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Abstract: Soil moisture (SM) is a crucial component for understanding, modeling, and forecasting
terrestrial water cycles and energy budgets. However, estimating field-scale SM based on thermal
infrared remote-sensing data is still a challenging task. In this study, an improved Flexible Spatiotem-
poral DAta Fusion (FSDAF) method based on land-surface Diurnal Temperature Cycle (DTC) model
(DFSDAF) was proposed to fuse Moderate Resolution Imaging Spectroradiometer (MODIS) and Ad-
vance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) land-surface temperature
(LST) data to generate ASTER-like LST during the night. The reconstructed diurnal LST data at a high
spatial resolution (90 m) was then utilized to drive a two-source normalized soil thermal inertia model
(TNSTI) for the vegetated surfaces to estimate field-scale SM. The results of the proposed methods
were validated at different observation depths (2, 4, 10, 20, 40, 60, and 100 cm) over the Zhangye
oasis in the middle region of the Heihe River basin in the northwest of China and were compared
with the SM estimates from the TNSTI model and other SM products, including AMSR2/AMSR-E,
GLDAS-Noah, and ERA5-land. The results showed the following: (1) The DFSDAF method increased
the accuracy of LST prediction, with the determination coefficient (R2) increasing from 0.71 to 0.77,
and root mean square error (RMSE) decreasing from 2.17 to 1.89 K. (2) the estimated SMs had the best
correlation with the observations at the 10 cm depth (with R2 of 0.657; RMSE of 0.069 m3/m3), but
the worst correlation with observations at the 40 cm depth (with R2 of 0.262; RMSE of 0.092 m3/m3);
meanwhile, the modeled SMs were significantly underestimated above 40 cm (2, 4, 10, and 20 cm)
and slightly overestimated below 40 cm (60 and 100 cm); in addition, the field-scale SM series at high
spatial resolution (90 m) showed significant spatiotemporal variation. (3) The SM estimates based
on the TNSTI for the vegetated surfaces are more capable of characterizing the SM status in the root
zone (~80 cm) or even deeper, while the SMs from AMSR2/AMSR-E, GLDAS-Noah, or ERA5-land
products are closer to the SM in the surface layer (the depth is less than 5 cm). The TNSTI provided
favorable data supports for hydrological model simulations and showed potential advantages for
agricultural refinement managements and smart agriculture.

Keywords: soil moisture; soil thermal inertia; ASTER; MODIS; remote sensing

1. Introduction

Soil moisture (SM) plays a critical role in monitoring and forecasting land-surface
evapotranspiration, agricultural irrigation management, crop yield prediction, weather and
climate change, droughts, and hydrologic processes [1–5]. However, it is hard to acquire
accurate SM at high spatial–temporal resolution due to the lack of understanding of SM
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variation within natural landscapes [6–9]. In situ SM measurements are considered to
provide reliable SM data at different depths on different timescales [8,10–14]. However,
the spatial representation of field observations suffers weak due to the strong spatial het-
erogeneity of SM and spare distribution of sites [15]. Although the emergence of new SM
measurement methods, such as the Cosmic-ray Soil Moisture Observing System (COS-
MOS) [16,17], the fiber optic Distributed Temperature Sensing (DTS) system [18], and
the Global Positioning System (GPS) [19], shows promising potentiality, the instruments
are expensive, time-consuming, and hard to operate. Therefore, ground-based measure-
ments still need to cover a long way in regional applications [20,21]. Comparatively,
remote sensing offers a promising approach for large-area applications, benefiting from
its high revisiting time and relatively lower cost. Over the past several decades, a series
of microwave SM products at the global scale have been produced, such as the active
microwave-based products, including European Remote Sensing Satellites (ERS) [22]; Ad-
vanced Land Observation Satellite-Phased Array type L-band Synthetic Aperture Radar
(ALOS PALSAR) [23]; Sentinel-1 [24], the passive microwave-based products including
Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) [25] and
Advanced Microwave Scanning Radiometer 2 (AMSR2) [26,27]; WinSAT [28], Soil Mois-
ture Ocean Salinity (SMOS) [29], a combined product (combination of active and passive
products) containing Soil Moisture Active Passive (SMAP) [30], and the European Space
Agency Climate Change Initiative (ESA CCI) SM products [31,32]. These products are
widely used to monitor SM globally [33–38]. However, the spatial resolutions of these
microwave SM products are coarse, which limited their use in field-scale hydrological and
agricultural applications.

