Modern Dryland Source-to-Sink System Segments and Coupling Relationships from Digital Elevation Model Analysis: A Case Study from the Mongolian Altai
Abstract
:1. Introduction
2. Geological Setting
3. Dataset and Methods
3.1. Jargalant Nuruu Modern S2S System Dataset
3.2. Multi-Order Modern S2S System Analysis Methods
4. Results
4.1. Source Catchment Drainage Segment Analysis
4.1.1. Bedrock Properties and Distribution Features
4.1.2. Multi-Order Catchment Unit Characteristics and Sub-S2S System Division
4.2. Sink-Sedimentary Response in the Depositional Area
4.2.1. Eastern Source-to-Sink System (S2S-E)
4.2.2. Western Source-to-Sink System (S2S-W)
4.2.3. Southern Source-to-Sink System (S2S-S)
5. Discussion
5.1. Source-to-Sink System Coupling Models
5.1.1. Steep Slope System Coupled Model of S2S-E
5.1.2. Gentle Slope System Coupled Model of S2S-W
5.1.3. Transformation Zone System Coupled Model of S2S-S
5.2. Reliability of Multi-Order Sub-S2S Systems Analysis
5.3. Potential Controlling Factors for the Diversity of Sub-S2S Systems
5.3.1. Tectonic Activity
5.3.2. Bedrock Properties
5.3.3. Geomorphology from Source to Sink
5.3.4. Climatic Conditions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Allen, P.A. From landscapes into geological history. Nature 2008, 451, 274–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, P.A. Time scales of tectonic landscapes and their sediment routing systems. Geo. Soc. Lond. Spec. Pub. 2008, 296, 7–28. [Google Scholar] [CrossRef]
- Allen, P.A.; Densmore, A.L. Sediment flux from an uplifting fault block. Basin Res. 2000, 12, 367–380. [Google Scholar] [CrossRef]
- Martinsen, O.J.; Sømme, T.O.; Thurmond, J.B.; Helland-Hansen, W.; Lunt, I. Source-to-sink systems on passive margins: Theory and practice with an example from the Norwegian continental margin. Geol. Soc. Lond. Pet. Geol. Conf. Ser. 2011, 7, 913–920. [Google Scholar] [CrossRef]
- Sømme, T.O.; Helland-Hansen, W.; Martinsen, O.J.; Thurmond, J.B. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems. Basin Res. 2009, 21, 361–387. [Google Scholar] [CrossRef]
- Sømme, T.O.; Jackson, C.A.; Vaksdal, M. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: Part 1—depositional setting and fan evolution. Basin Res. 2013, 25, 489–511. [Google Scholar] [CrossRef]
- Sømme, T.O.; Jackson, C.A. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: Part 2—Sediment dispersal and forcing mechanisms. Basin Res. 2013, 25, 512–531. [Google Scholar] [CrossRef]
- Teixeira, B.M.N.; Astini, R.A.; Gomez, F.J.; Morales, N.; Pimentel, M.M. Source-to-sink analysis of continental rift sedimentation: Triassic Cuyo basin, Precordillera Argentina. Sediment. Geol. 2018, 376, 164–184. [Google Scholar] [CrossRef] [Green Version]
- Tinker, J.; de Wit, M.; Brown, R. Linking source and sink: Evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break-up, South Africa. Tectonophysics 2008, 455, 94–103. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhu, H.; Mei, L.; Du, J.; Zeng, H.; Xu, X.; Dong, X. Multilevel source-to-sink (S2S) subdivision and application of an ancient uplift system in South China Sea: Implications for further hydrocarbon exploration. J. Petrol. Sci. Eng. 2019, 181, 106220. [Google Scholar] [CrossRef]
- Wang, X.; Shao, L.; Eriksson, K.A.; Yan, Z.; Wang, J.; Li, H.; Zhou, R.; Lu, J. Evolution of a plume-influenced source-to-sink system: An example from the coupled central Emeishan large igneous province and adjacent western Yangtze cratonic basin in the Late Permian, SW China. Earth Sci. Rev. 2020, 207, 103224. [Google Scholar] [CrossRef]
