depths
5.2. Uncertainty and Limitations
5.3. Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasolli, L.; Notarnicola, C.; Bertoldi, G.; Bruzzone, L.; Remelgado, R.; Greifeneder, F.; Niedrist, G.; Della Chiesa, S.; Tappeiner, U.; Zebisch, M. Estimation of Soil Moisture in Mountain Areas Using Svr Technique Applied to Multiscale Active Radar Images at C-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 262–283. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture–Climate Interactions in a Changing Climate: A Review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Jin, Y.; Ge, Y.; Wang, J.; Chen, Y.; Heuvelink, G.B.M.; Atkinson, P.M. Downscaling Amsr-2 Soil Moisture Data with Geographically Weighted Area-to-Area Regression Kriging. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2362–2376. [Google Scholar]
- Dirmeyer, P.; Wu, J.; Norton, H.; Dorigo, W.; Quiring, S.; Ford, T.W.; Santanello, J.A.; Bosilovich, M.G.; Ek, M.B.; Koster, R.D.; et al. Confronting Weather and Climate Models with Observational Data from Soil Moisture Networks over the United States. J. Hydrometeorol. 2016, 17, 1049–1067. [Google Scholar] [CrossRef] [PubMed]
- Manning, C.; Widmann, M.; Bevacqua, E.; Van Loon, A.F.; Maraun, D.; Vrac, M. Soil Moisture Drought in Europe: A Compound Event of Precipitation and Potential Evapotranspiration on Multiple Time Scales. J. Hydrometeorol. 2018, 19, 1255–1271. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, J.; Song, X.; Leng, P.; Ludwig, R.; Loew, A. Surface Soil Moisture Retrieval Using Optical/Thermal Infrared Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5433–5442. [Google Scholar] [CrossRef]
- Jian, P.; Shen, H.; He, S.W.; Wu, J.S. Soil Moisture Retrieving Using Hyperspectral Data with the Application of Wavelet Analysis. Environ. Earth Sci. 2012, 69, 279–288. [Google Scholar]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; Van Der Kruk, J.; Bogena, H.; Weihermuller, L.; Herbst, M.; Martinez, G.; VanderBorght, J.; et al. On the Spatio-Temporal Dynamics of Soil Moisture at the Field Scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Su, Z.; Wen, J.; Dente, L.; van der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. A Plateau Scale Soil Moisture and Soil Temperature Observatory for Quantifying Uncertainties in Coarse Resolution Satellite Products. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 243–276. [Google Scholar]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A Data Hosting Facility for Global in Situ Soil Moisture Measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef] [Green Version]
- Robock, A.; Vinnikov, K.Y.; Srinivasan, G.; Entin, J.K.; Hollinger, S.E.; Speranskaya, N.A.; Liu, S.; Namkhai, A. The Global Soil Moisture Data Bank. Bull. Am. Meteorol. Soc. 2000, 81, 1281–1300. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.B.; Leroux, D.; Kerr, Y.H.; Merlin, O.; Richaume, P.; Sahoo, A.; Wood, E.F. Evaluation of Smos Soil Moisture Products over Continental U.S. Using the Scan/Snotel Network. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1572–1586. [Google Scholar]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Niclos, R.; Rivas, R.E.; Garcia-Santos, V.; Dona, C.; Valor, E.; Holzman, M.; Bayala, M.; Carmona, F.; Ocampo, D.; Soldano, A.; et al. SMOS level-2 soil moisture product evaluation in rain-fed croplands of the Pampean region of Argentina. IEEE Trans. Geosci. Remote Sens. 2015, 54, 499–512. [Google Scholar] [CrossRef]
- Li, C.; Lu, H.; Yang, K.; Han, M.; Wright, J.S.; Chen, Y.; Yu, L.; Xu, S.; Huang, X.; Gong, W. The Evaluation of Smap Enhanced Soil Moisture Products Using High-Resolution Model Simulations and in-Situ Observations on the Tibetan Plateau. Remote Sens. 2018, 10, 535. [Google Scholar] [CrossRef] [Green Version]