Optical remote sensing has the ability to retrieve surface SM at a high spatial reso-
lution [39]; however, the depth of surface SM retrieved from the multispectral images is
very shallow due to the poor spectral penetration. In addition, the uncertainty of optical-
based surface SM estimates is relatively large, because of the effects of surface roughness,
air vapor, soil texture, canopy, and terrain. High-resolution Synthetic Aperture Radar
(SAR) shows advantages in all-weather or all-day capability to monitor SM at a large
scale based on the backscattered radar signals [40]. However, SAR gave a performance
that was unreliable and questionable at the areas covered by vegetation, especially for
the short radar wavelengths of SAR. With the development of thermal infrared remote
sensing, the spatial and temporal resolution of thermal infrared data has been significantly
improved. Thermal infrared remote sensing has been utilized in SM monitoring based on a
Vegetation Index/LST (VI/LST) triangular/trapezoidal feature space, such as Crop Water
Stress Index (CWSI) [41], Water Deficit Index (WDI) [42], and Temperature Vegetation
Dryness Index (TVDI) [43]. However, these thermal infrared-based indices often require
ground observations as supporting information and the calculation of them is generally
complicated. Soil thermal inertia (STI), as an important soil inherent property of soil, is
the function of thermal conductivity, soil bulk density, and specific heat capacity, and is
related to the day–night difference of temperature. STI can be used to determine surface
characteristics, such as geological lithology identification and analysis [44–46], soil mois-
ture, and soil heat flux estimation [45]. The method proposed by Price [47] made the STI
retrievable through remote sensing. A series of simplified approaches were proposed in
the following decades [48–52]. A large uncertainty was reported in the estimation of STI
when applying these methods to the vegetated surfaces [53–55]. To overcome this issue,
the two-source normalized soil thermal inertia model (TNSTI) model for the vegetated
surfaces was proposed by Zhang [56], which made STI possible to be successfully utilized
for SM monitoring over the vegetated areas. However, TNSTI required two LST data at
different times as the inputs, which limited the employment of single-phase satellite data,
such as Landsat and ASTER. Therefore, it is rare to see the reports on the field-scale SM
estimates using the TNSTI method over the vegetated areas.

The objectives of this study are (1) to verify the performance of Flexible Spatiotemporal
DAta Fusion (FSDAF) and Diurnal Temperature Cycle (DTC) model in FSDAF (DFSDAF) in
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producing ASTER-like LSTs during the night at high spatial resolution (90 m), (2) to estimate
SM at field scale over the vegetated areas using TNSTI model from the reconstructed LSTs,
and (3) to evaluate the accuracy of SM estimates from various aspects. The methodology
of the DFSDAF method and the TNSTI model for the vegetated surfaces are presented in
Section 2. The study area and the datasets are introduced in Section 3. The results and
analysis are shown in Section 4. The discussions of the advantages and limitations in this
work are provided in Section 5, and conclusions are given in Section 6.

2. Materials and Methods
2.1. DFSDAF

FSDAF needs one pair of fine-resolution and coarse-resolution images acquired at
t1 time, and then fine resolution image at t2 time can be reconstruct based on the coarse-
resolution image at t2 time. A similar strategy was also employed in Spatial and Temporal
Adaptive Reflectance Fusion Model (STARFM) and Enhanced Spatial and Temporal Adap-
tive Reflectance Fusion Model (ESTARFM), which introduce additional information of
similar pixels to reduce the uncertainties and to get a more robust prediction at t2. Change
information of all similar pixels summed by weight is considered as the final total change
of the target pixel. Adding the total change to the value of the fine pixel at t1 can realize the
final prediction at t2 [57].

F2(xij, yij, b) = F1(xij, yij, b) +
n

∑
k=1

ωk × ∆F(xk, yk, b) (1)

ωk = (1/Dk)/
n

∑
k=1

(1/Dk) (2)

Dk = 1 +
√
(xk − xij)

2 + (yk − yij)
2/(ω/2) (3)

∆F(xij, yij, b) = r(xij, yij, b) + ∆F(c, b) (4)

where ω is the size of neighborhood, Dk is the relative distance, ωk is the weight for the kth
similar pixel, and ∆F(xij, yij, b) is the change information, which includes spatial change
information r(xij, yij, b) and temporal change information ∆F(c, b) in two parts. FSDAF is
originally designed for fusing the land-surface reflectance data, so ∆F(c, b) is handled as
a simple linear variation over time. However, it is not suitable for LST because LST can
change distinctively in one day. According to the DTC model [58], LST during the day and
LST during the night can be expressed as follows:

Tday = T0 + Td × cos(
π

ω
(t− tm)), t < ts (5)

Tnight = T0 + Td × cos(
π

ω
(ts − tm))× e

−(t−ts)
k , t > ts (6)

k =
ω

π
tan−1(

π

ω
(ts − tm)) (7)

ω =
2

15
arccos(− tan φ× tan δ) (8)

δ = 23.45× sin(
360
365

(284 + DOY)) (9)

where Td is the temperature amplitude, tm is the time at which the temperature reaches
the maximum value, ts is the starting time of the free attenuation, φ is the latitude of
the location, and δ is the solar declination expressed as a function of the day of the year
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(DOY). Therefore, the temporal change information of ∆FLST(c, b) can be redefined as
the following:

∆FLST(c, b) = Tday − Tnight

= Td × (cos( π
ω (t− tm)− cos( π

ω (ts − tm))× e
−(t−ts)

k )
(10)

By replacing ∆F(c, b) in the FSDAF method with ∆FLST(c, b), we constructed the
DFSDAF method.