- Helland-Hansen, W.; Sømme, T.O.; Martinsen, O.J.; Lunt, I.; Thurmond, J. Deciphering earth’s natural hourglasses: Perspectives on source-to-sink analysis. J. Sediment. Res. 2016, 86, 1008–1033. [Google Scholar] [CrossRef]
- Xue, Y.; Zhao, M.; Liu, X. Reservoir characteristics and controlling factors of the metamorphic buried hill of Bozhong Sag, Bohai Bay Basin. J. Earth Sci. 2021, 32, 919–926. [Google Scholar] [CrossRef]
- Mao, Z.; Zhu, R.; Wang, J.; Luo, J.; Su, L. Characteristics of diagenesis and pore evolution of volcanic reservoir: A case study of Junggar Basin, Northwest China. J. Earth Sci. 2021, 32, 960–971. [Google Scholar] [CrossRef]
- Cui, J.; Yuan, X.; Wu, S.; Zhang, R.; Jin, S.; Li, Y. Rock Types and Reservoir Characteristics of Shahejie Formation Marl in Shulu Sag, Jizhong Depression, Bohai Bay Basin. J. Earth Sci. 2021, 32, 986–997. [Google Scholar] [CrossRef]
- He, W.; Barzgar, E.; Feng, W.; Huang, L. Reservoirs patterns and key controlling factors of the Lenghu Oil & Gas Field in the Qaidam Basin, Northwestern China. J. Earth Sci. 2021, 32, 1011–1021. [Google Scholar]
- Fanka, A.; Kasiban, C.; Tsunogae, T.; Tsutsumi, Y.; Sutthirat, C. Petrochemistry and zircon U-Pb geochronology of felsic xenoliths in Late Cenozoic gem-related basalt from Bo Phloi Gem Field, Kanchanaburi, Western Thailand. J. Earth Sci. 2021, 32, 1035–1052. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Z.; Tian, D.; Xing, D.; Zhang, L.; Yang, F.; Li, B.; Liu, M.; Shi, Y.; Zhang, C. Geochronological framework of Paleoproterozoic intrusive rocks and its constraints on tectonic evolution of the Liao-Ji Belt, Sino-Korean Craton. J. Earth Sci. 2021, 32, 8–24. [Google Scholar] [CrossRef]
- Xiong, G.; Yu, W.; Du, Y.; Weng, S.; Pang, D.; Deng, X.; Zhou, J. Provenance of lower carboniferous bauxite deposits in Northern Guizhou, China: Constraints from geochemistry and detrital zircon U-Pb ages. J. Earth Sci. 2021, 32, 235–252. [Google Scholar] [CrossRef]
- Shen, T.; Wang, G. Detrital zircon fission-track thermochronology of the present-day river drainage system in the Mt. Kailas Area, Western Tibet: Implications for multiple cooling stages of the Gangdese Magmatic Arc. J. Earth Sci. 2021, 31, 896–904. [Google Scholar] [CrossRef]
- Romans, B.W.; Castelltort, S.; Covault, J.A.; Fildani, A.; Walsh, J.P. Environmental signal propagation in sedimentary systems across timescales. Earth Sci. Rev. 2016, 153, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Bentley, S.J.; Blum, M.D.; Maloney, J.; Pond, L.; Paulsell, R. The Mississippi River source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth Sci. Rev. 2016, 153, 139–174. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.B.; Wallace, D.J.; Simms, A.R.; Rodriguez, A.B.; Weight, R.W.R.; Taha, Z.P. Recycling sediments between source and sink during a eustatic cycle: Systems of late Quaternary northwestern Gulf of Mexico Basin. Earth Sci. Rev. 2016, 153, 111–138. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhu, H.; Zhu, X.; Zeng, H.; Li, S.; Zhu, X. Proportional relationship between the flux of catchment-fluvial segment and their sedimentary response to diverse bedrock types in subtropical lacustrine rift basins. Mar. Petrol. Geol. 2019, 107, 351–364. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhu, H.; Yang, X.; Zeng, H.; Xia, C.; Chen, Y. Using seismic geomorphology and detrital zircon geochronology to constrain provenance evolution and its response of Paleogene Enping Formation in the Baiyun Sag, Pearl River Mouth Basin, South China sea: Implications for paleo-Pearl River drainage evolution. J. Petrol. Sci. Eng. 2019, 177, 663–680. [Google Scholar]