- Zreda, M.; Desilets, D.; Ferré, T.P.A.; Scott, R.L. Measuring Soil Moisture Content Non-Invasively at Intermediate Spatial Scale Using Cosmic-Ray Neutrons. Geophys. Res. Lett. 2018, 35, L21402. [Google Scholar] [CrossRef] [Green Version]
- Zreda, M.; Shuttleworth, W.J.; Zeng, X.; Zweck, C.; Desilets, D.; Franz, T.; Rosolem, R. Cosmos: The Cosmic-Ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef] [Green Version]
- Sayde, C.; Gregory, C.; Gil-Rodriguez, M.; Tufillaro, N.; Tyler, S.; van de Giesen, N.; English, M.; Cuenca, R.; Selker, J. Feasibility of Soil Moisture Monitoring with Heated Fiber Optics. Water Resour. Res. 2010, 46, W06201. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Small, E.E.; Gutmann, E.D.; Bilich, A.L.; Braun, J.J.; Zavorotny, V.U. Use of Gps Receivers as a Soil Moisture Network for Water Cycle Studies. Geophys. Res. Lett. 2008, 35, L24405. [Google Scholar] [CrossRef] [Green Version]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling Sparse Ground-Based Soil Moisture Observations for the Validation of Coarse-Resolution Satellite Soil Moisture Products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar]
- Greifeneder, F.; Notarnicola, C.; Bertoldi, G.; Niedrist, G.; Wagner, W. From Point to Pixel Scale: An Upscaling Approach for in Situ Soil Moisture Measurements. Vadose Zone J. 2016, 15, 1–8. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential Sar Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. Alos Palsar: A Pathfinder Mission for Global-Scale Monitoring of the Environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil Moisture Mapping Using Sentinel-1 Images: Algorithm and Preliminary Validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil Moisture Retrieval from Amsr-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Holmes, T.R.H.; Wanders, N.; Dorigo, W.; De Jeu, R.A.M. A Preliminary Study toward Consistent Soil Moisture from Amsr2. J. Hydrometeorol. 2015, 16, 932–947. [Google Scholar] [CrossRef]
- Imaoka, K.; Kachi, M.; Kasahara, M.; Ito, N.; Nakagawa, K.; Oki, T. Instrument Performance and Calibration of Amsr-E and Amsr2. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 13–18. [Google Scholar]
- Gaiser, P.; Germain, K.S.; Twarog, E.; Poe, G.; Purdy, W.; Richardson, D.; Grossman, W.; Jones, W.L.; Spencer, D.; Golba, G.; et al. The Windsat Spaceborne Polarimetric Microwave Radiometer: Sensor Description and Early Orbit Performance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2347–2361. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The Smos Mission: New Tool for Monitoring Key Elements Ofthe Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (Smap) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for Improved Earth System Understanding: State-of-the Art and Future Directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an Improved Soil Moisture Dataset by Blending Passive and Active Microwave Satellite-Based Retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Li, J.; Cheng, W.; Fu, B.; Wang, Y.; Lü, Y.; Shao, M. Evaluation of Amsr-E Retrieval by Detecting Soil Moisture Decrease Following Massive Dryland Re-Vegetation in the Loess Plateau, China. Remote Sens. Environ. 2017, 196, 253–264. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote Sensing of Drought: Progress, Challenges and Opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.; Liu, Q.; De Lannoy, G.; Crow, W.; Kimball, J.; Koster, R.; Ardizzone, J. Global Assessment of the Smap Level-4 Soil Moisture Product Using Assimilation Diagnostics; American Meteorological Society: Boston, MA, USA, 2018. [Google Scholar]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the Esa Cci Soil Moisture Product Using Ground-Based Observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- El Sharif, H.; Wang, J.; Georgakakos, A.P. Georgakakos. Modeling Regional Crop Yield and Irrigation Demand Using Smap Type of Soil Moisture Data. J. Hydrometeorol. 2015, 16, 904–916. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Q.; Liu, X.; Leng, G.; Li, Z. Soil Moisture Drought Monitoring and Forecasting Using Satellite and Climate Model Data over Southwestern China. J. Hydrometeorol. 2016, 18, 5–23. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The Optical Trapezoid Model: A Novel Approach to Remote Sensing of Soil Moisture Applied to Sentinel-2 and Landsat-8 Observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; Zhou, X.; Fan, Y. Empirically Adopted Iem for Retrieval of Soil Moisture from Radar Backscattering Coefficients. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1662–1672. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the Stress-Degree-Day Parameter for Environmental Variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Moran, M.; Clarke, T.; Inoue, Y.; Vidal, A. Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Loche, M.; Scaringi, G.; Blahůt, J.; Melis, M.; Funedda, A.; Da Pelo, S.; Erbì, I.; Deiana, G.; Meloni, M.; Cocco, F. An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff. Remote Sens. 2021, 13, 1265. [Google Scholar] [CrossRef]
- Scaringi, G.; Loche, M. A Thermo-Hydro-Mechanical Approach to Soil Slope Stability under Climate Change. Geomorphology 2022, 401, 108108. [Google Scholar] [CrossRef]
- Melis, M.T.; Da Pelo, S.; Erbì, I.; Loche, M.; Deiana, G.; Demurtas, V.; Meloni, M.A.; Dessì, F.; Funedda, A.; Scaioni, M.; et al. Thermal Remote Sensing from Uavs: A Review on Methods in Coastal Cliffs Prone to Landslides. Remote. Sens. 2020, 12, 1971. [Google Scholar] [CrossRef]
- Price, J.C. Thermal Inertia Mapping: A New View of the Earth. J. Geophys. Res. Earth Surf. 1977, 82, 2582–2590. [Google Scholar] [CrossRef]
- Verhoef, A. Remote Estimation of Thermal Inertia and Soil Heat Flux for Bare Soil. Agric. For. Meteorol. 2004, 123, 221–236. [Google Scholar] [CrossRef]
- Xue, Y.; Cracknell, A.P. Advanced Thermal Inertia Modeling. Int. J. Remote Sens. 1995, 16, 431–446. [Google Scholar] [CrossRef]
- Utsunomiya, Y. Theoretical Analysis of a Thermal Inertia Model for Soil Moisture Estimation and Its Application to Remote Sensing. J. Jpn. Soc. Photogramm. Remote Sens. 1992, 31, 15–26. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, X.; Zhu, Z.; Hongbo, S.U.; Tang, X. A Remote Sensing Model for Monitoring Soil Evaporation Based on Differential Thermal Inertia and Its Validation. Science in China. Ser. D Earth Sci. 2003, 46, 342–355. [Google Scholar]
- Brunt, D. Notes on Radiation in the Atmosphere. I. Q. J. R. Meteorol. Soc. 2010, 58, 389–420. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; van der Sande, C.J.; Grootaers, I.; Feyen, J. Soil Moisture Retrieval Using Thermal Inertia, Determined with Visible and Thermal Spaceborne Data, Validated for European Forests. Remote Sens. Environ. 2006, 101, 299–314. [Google Scholar] [CrossRef]
- Murray, T.; Verhoef, A. Moving Towards a More Mechanistic Approach in the Determination of Soil Heat Flux from Remote Measurements. Ii. Diurnal Shape of Soil Heat Flux. Agric. For. Meteorol. 2007, 147, 88–97. [Google Scholar] [CrossRef]
- Doninck, J.V.; Peters, J.; Baets, B.D.; Clercq, E.M.D.; Verhoest, N. The Potential of Multitemporal Aqua and Terra Modis Apparent Thermal Inertia as a Soil Moisture Indicator. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 934–941. [Google Scholar] [CrossRef]