2.2. TNSTI for the Vegetated Surfaces

In TNSTI, wet soil is mainly assumed to have three parts: dry soil, the air in the soil,
and the water in the soil. The thermal inertia of dry soil only depends on its texture and
structure, which usually remain the same if the soil type or soil structure does not change.
The thermal inertia of the air in the soil is small enough to be ignored. Therefore, the
variation of STI is mainly caused by the variation of the water in the soil (namely SM) [56].
The STI is calculated by using the following equation:

STI =
Rn
√

t2 − t1

T2 − T1
(11)

where Rn is the mean net radiation from t1 to t2, T1 is the LST at t1, and T2 is the LST at t2.
In the same way, STIS for soil thermal inertia and STIV for vegetate fake thermal inertia can
be expressed as follows:

STIS =
RnS
√

t2 − t1

TS2 − TS1
(12)

STIV =
RnV
√

t2 − t1

TV2 − TV1
(13)

where RnS, TS1, and TS2 are the mean net radiation at soil surface and soil surface temper-
ature at t1 and t2, respectively. RnV , TV1, and TV2 are the mean net radiation at canopy
surface and canopy-surface temperature at t1 and t2, respectively. RnS and RnV are the
function of solar radiation (S0), surface albedo (α), downward longwave radiation (Rld)
and upward longwave radiation.

RnS = S0(1− αS) + Rld− σεST4
S (14)

RnV = S0(1− αV) + Rld− σεV T4
V (15)

Rld = σεaT4
a , εa = 1.24(

ea

Ta
)

1
7 (16)

ea = es × RH = 0.6108× exp[
17.27× Ta

Ta + 237.3
]× RH (17)

where σ is the Stefan–Boltzmann constant; εS = 0.95, εV = 0.98, and εa are the emissivity
of soil, vegetation and atmosphere, respectively. Ta is air temperature; ea, es, and RH are
air humidity, saturated air humidity, and relative air humidity, respectively.

The normalized STIs are the representations of relative SM, soil normalized STI
(STINS), and vegetation fake normalized STI (STINV) and can be defined as follows:

STINS =
STIS − STISD

STISW − STISD
(18)

STINV =
STIV − STIVD

STIVW − STIVD
(19)
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where STISD and STISW are the STIS for bare soil surface at wilting point and saturated
status. STIVD and STIVW are the STIV for fully vegetated surface at wilting point and sat-
urated status, respectively. STISD, STISW , STIVD and STIVW can be calculated as follows:

STISD =
RnSD

√
t2 − t1

TSD2 − TSD1
, STISW =

RnSW
√

t2 − t1

TSW2 − TSW1
(20)

STIVD =
RnVD

√
t2 − t1

TVD2 − TVD1
, STIVW =

RnVW
√

t2 − t1

TVW2 − TVW1
(21)

where TSD, TSW , TVD, and TVW are the surface temperature at four extreme points in the
VI-LST trapezoid space. TSD, TSW , TVD, TVW , RnSD, RnSW , RnVD, and RnVW are derived
based on the Pixel Component Arranging and Comparing Algorithm (PCACA) model
proposed by Zhang [59].

In practice, the water source for bare soil and soil under vegetation are usually not the
same. Therefore, a conversion factor, ψi, is needed to correct STINS and STINV .

ψi =
STINSi
STINVi

=
STISi−STISD

STISW−STISD
STIVi−STIVD

STIVW−STIVD

= STISi−STISD
STISW−STISD

× STIVW−STIVD
STIVi−STIVD

(22)

STIsi = ψi
STIVi − STIVD

STIVW − STIVD
(STISW − STISD) + STISD (23)

STIVi = ψi
−1 STISi − STISD

STISW − STISD
(STIVW − STIVD) + STIVD (24)

where the subscript of represents pixel in feature space. The sum of STINS and STINV
weighted by fractional vegetation cover ( f ) will be the final normalized STI (STIM) in
mixed pixel.

STIM = f × STINV + (1− f )× STINS (25)

f =
NDVI − NDVImin

NDVImax − NDVImin
, NDVI =

ρNIR − ρRed
ρNIR + ρRed

(26)

where ρNIR and ρRed are the surface reflectance of the red band and near infrared band
of ASTER, respectively. NDVImin and NDVImax are set as 0.02 and 0.88 according to the
quantiles of NDVI, respectively.

If SM at wilting point (SMD) and SM at saturated status (SMW) are given, the estima-
tion of SM content can be defined as the following equation:

SM = STIM × (SMW − SMD) + SMD (27)

3. Study Area and Datasets
3.1. Study Area and Ground-Based Measurements

Zhangye oasis is located in the middle reach of Heihe River basin in the arid and
semiarid regions of the northwest of China (100◦10′E–100◦32′E, 38◦44′N–39◦00′N; Figure 1),
the terrain is relatively flat at about 1550 m above mean sea level. The climate in this region
is characterized by cold and dry, with an average annual air temperature of 7.3 ◦C and
precipitation of 130.4 mm (from 1971 to 2010), diurnal temperature difference can reach
15–20 K or more. Cropland, orchard, sandy and Gobi Desert, urban/villages, grassland,
and wetland are the main landscapes over Zhangye oasis (Figure 1).
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Figure 1. Distribution of the flux towers and the land-use classifications of Zhangye oasis in the
Heihe River basin. The numeric labels are the IDs of the sites.