- Zhao, Q.; Zhu, H.; Zhang, X.; Liu, Q.; Qiu, X.; Li, M. Geomorphologic reconstruction of an uplift in a continental basin with a source-to-sink balance: An example from the Huizhou-Lufeng uplift, Pearl River Mouth Basin, South China sea. Mar. Petrol. Geol. 2021, 128, 104984. [Google Scholar] [CrossRef]
- Laberg, J.S.; Andreassen, K.; Knies, J.; Vorren, T.O.; Winsborrow, M. Late Pliocene–Pleistocene development of the Barents Sea ice sheet. Geology 2010, 38, 107–110. [Google Scholar] [CrossRef]
- Walton, M.A.L.; Gulick, S.P.S.; Reece, R.S.; Barth, G.A.; Christeson, G.L.; Van Avendonk, H.J.A. Dynamic response to strike–slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska. Geosphere 2014, 10, 680–691. [Google Scholar] [CrossRef]
- Wellner, J.S.; Lowe, A.L.; Shipp, S.S.; Anderson, J.B. Distribution of glacial geomorphic features on the Antarctic continental shelf and correlation with substrate: Implications for ice behavior. J. Glaciol. 2001, 47, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, J.M.; Koppes, M.N. The role of the cryosphere in source-to-sink systems. Earth Sci. Rev. 2016, 153, 43–76. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Ali, S.N.; Champati Ray, P.K. Glacier-glacial lake interactions and glacial lake development in the central Himalaya, India (1994–2017). J. Earth Sci. 2021, 32, 1563–1574. [Google Scholar] [CrossRef]
- Veettil, B.K.; Kamp, U. Glacial lakes in the Andes under a changing climate: A Review. J. Earth Sci. 2021, 32, 1575–1593. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Q.; Zhu, H.; Zhang, X.; Li, M.; Zhao, Q. Compositional relationship between the source-to-sink segments and their sedimentary response to diverse geomorphology types in the intrabasinal lower uplift of continental basins. Mar. Petrol. Geol. 2021, 123, 104716. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, H.; Zeng, H.; Liu, Q. Linking between bedrock lithology and sedimentary systems in Lake Erhai Basin, southwest China, with respect to source to sink. Interpretation 2017, 5, ST53–ST64. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, H.; Zeng, H.; Liu, Q.; Zhu, X. Differential source-to-sink system analysis for three types of stepped terrains in China. Interpretation 2017, 5, ST1–ST9. [Google Scholar] [CrossRef]
- Henares, S.; Donselaar, M.E.; Caracciolo, L. Depositional controls on sediment properties in dryland rivers: Influence on near-surface diagenesis. Earth Sci. Rev. 2020, 208, 103297. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Bates, P.; Neal, J.; Tooth, S.; Hawker, L.; Maffei, C. Digital Elevation Models for topographic characterisation and flood flow modelling along low-gradient, terminal dryland rivers: A comparison of spaceborne datasets for the Río Colorado, Bolivia. J. Hydrol. 2020, 591, 125617. [Google Scholar] [CrossRef]
- Whalley, W.B. Geomorphological information mapping of debris-covered ice landforms using Google Earth: An example from the Pico de Posets, Spanish Pyrenees. Geomorphology 2021, 393, 107948. [Google Scholar] [CrossRef]
- Nottebaum, V.; Lehmkuhl, F.; Stauch, G.; Lu, H.; Yi, S. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor—An example from northern Chinese drylands. Geomorphology 2015, 250, 113–127. [Google Scholar] [CrossRef]
- Li, J.; Donselaar, M.E.; Aria, S.E.H.; Koenders, R.; Oyen, A.M. Landsat imagery-based visualization of the geomorphological development at the terminus of a dryland river system. Quat. Int. 2014, 352, 100–110. [Google Scholar] [CrossRef]