- Zhang, R.; Tian, J.; Mi, S.; Su, H.; He, H.; Li, Z.; Liu, K. The Effect of Vegetation on the Remotely Sensed Soil Thermal Inertia and a Two-Source Normalized Soil Thermal Inertia Model for Vegetated Surfaces. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1725–1735. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.S.; Chen, J.; Lefsky, M.A. A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Schädlich, S.; Göttsche, F.M.; Olesen, F.S. Influence of Land Surface Parameters and Atmosphere on Meteosat Brightness Temperatures and Generation of Land Surface Temperature Maps by Temporally and Spatially Interpolating Atmospheric Correction. Remote Sens. Environ. 2001, 75, 39–46. [Google Scholar] [CrossRef]
- Zhang, R.; Tian, J.; Su, H.; Sun, X.; Chen, S.; Xia, J. Two Improvements of an Operational Two-Layer Model for Terrestrial Surface Heat Flux Retrieval. Sensors 2008, 8, 6165–6187. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (Hiwater): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Z.; Song, L.; Zhao, Q.; Ge, Y.; Xu, T.; Ma, Y.; Zhu, Z.; Jia, Z.; Zhang, F. Upscaling Evapotranspiration Measurements from Multi-Site to the Satellite Pixel Scale over Heterogeneous Land Surfaces. Agric. For. Meteorol. 2016, 230, 97–113. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, S.; Li, X.; Shi, S.; Wang, J.; Zhu, Z.; Xu, T.; Wang, W.; Ma, M. Intercomparison of Surface Energy Flux Measurement Systems Used During the Hiwater-Musoexe. J. Geophys. Res. Atmos. 2013, 118, 13–140. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Li, H.; Sun, D.; Yu, Y.; Wang, H.; Liu, Y.; Liu, Q.; Du, Y.; Wang, H.; Cao, B. Evaluation of the Viirs and Modis Lst Products in an Arid Area of Northwest China. Remote Sens. Environ. 2014, 142, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Rui, J.; Tao, C.; Jeffrey, W.; Ying, G.; Nan, Y.; Shuguo, W. Soil Moisture Retrieval from Airborne PLMR and MODIS Productsinthe ZhangyeOasisof MiddleStream ofHeihe River Basin, China. Adv. Earth Sci. 2014, 29, 295–305. [Google Scholar]
- Ma, C.; Wang, W.; Han, X.; Li, X. Soil Moisture Retrieval in the Heihe River Basin Based on the Real Thermal Inertia Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1460–1467. [Google Scholar] [CrossRef]
- Luo, J.; Qiu, J.; Zhao, T.; Wang, D. Sentinel-1 Based Soil Moisture Estimation in Middle Reaches of Heihe River Basin. Remote Sens. Technol. Appl. 2020, 35, 23–32. [Google Scholar]
- Li, D.S.; Ji, X.B.; Zhao, L.W. Simulation of Seed Corn Farmland Soil Moisture Migration Regularity in the Midstream of the Heihe River Basin. Arid. Zone Res. 2015, 32, 467–475. [Google Scholar]
Date | DOY | t1 (UTC + 8) | t2 (UTC + 8) | S0 (W/m2) | Ta (°C) | RH (%) |
---|---|---|---|---|---|---|
6/15/2012 | 167 | 2.3 | 12.317 | 910 | 24.83 | 33.77 |
6/24/2012 | 176 | 2.2 | 12.216 | 932 | 25.66 | 30.16 |
7/10/2012 | 192 | 2.2 | 12.217 | 925 | 25.98 | 46.01 |
8/02/2012 | 215 | 2.3 | 12.318 | 916 | 27.94 | 42.54 |
8/11/2012 | 224 | 2.2 | 12.214 | 873 | 25.26 | 56.69 |
8/18/2012 | 231 | 2.3 | 12.318 | 891 | 24.00 | 51.31 |
8/27/2012 | 240 | 2.2 | 12.216 | 873 | 26.46 | 36.91 |
9/03/2012 | 247 | 2.3 | 12.319 | 869 | 19.03 | 45.52 |
9/12/2012 | 256 | 2.2 | 12.216 | 822 | 13.64 | 45.23 |
Land Cover | Mean Observation (K) | FSDAF | DFSDAF | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean LSTnight (K) | R2 | MAE (K) | RMSE (K) | Mean LSTnight (K) | R2 | MAE (K) | RMSE (K) | ||
Cropland | 284.798 | 284.594 | 0.694 | 1.738 | 2.19 | 284.442 | 0.747 | 1.697 | 1.913 |
Urban/village | 286.365 | 285.521 | 0.699 | 2.293 | 2.517 | 286.51 | 0.736 | 1.758 | 2.158 |