Heihe Watershed Allied Telemetry Experimental Research (HiWATER) was performed
at Heihe River Basin in 2012. An observation matrix composed of 21 stations was con-
structed in Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE) over
Zhangye oasis [60–62]. The distribution of the flux towers is shown in Figure 1. Each
station was equipped with a set of Automatic Weather System (AWS), an eddy covariance
(EC) system and several soil moisture sensors. AWS acquired meteorological elements,
such as air temperature, relative humidity, wind speed, wind direction, air pressure, and
net radiation with 10 min intervals. Soil temperature and the soil moisture at different
depths (2, 4, 10, 20, 40, 60, and 100 cm) were collected by soil moisture sensors. Table 1
provided detailed information on the instruments equipped at each station for SM ob-
servations. Moreover, S3 (short for Site 3), S9, S10, and S16 had only ground-based SM
measurements at 2 and 4 cm. Zhangye wetland station (S21) was not equipped with any
soil measurement instruments. Daman superstation (S15) was equipped with eight layers
of SM observations at depths of 2, 4, 10, 20, 40, 80, 120, and 160 cm, respectively. In addition,
four sites (4/20) are placed in bare soil (S4 and S18–S20) and 16 sites (16/20) are placed in
the soil under vegetation (S1–S3, S5–S17) (Figure 1). Moreover, each station is also equipped
with two vertical downward-pointing Infrared Radiation Thermometers (IRTs) to measure
surface temperature. All of these data can be attained from Heihe Plan Science Data Center
(http://www.heihedata.org accessed on 1 February 2022) in 2016.

http://www.heihedata.org
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Table 1. Local overpass time of satellites (UTC + 8 time zone) and the relevant surface observations on
the selected 9 days (date format is MM/DD/YYYY); t1 is the overpass time for MODIS Aqua at night,
namely the time for the reconstructed ASTER-like data; t2 is the overpass time for ASTER during the
day; S0, Ta, and RH are solar radiation, air temperature, and relative air humidity, respectively.

Date DOY t1 (UTC + 8) t2 (UTC + 8) S0 (W/m2) Ta (◦C) RH (%)

6/15/2012 167 2.3 12.317 910 24.83 33.77
6/24/2012 176 2.2 12.216 932 25.66 30.16
7/10/2012 192 2.2 12.217 925 25.98 46.01
8/02/2012 215 2.3 12.318 916 27.94 42.54
8/11/2012 224 2.2 12.214 873 25.26 56.69
8/18/2012 231 2.3 12.318 891 24.00 51.31
8/27/2012 240 2.2 12.216 873 26.46 36.91
9/03/2012 247 2.3 12.319 869 19.03 45.52
9/12/2012 256 2.2 12.216 822 13.64 45.23

3.2. Remote-Sensing Data and Other SM Products

In this study, nine ASTER images on cloud-free or cloud-few days (15 June-DOY 167,
24 June-DOY 176, 10 July-DOY 192, 2 August-DOY 215, 11 August-DOY 224, 18 August-
DOY 231, 27 August-DOY 240, 3 September-DOY 247, and 12 September-DOY 256) in 2012
were acquired from Heihe Plan Science Data Center (http://www.heihedata.org accessed
on 1 February 2022) in 2016. The visible and near-infrared (NIR) bands with a spatial
resolution of 15 m were used to estimate surface albedo and vegetation fraction. The
thermal infrared bands with a spatial resolution of 90 m were adopted to retrieve LST, using
a temperature/emissivity separation (TES) approach [63,64]. The local overpass time for
ASTER was around 12:10–12:20 p.m. (Table 1). The corresponding MODIS LST products
(MOD11A1) were collected from the Land Processes Distributed Active Archive Center (LP
DAAC) (http://www.glovis.usgs.gov/ accessed on 1 February 2022). The local overpass
time for MODIS Aqua was around 2:10–2:20 a.m. (Table 1). In order to meet the input data
requirements of TNSTI model, the LST data of MODIS Aqua during the night were chosen
in this study.

The other SM products mainly include the passive microwave SM products from
AMSR2/AMSR-E and modeled-based SM products from ERA5-land and GLDAS-Noah.
AMSR2/AMSR-E datasets can be freely accessed at https://search.earthdata.nasa.gov
accessed on 1 February 2022, ERA5-land SM products can be freely accessed at https:
//www.ecmwf.int/en/era5-land accessed on 1 February 2022, and GLDAS-Noah SM prod-
ucts can be freely accessed at https://ldas.gsfc.nasa.gov/gldas accessed on 1 February 2022.