- Nissen, E.; Walker, R.; Molor, E.; Fattahi, M.; Bayasgalan, A. Late Quaternary rates of uplift and shortening at Baatar Hyarhan (Mongolian Altai) with optically stimulated luminescence. Geophys. J. Int. 2009, 177, 259–278. [Google Scholar]
- Parfeevets, A.V.; Sankov, V.A. Late Cenozoic tectonic stress fields of the Mongolian microplate. Comptes Rendus Geosci. 2012, 344, 227–238. [Google Scholar] [CrossRef]
- Khukhuudei, U. The origin of the Great Lakes Basin, Western Mongolia: Not the super flooding, but glaciated super valley. Geogr. Tour. 2015, 3, 39–47. [Google Scholar]
- Nissen, E.; Walker, R.T.; Bayasgalan, A.; Carter, A.; Fattahi, M.; Molor, E.; Schnabel, C.; West, A.J.; Xu, S. The late Quaternary slip-rate of the Har-Us-Nuur fault (Mongolian Altai) from cosmogenic 10Be and luminescence dating. Earth Planet. Sci. Lett. 2009, 286, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Gregory, L.C.; Niocaill, C.M.; Walker, R.T.; Bayasgalan, G.; Craig, T.J. Vertical axis rotation (or lack thereof) of the eastern Mongolian Altay Mountains: Implications for far-field transpressional mountain building. Tectonophysics 2018, 736, 31–46. [Google Scholar] [CrossRef]
- Baljinnyam, I.; Bayasgalan, A.; Borisov, B.A.; Cisternas, A.; Dem’yanovich, M.G.; Ganbaatar, L.; Kochetkov, V.M.; Kurushin, R.A.; Molnar, P.; Philip, H.; et al. Ruptures of major earthquakes and active deformation in Mongolia and its surroundings. Geol. Soc. Am. Memoir 1993, 181, 62. [Google Scholar]
- Nissen, E.; Emmerson, B.; Funning, G.J.; Mistrukov, A.; Parsons, B.; Robinson, D.P.; Rogozhin, E.; Wright, T.J. Combining InSAR and seismology to study the 2003 Siberian Altai earthquakes-dextral strike-slip and anticlockwise rotations in the northern India–Eurasia collision zone. Geophys. J. Int. 2007, 169, 216–232. [Google Scholar] [CrossRef] [Green Version]
- Bayasgalan, A.; Jackson, J.; McKenzie, D. Lithosphere rheology and active tectonics in Mongolia: Relations between earthquake source parameters, gravity and GPS measurements. Geophys. J. Int. 2005, 163, 1151–1179. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, M.; Ritz, J.-F.; Vassallo, R.; Larroque, C.; Braucher, R.; Todbileg, M.; Chauvet, A.; Sue, C.; Arnaud, N.; De Vicente, R.; et al. Mongolian summits: An uplifted, flat, old but still preserved erosion surface. Geology 2007, 35, 871–874. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.T.; Bayasgalan, A.; Carson, R.; Hazlett, R.; McCarthy, L.; Mischler, J.; Molor, E.; Sarantsetseg, P.; Smith, L.; Tsogtbadrakh, B.; et al. Geomorphology and structure of the Jid right-lateral strike-slip fault in the Mongolian Altay mountains. J. Struct. Geol. 2006, 28, 1607–1622. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Tapete, D.; Traviglia, A.; Delpozzo, E.; Cigna, F. Regional-scale systematic mapping of archaeological mounds and detection of looting using COSMO-SkyMed high resolution DEM and satellite imagery. Remote Sens. 2021, 13, 3106. [Google Scholar] [CrossRef]
- Yin, Q.; Chen, Z.; Zheng, X.; Xu, Y.; Liu, T. Sliding Windows Method based on terrain self-similarity for higher DEM resolution in flood simulating modeling. Remote Sens. 2021, 13, 3604. [Google Scholar] [CrossRef]
- NASA Shuttle Radar Topography Mission (SRTM) Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography. Available online: https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.042013.4326.1 (accessed on 6 December 2020).