Orchard | 285.261 | 285.043 | 0.551 | 1.587 | 2.202 | 285.473 | 0.636 | 1.993 | 2.186 |
Gobi/desert | 285.47 | 285.564 | 0.904 | 1.385 | 1.728 | 284.966 | 0.943 | 1.569 | 1.802 |
Wetland | 287.798 | 288.302 | 0.796 | 1.481 | 1.944 | 288.014 | 0.863 | 1.285 | 1.538 |
Depth | TNSTI_MODIS | TNSTI_ASTER | ||||
---|---|---|---|---|---|---|
R2 | MAE (m3/m3) | RMSE (m3/m3) | R2 | MAE (m3/m3) | RMSE (m3/m3) | |
SM_02 cm | 0.439 | 0.098 | 0.102 | 0.500 | 0.078 | 0.096 |
SM_04 cm | 0.465 | 0.082 | 0.097 | 0.586 | 0.059 | 0.073 |
SM_10 cm | 0.495 | 0.074 | 0.091 | 0.657 | 0.055 | 0.069 |
SM_20 cm | 0.402 | 0.088 | 0.101 | 0.540 | 0.058 | 0.073 |
SM_40 cm | 0.224 | 0.095 | 0.118 | 0.262 | 0.071 | 0.092 |
SM_60 cm | 0.422 | 0.083 | 0.094 | 0.563 | 0.062 | 0.078 |
SM_100 cm | 0.456 | 0.084 | 0.096 | 0.596 | 0.068 | 0.081 |
SM_mean | 0.494 | 0.077 | 0.085 | 0.622 | 0.045 | 0.060 |
Date | SM 02 cm | SM 04 cm | SM 10 cm | SM 20 cm | SM 40 cm | SM 60 cm | SM 100 cm | SM Mean | AMSR2/AMSR-E | GLDAS-Noah | ERA5-Land | SM_TNSTI_MODIS | SM_TNST_ASTER |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6/15/2012 | 0.190 | 0.218 | 0.239 | 0.261 | 0.297 | 0.307 | 0.301 | 0.255 | - | 0.133 | 0.139 | 0.240 | 0.278 |
6/24/2012 | 0.212 | 0.261 | 0.243 | 0.255 | 0.292 | 0.308 | 0.304 | 0.272 | - | 0.205 | 0.122 | 0.346 | 0.261 |
7/10/2012 | 0.209 | 0.247 | 0.253 | 0.263 | 0.296 | 0.312 | 0.308 | 0.267 | 0.093 | 0.169 | 0.130 | 0.388 | 0.297 |
8/02/2012 | 0.249 | 0.279 | 0.274 | 0.296 | 0.316 | 0.315 | 0.301 | 0.295 | 0.110 | 0.173 | 0.181 | 0.381 | 0.311 |
8/11/2012 | 0.249 | 0.271 | 0.242 | 0.253 | 0.296 | 0.302 | 0.308 | 0.288 | 0.168 | 0.227 | 0.176 | 0.370 | 0.309 |
8/18/2012 | 0.250 | 0.264 | 0.232 | 0.246 | 0.286 | 0.296 | 0.308 | 0.280 | 0.117 | 0.168 | 0.249 | 0.377 | 0.326 |
8/27/2012 | 0.242 | 0.265 | 0.258 | 0.274 | 0.319 | 0.317 | 0.307 | 0.280 | 0.093 | 0.133 | 0.126 | 0.273 | 0.286 |
9/03/2012 | 0.232 | 0.250 | 0.243 | 0.248 | 0.295 | 0.302 | 0.307 | 0.266 | 0.110 | 0.139 | 0.208 | 0.277 | 0.288 |
9/12/2012 | 0.186 | 0.214 | 0.208 | 0.223 | 0.276 | 0.288 | 0.303 | 0.236 | 0.097 | 0.148 | 0.150 | 0.230 | 0.232 |
Land Cover | Mean Observation (m3/m3) | TNSTI_ASTER (m3/m3) | ||||||
---|---|---|---|---|---|---|---|---|
2 cm | 4 cm | 10 cm | 20 cm | 40 cm | 60 cm | 100 cm | ||
Cropland | 0.2334 | 0.2671 | 0.2825 | 0.2918 | 0.317 | 0.3439 | 0.3431 | 0.3166 |
Urban/villages | 0.0884 | 0.1221 | 0.1832 | 0.1623 | 0.2481 | 0.2476 | 0.2032 | 0.1833 |
Orchard | 0.2546 | 0.2714 | 0.2897 | 0.3026 | 0.3603 | 0.3671 | 0.4134 | 0.3182 |
Gobi/desert | 0.0850 | 0.0778 | 0.0719 | 0.0673 | 0.2192 | 0.0751 | 0.0440 | 0.1252 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, G.; Su, H.; Zhang, R.; Tian, J.; Chen, S. A Two-Source Normalized Soil Thermal Inertia Model for Estimating Field-Scale Soil Moisture from MODIS and ASTER Data. Remote Sens. 2022, 14, 1215. https://doi.org/10.3390/rs14051215
Hao G, Su H, Zhang R, Tian J, Chen S. A Two-Source Normalized Soil Thermal Inertia Model for Estimating Field-Scale Soil Moisture from MODIS and ASTER Data. Remote Sensing. 2022; 14(5):1215. https://doi.org/10.3390/rs14051215
Chicago/Turabian StyleHao, Guibin, Hongbo Su, Renhua Zhang, Jing Tian, and Shaohui Chen. 2022. "A Two-Source Normalized Soil Thermal Inertia Model for Estimating Field-Scale Soil Moisture from MODIS and ASTER Data" Remote Sensing 14, no. 5: 1215. https://doi.org/10.3390/rs14051215
APA StyleHao, G., Su, H., Zhang, R., Tian, J., & Chen, S. (2022). A Two-Source Normalized Soil Thermal Inertia Model for Estimating Field-Scale Soil Moisture from MODIS and ASTER Data. Remote Sensing, 14(5), 1215. https://doi.org/10.3390/rs14051215