4. Results and Analysis
4.1. Validation of Night ASTER-like LSTs from DFSDAF

In order to reduce uncertainty and increase comparability, the average value of two
infrared temperature observations at each station was utilized to evaluate the performance
of the reconstructed ASTER-like LST during the night. The validation results are shown in
Figure 2, and they indicate that the ASTER-like LSTs at night reconstructed by FSDAF and
DFSDAF were generally in good agreement with in situ measurements. The determination
coefficients (R2) for two methods are all above 0.7, and root mean square errors (RMSEs)
are all bellow 2.2 K for these two methods. Compared to FSDAF, the DFSDAF has a higher
prediction accuracy, with R2 of 0.771, and RMSE of 1.895 K. Meanwhile, FSDAF performed
slightly worse, with R2 of 0.710 and RMSE of 2.173 K. Therefore, the DFSDAF model is
more capable of predicting ASTER-like LSTs than FSDAF.

http://www.heihedata.org
http://www.glovis.usgs.gov/
https://search.earthdata.nasa.gov
https://www.ecmwf.int/en/era5-land
https://www.ecmwf.int/en/era5-land
https://ldas.gsfc.nasa.gov/gldas
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Figure 2. Validation of night ASTER-like LST by (a) DFSDAF and (b) FSDAF. The red dashed lines are
the 1:1 lines, and the blue solid lines represent the best fit linear relationship. R2 is the determination
coefficient, MAE is the mean absolute error, and RMSE is the root mean square error.

Statistic comparisons between FSDAF and DFSDAF on the five different land-use
types are provided in Table 2. Table 2 shows that the LST during the night was generally
cool (<290 K) for all land covers, but there was a slight difference among them. The
highest and lowest night LSTs were recorded in wetland and cropland, respectively. Both
methods performed better over Gobi/desert or wetland where the surface is relatively
more homogeneous than the other land-use types.

Table 2. Statistic comparisons between FSDAF and DFSDAF on different land-cover types.

Land Cover
Mean

Observation
(K)

FSDAF DFSDAF

Mean
LSTnight (K) R2 MAE

(K)
RMSE

(K)
Mean

LSTnight (K) R2 MAE
(K)

RMSE
(K)

Cropland 284.798 284.594 0.694 1.738 2.19 284.442 0.747 1.697 1.913
Urban/village 286.365 285.521 0.699 2.293 2.517 286.51 0.736 1.758 2.158

Orchard 285.261 285.043 0.551 1.587 2.202 285.473 0.636 1.993 2.186
Gobi/desert 285.47 285.564 0.904 1.385 1.728 284.966 0.943 1.569 1.802

Wetland 287.798 288.302 0.796 1.481 1.944 288.014 0.863 1.285 1.538

The spatial distribution of the ASTER-like LST during the night from DFSDAF and
ASTER LST during the day over the Zhangye oasis based on the DFSDAF from DOY 167
to 256 in 2012 is displayed in Figure 3. Generally, the spatial patterns of ASTER-like LST
during the night are similar to the patterns of ASTER LST during the day that exhibit
significant spatial variability. In addition, the night ASTER-like LSTs are all bellow 300 K,
and the diurnal temperature difference can reach 20 K and even more. The higher LST
during the night is mainly distributed in water bodies, wetlands, and some urban/villages,
due to the slow cooling of water and possible artificial heat sources in urban/villages.
Missing values in ASTER-like night LSTs are mainly caused by the missing values in the
original MODIS LST products. A small number of clouds affect the reconfiguration result
of LST on DOY 224.
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Figure 3. Spatial distribution of LST during the night (LST_night) from DFSDAF and LST during the
day (LST_day) over the Zhangye oasis from DOY 167 to 256 in 2012.

4.2. Validation of SMs from TNSTI for the Vegetated Surfaces

According to the soil hydrological reference data from the West Data Center (http:
//westdc.westgis.ac.cn/ accessed on 1 February 2022), the SM at wilting point (SMD) and

http://westdc.westgis.ac.cn/
http://westdc.westgis.ac.cn/
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SM at saturated status (SMW) for the Zhangye oasis are 0.072 m3/m3 and 0.356 m3/m3,
respectively. The field-scale SMs estimated from the TNSTI model over the vegetated areas
were further compared with the in situ SM observations at different depths collected from
20 sites on the selected 9 days. The statistical comparisons are shown in Figure 4.

Figure 4. Comparisons of SM estimates from the TNSTI model over the vegetated areas with in situ
observations at different depth: (a) 2 cm, (b) 4cm, (c) 10 cm, (d) 20 cm, (e) 40 cm, (f) 60 cm, and
(g) 100 cm; (h) mean of SMs at all depths. The red dashed lines are the 1:1 lines, and the blue solid
lines represent the best fit linear relationship. R2 is the determination coefficient, MAE is the mean
absolute error, and RMSE is the root mean square error.

The results show an overall reasonably consistent between the estimated SMs and
measured SMs at different depths, except for 40 cm in depth (R2 > 0.5). SM estimates
correlate with the observations at 10 cm depth at most, with R2 of 0.657 and RMSE of
0.069 m3/m3, while the least correlation is at 40 cm in depth, with R2 of 0.262 and RMSE
of 0.092 m3/m3. Moreover, TNSTI has significantly underestimated SMs at 2, 4, 10, and
20 cm depths and slightly overestimated at 60 and 100 cm depths (Figure 4). In addition,
by comparing Figure 4h with Figure 4a,b, we see that the correlations between the mean of
SMs at all depths and the estimated SMs are superior to those between the SM observations
at 2 or 4 cm depth (SM_2 cm or SM_4 cm). It emphasizes that the SMs estimated by TNSTI
for the vegetated surfaces are more capable of characterizing the SM variations in the root
zone or even deeper, which represents a deeper SM status than that of the microwave SM
products (the depth is less than 5 cm). In terms of the depth of estimated SMs, thermal
inertia-based SMs estimates outperform the microwave-based SM products.