- Chen, H.; Wood, L.J.; Gawthorpe, R.L. Sediment dispersal and redistributive processes in axial and transverse deep-time source-to-sink systems of marine rift basins: Dampier Sub-basin, Northwest Shelf, Australia. Basin Res. 2020, 33, 227–249. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Gehrels, G.E. Insights into North American paleogeography and paleotectonics from U-Pb ages of detrital zircons in Mesozoic strata of the Colorado Plateau, USA. Int. J. Earth Sci. 2010, 99, 1247–1265. [Google Scholar] [CrossRef]
- Carvajal, C.; Steel, R. Source-to-sink sediment volumes within a tectono- stratigraphic model for a Laramide shelf-to-deep-water basin: Methods and results. In Tectonics of Sedimentary Basins: Recent Advances; Busby, C., Azor Perez, A., Eds.; Wiley Black Well: Oxford, UK, 2012; pp. 131–151. [Google Scholar]
- Rudnev, S.N.; Izokh, A.E.; Borisenko, A.S.; Shelepaev, R.A.; Orihashi, Y.; Lobanov, K.V.; Vishnevsky, A.V. Early Paleozoic magmatism in the Bumbat-Hairhan area of the Lake Zone in western Mongolia (geological, petrochemical, and geochronological data). Russ. Geol. Geophys. 2012, 53, 425–441. [Google Scholar] [CrossRef]
- Rudnev, S.N.; Izokh, A.E.; Borisenko, A.S.; Gas’kov, I.V. Granitoid magmatism and metallogeny of the Lake Zone in Western Mongolia (by the example of the Bumbat-Hairhan area). Russ. Geol. Geophys. 2016, 57, 207–224. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, X.; Zeng, H.; Li, S. Source-to-sink analysis in an Eocene rifted lacustrine basin margin of western Shaleitian Uplift area, offshore Bohai Bay Basin, eastern China. Mar. Petrol. Geol. 2019, 107, 41–58. [Google Scholar] [CrossRef]
- Hermann Behling, A.; Martin Lichte, B. Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quat. Res. 1997, 48, 348–358. [Google Scholar] [CrossRef]
- Böhner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 2006, 35, 279–295. [Google Scholar] [CrossRef]
- Vassallo, R.; Ritz, J.F.; Braucher, R.; Carretier, S. Dating faulted alluvial fans with cosmogenic 10Be in the Gurvan Bogd mountain range (Gobi-Altay,Mongolia): Climatic and tectonic implications. Terra Nova 2005, 17, 278–285. [Google Scholar] [CrossRef]
Second-Order Sub-S2S System | Third-Order Sub-S2S System | Source (Catchment Drainage Unit) | Sink (Alluvial Fan) | Source: Sink (P) | |||
---|---|---|---|---|---|---|---|
Area (A)/km2 | Length (L)/km | Gradient (G)/° | Area (S)/km2 | Length (D)/km | |||
S2S-E steep slope system | E1 | 4.75 | 2.68 | 12.78 | 5.75 | 4.63 | 1:1.21 |
E2 | 6.21 | 4.06 | 15.53 | 9.35 | 4.90 | 1:1.50 | |
E3 | 1.86 | 2.71 | 22.15 | 1.58 | 3.24 | 1:0.85 | |
E4 | 2.39 | 2.61 | 16.75 | 1.83 | 2.21 | 1:0.77 | |