In order to further investigate the performance of TNSTI in SM estimations based on
diurnal LST difference, the comparisons between the estimated SM using TNSTI based
on ASTER/ASTER-like LST data (TNSTI_ASTER) and the estimated SM using TNSTI
based on MODIS Aqua LST data (TNSTI_MODIS) are also provided in Table 3. Table 3
illustrates that the estimated SMs from TNSTI_MODIS and TNSTI_ASTER are both in
good agreement with in situ observations at all depths. However, the TNSTI_ASTER
outperforms TNSTI_MODIS at all depths according to the results of the t-test (p < 0.05)
with a higher R2 and a lower RMSE. Moreover, the TNSTI_ASTER has a higher spatial
resolution (90 m) than TNSTI_MODIS (1 km).
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Table 3. Comparisons between the estimated SM, using TNSTI based on ASTER/ASTER-like LST
data, and the estimated SM, using TNSTI based on MODIS Aqua LST data at different depths (2, 4,
10, 20, 40, 60, and 100 cm and the mean SM of all depths).

Depth
TNSTI_MODIS TNSTI_ASTER

R2 MAE
(m3/m3)

RMSE
(m3/m3) R2 MAE

(m3/m3)
RMSE

(m3/m3)

SM_02 cm 0.439 0.098 0.102 0.500 0.078 0.096
SM_04 cm 0.465 0.082 0.097 0.586 0.059 0.073
SM_10 cm 0.495 0.074 0.091 0.657 0.055 0.069
SM_20 cm 0.402 0.088 0.101 0.540 0.058 0.073
SM_40 cm 0.224 0.095 0.118 0.262 0.071 0.092
SM_60 cm 0.422 0.083 0.094 0.563 0.062 0.078
SM_100 cm 0.456 0.084 0.096 0.596 0.068 0.081
SM_mean 0.494 0.077 0.085 0.622 0.045 0.060

Moreover, the comparisons between the estimated SMs from TNSTI method for the
vegetated surfaces and other SM products, including AMSR2/AMSR-E, GLDAS-Noah,
and ERA5-land, were also performed. Observations from all sites were averaged as
the final SM representative to match these SM products due to their coarse spatial res-
olutions. The results (Table 4) show that the estimated SMs from TNSTI model (both
SM_TNSTI_MODIS and SM_TNSTI_ASTER) are closer to the SMs in the root zone, while
SMs from AMSR2/AMSR-E, GLDAS-Noah, or ERA5-land are closer to SMs in the surface
layer. A serious underestimation will occur when using AMSR2/AMSR-E, GLDAS-Noah,
or ERA5-land SM products to characterize the root zone SMs in model simulation or
hydrological applications.

Comparisons between SMs estimated by TNSTI and SMs measured at stations on
different land-use types are provided in Table 5. It shows that the SM estimated from
TNSTI over the vegetated areas is significantly different from the SM at any depth for each
land-cover type. This result also reveals that thermal inertia-based SM estimates may reflect
the SM status in the root zone or even deeper.

Figure 5 shows the spatial distribution of estimated field-scale SMs from TNSTI for
the vegetated surfaces over the Zhangye oasis from DOY 167 to 256 in 2012. The spatial
patterns of field-scale SMs based on TNSTI demonstrated significantly spatial variability.
The crops over Zhangye oasis are grown from mid-June to early September, and extensive
irregular flood irrigations are carried out during this period. Therefore, SM over Zhangye
oasis can be maintained at high values. This phenomenon has been well captured by SM
estimates from TNSTI at the field scale. SM is relatively low in the early and late crop
growth period (DOY 167, 176, 240, 247, and 256), whereas SM is relatively high in the crop
growth period (DOY 192, 215, 224, and 231) due to the irrigations. Ignoring the driest sandy
and Gobi Desert, the southwest region of Zhangye oasis and Zhangye wetland are slightly
wetter than the other regions on DOY 167, 176, 240, and 247. The croplands over Zhanye
oasis are overall wet from DOY 192 to 231. SM dries out quickly due to a lack of irrigation
from DOY 240. A small number of clouds affected the ASTER-like LST during the night,
which led to some unreasonable SM estimates on DOY 224.

Figure 6 presents the time-series behaviors of field-scale SM estimates based on TNSTI
for the vegetated surfaces and field observations. The variations of SM from TNSTI over
time shows a great consistency with that of the SM measurements. Meanwhile, it showed
a big potential advantage in representing the average situation of SM in the root zone
or deeper.
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Table 4. Comparisons between the estimated SMs from the TNSTI method for the vegetated surfaces and AMSR2/AMSR-E, GLDAS-Noah, and ERA5-land SM
products (date format is MM/DD/YYYY; unit is m3/m3 in the table).

Date SM
02 cm

SM
04 cm

SM
10 cm

SM
20 cm

SM
40 cm

SM
60 cm

SM
100 cm

SM
Mean AMSR2/AMSR-E GLDAS-Noah ERA5-Land SM_TNSTI_MODIS SM_TNST_ASTER

6/15/2012 0.190 0.218 0.239 0.261 0.297 0.307 0.301 0.255 - 0.133 0.139 0.240 0.278
6/24/2012 0.212 0.261 0.243 0.255 0.292 0.308 0.304 0.272 - 0.205 0.122 0.346 0.261
7/10/2012 0.209 0.247 0.253 0.263 0.296 0.312 0.308 0.267 0.093 0.169 0.130 0.388 0.297
8/02/2012 0.249 0.279 0.274 0.296 0.316 0.315 0.301 0.295 0.110 0.173 0.181 0.381 0.311
8/11/2012 0.249 0.271 0.242 0.253 0.296 0.302 0.308 0.288 0.168 0.227 0.176 0.370 0.309
8/18/2012 0.250 0.264 0.232 0.246 0.286 0.296 0.308 0.280 0.117 0.168 0.249 0.377 0.326
8/27/2012 0.242 0.265 0.258 0.274 0.319 0.317 0.307 0.280 0.093 0.133 0.126 0.273 0.286
9/03/2012 0.232 0.250 0.243 0.248 0.295 0.302 0.307 0.266 0.110 0.139 0.208 0.277 0.288
9/12/2012 0.186 0.214 0.208 0.223 0.276 0.288 0.303 0.236 0.097 0.148 0.150 0.230 0.232
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Table 5. Mean of SM observations at different depths (2, 4, 10, 20, 40, 60, and 100 cm) and mean
estimated SM from TNSTI for vegetated surface for each land-use type.

Land Cover
Mean Observation (m3/m3)

TNSTI_ASTER (m3/m3)
2 cm 4 cm 10 cm 20 cm 40 cm 60 cm 100 cm

Cropland 0.2334 0.2671 0.2825 0.2918 0.317 0.3439 0.3431 0.3166
Urban/villages 0.0884 0.1221 0.1832 0.1623 0.2481 0.2476 0.2032 0.1833

Orchard 0.2546 0.2714 0.2897 0.3026 0.3603 0.3671 0.4134 0.3182
Gobi/desert 0.0850 0.0778 0.0719 0.0673 0.2192 0.0751 0.0440 0.1252

Figure 5. Spatial distribution of estimated field-scale SMs based on TNSTI for the vegetated surfaces
over the Zhangye oasis during the vegetation growing season from June to September in 2012.
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Figure 6. Time-series comparison between estimated SM based on TNSTI model and in situ observa-
tions at different depths. The gray solid line stands for SM at 2 cm, the red dashed line stands for SM
at 4 cm, the light blue solid line stands for SM at 10 cm, the light green dashed line stands for SM
at 20 cm, the brown solid line stands for SM at 40 cm, the light yellow dashed line stands for SM at
60 cm, the light purple solid line stands for SM at 100 cm, and the triangle deep blue points stands for
the SM estimates from TNSTI model.

In summary, the estimated field-scale SMs based on the TNSTI model for the vegetated
surfaces over Zhangye oasis are proven reliable and reasonable.

5. Discussion
5.1. Analysis of the Possible Reasons for the Correlations at Different Depths

In order to further explain the possible reasons for the correlations between SM
estimates and ground-based observations at different depths, soil-temperature profiles and
soil-moisture profiles at the site-scale were analyzed. Figures 7 and 8 show soil-temperature
profiles and soil-moisture profiles at Daman superstation (S15) from 8:10 a.m. to 4:10 p.m.
on DOY 176, 192, 215, and 247 in 2012, respectively.

Figure 7 indicates that the downward solar radiation, which is closely related to soil
heat flux, reaches the soil depth of 20 cm from sunrise to overpass time of ASTER. The
depth below 20 cm has not been affected by heat energy yet, which is seen from the upward
heat flux from 40 cm or deeper. Therefore, the SM estimates based on the TNSTI for the
vegetated surface have a higher correlation with the observations above 20 cm. Under
the condition that no errors or mistakes happened in the measurements, Figure 8 presents
there are two distinct soil inverse wet layers occurring from 0 to 160 cm. One lies in
20 cm to 40 cm, and the other lies from 120 to 160 cm. Soil texture and soil structure may
differ significantly above and below the inverse wet layer, which would result in dramatic
changes in the soil’s wet and dry conditions as well. This may explain the lowest correlation
between estimated SM and the in situ observations at 40 cm depth. Moreover, the existence
of SM under the extremely dry status may increase the correlation between SM estimates
and the observations at deeper depths (Figure 4f,g).
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Figure 7. Soil-temperature profiles at Daman superstation (S15) from 8:10 a.m. to 4:10 p.m. on DOY
176, 192, 215, and 247 in 2012. (a) DOY 176 in June, (b) DOY 192 in July, (c) DOY 215 in August, and
(d) DOY 247 in September. The bold red line represents the local overpass time for ASTER.

Figure 8. Soil moisture profiles at Daman superstation (S15) from 8:10 a.m. to 4:10 p.m. on DOY
176, 192, 215, and 247 in 2012. (a) DOY 176 in June, (b) DOY 192 in July, (c) DOY 215 in August, and
(d) DOY 247 in September. The red bolded line represents the local overpass time for ASTER.
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5.2. Uncertainty and Limitations

The results verify that the TNSTI model can accurately estimate field-scale SM at
a spatial resolution of 90 m for the vegetated surfaces. However, some uncertainties
and limitations of this method still merit careful attention. (1) TNSTI model is based on
Optical/Thermal Infrared (TIR) remote-sensing data, which shows some disadvantages in
all-weather or all-day capability compared to the microwave products. (2) TNSTI would
be easily affected by clouds, as the accuracy of outputs may decrease for the places with
cloud cover. (3) The spatial representation of in situ measurements is limited due to the
significant spatial variability of SM, leading to uncertainties in the SMs validations. (4) The
quality of the fused LSTs at night may also bring the errors and uncertainties into SMs’
estimates. Moreover, the fused LST at the overpass time of MODIS Aqua is different from
the LST at sunrise. Replacing the LST at sunrise with the reconstructed ASTER-like LST
at dawn would also produce uncertainties in SM estimates. (5) The determination of the
theoretical dry and cold edges in VI-LST trapezoid feature space will also introduce the
uncertainty into the normalized STI calculation and the SMs estimates.

Some validations and comparisons of remotely sensed SM estimate models have
been conducted over Heihe River Basin. Li [65] used the airborne Polarimetric L-band
Multibeam Radiometer (PLMR) and MODIS data to retrieve SM at the spatial resolution
of 700 m in the Zhangye oasis and reported that RMSE was 0.04 m3/m3 for SM. Ma [66]
applied a real thermal inertia (RTI) model based on MODIS data in Heihe River Basin
and showed RMSE of the produced SM was 0.072 m3/m3 and R2 was 0.36, respectively.
Luo [67] adopted a change-detection model, constructed using the Sentinel-1 SAR data
and MODIS and Landsat 8 Normalized Difference Vegetation Index (NDVI) and showed
the Landsat 8 NDVI-based change-detection model slightly outperformed the MODIS
NDVI-based model with RMSE of 0.044 m3/m3. Li [68] used the Hydrus-1D model to
simulate the soil profile moisture migration process and all the water flux of maize field in
the midstream of the Heihe River Basin and showed that RMSE of SM was 0.046 m3/m3. In
this study, R2 and RMSE of the modeled SM from TNSTI model are 0.622 and 0.060 m3/m3,
respectively. This illustrates that the performance of TNSTI for the SM estimates over the
vegetated surfaces is reliable and comparable to the prior studies.

5.3. Future Work

This study provides a feasible method and an operable process for estimating field-
scale SM at a high spatial resolution (<100 m) over the vegetated areas. This method is not
specifically designed for ASTER data, as it can also be applied to the similar data, such
as Landsat-series, HJ-series, GF-series, Sentinel-series, etc., and it can also be performed
on other regions or a larger scale. Moreover, new approaches for transforming the LST
at dawn into the LST at sunrise and determining the theoretical dry and cold edges in
the VI-LST trapezoid feature space are urgently needed to further improve the accuracy
of the estimated field-scale SM based on TNSTI model for the vegetated surfaces. In
addition, the potential advantages of combining Optical/Thermal Infrared remote sensing
and microwave remote sensing in SM estimates should not be ignored. Finally, newly
emerging satellite observations at high spatiotemporal resolution for diurnal cycling need
to be explored further.

6. Conclusions

In this study, a new method for spatiotemporal data fusion (DFSDAF) was proposed
by introducing DTC into FSDAF for characterizing the variations of LST over time. The
ASTER-like LSTs during the night were successfully reconstructed by fusing ASTER and
MODIS LST, using DFSDAF. The estimation of the field-scale SM at a 90 m spatial resolution
based on the TNSTI model for the vegetated surfaces was performed over the Zhangye
oasis in the Heihe River basin. The estimated field-scale SMs were compared with in situ
observations from the HiWATER-MUSOEXE during the vegetation growing season in 2012.
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The results showed that (1) the DFSDAF increases the accuracy of fused LSTs compared
to FSDAF (2) TNSTI provides a reliable performance in field-scale SM estimates, which
is generally good agreement with the in situ observations. Moreover, the field-scale SM
at high spatial resolution (90 m) shows a significant spatiotemporal variability. (3) The
estimated SM based on TNSTI for the vegetated surfaces can characterize the SM variations
in the root zone or even deeper, which cannot be reflected by the microwave SM products.

In summary, TNSTI effectively improves the capabilities of the field-scale SM estimates
over the vegetated surfaces at a high spatial resolution, which can provide favorable data
supports for hydrological model simulations and show potential advantages for agricultural
refinement management and smart agriculture.
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