E5 | 2.47 | 2.32 | 15.24 | 1.68 | 2.68 | 1:0.68 | |
E6 | 2.63 | 2.56 | 17.58 | 1.98 | 2.82 | 1:0.75 | |
E7 | 1.32 | 2.96 | 15.20 | 0.78 | 2.15 | 1:0.59 | |
E8 | 3.98 | 2.87 | 12.23 | 2.27 | 2.63 | 1:0.57 | |
E9 | 2.58 | 3.67 | 14.26 | 1.46 | 2.56 | 1:0.56 | |
E10 | 3.92 | 3.79 | 14.21 | 2.03 | 2.34 | 1:0.52 | |
E11 | 2.21 | 3.14 | 16.28 | 1.78 | 1.47 | 1:0.81 | |
E12 | 2.58 | 3.75 | 15.78 | 1.63 | 3.04 | 1:0.63 | |
E13 | 6.52 | 3.94 | 13.52 | 9.19 | 6.52 | 1:1.41 | |
E14 | 5.62 | 5.10 | 16.23 | 3.62 | 4.37 | 1:0.64 | |
E15 | 2.73 | 3.03 | 16.21 | 2.03 | 3.42 | 1:0.74 | |
E16 | 10.28 | 4.75 | 13.78 | 12.02 | 6.12 | 1:1.17 | |
E17 | 2.56 | 2.47 | 19.56 | 2.74 | 2.93 | 1:1.07 | |
E18 | 18.23 | 6.32 | 13.65 | 20.32 | 6.87 | 1:1.11 | |
Average | 4.60 | 3.49 | 15.61 | 4.56 | 3.61 | 1:0.95 | |
S2S-W gentle slope system | W1 | 40.26 | 10.15 | 8.43 | 42.30 | 8.42 | 1:1.05 |
W2 | 17.21 | 5.24 | 8.63 | 19.13 | 8.94 | 1:1.11 | |
W3 | 17.23 | 9.07 | 10.36 | 13.67 | 6.87 | 1:0.79 | |
W4 | 37.26 | 10.85 | 9.64 | 45.62 | 9.72 | 1:1.22 | |
W5 | 38.21 | 10.32 | 8.05 | 43.56 | 12.35 | 1:1.14 | |
W6 | 33.95 | 8.21 | 11.32 | 41.96 | 11.37 | 1:1.23 | |
W7 | 38.45 | 12.46 | 12.62 | 56.78 | 10.64 | 1:1.48 | |
W8 | 6.12 | 3.65 | 10.53 | 4.96 | 3.23 | 1:0.81 | |
W9 | 3.86 | 2.36 | 12.56 | 2.36 | 2.05 | 1:0.61 | |
Average | 25.84 | 8.03 | 10.24 | 30.04 | 8.18 | 1:1.16 | |
S2S-S transformation zone system | S1 | 34.25 | 10.78 | 11.23 | 44.85 | 10.32 | 1:1.31 |
S2 | 21.36 | 9.65 | 12.34 | 23.24 | 11.23 | 1:1.09 | |
S3 | 16.58 | 10.06 | 11.37 | 20.36 | 12.35 | 1:1.23 | |
S4 | 14.78 | 8.56 | 12.65 | 15.02 | 10.43 | 1:1.02 | |
S5 | 4.23 | 4.57 | 13.25 | 4.13 | 5.27 | 1:0.98 | |
S6 | 30.62 | 10.36 | 12.65 | 29.67 | 11.89 | 1:0.96 | |
S7 | 13.68 | 7.52 | 12.36 | 14.58 | 6.34 | 1:1.07 | |
S8 | 11.23 | 6.28 | 13.58 | 8.75 | 6.72 | 1:0.80 | |
Average | 18.34 | 8.47 | 12.43 | 20.08 | 9.32 | 1:1.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Z.; Zhu, H. Modern Dryland Source-to-Sink System Segments and Coupling Relationships from Digital Elevation Model Analysis: A Case Study from the Mongolian Altai. Remote Sens. 2022, 14, 1202. https://doi.org/10.3390/rs14051202
Zeng Z, Zhu H. Modern Dryland Source-to-Sink System Segments and Coupling Relationships from Digital Elevation Model Analysis: A Case Study from the Mongolian Altai. Remote Sensing. 2022; 14(5):1202. https://doi.org/10.3390/rs14051202
Chicago/Turabian StyleZeng, Zhiwei, and Hongtao Zhu. 2022. "Modern Dryland Source-to-Sink System Segments and Coupling Relationships from Digital Elevation Model Analysis: A Case Study from the Mongolian Altai" Remote Sensing 14, no. 5: 1202. https://doi.org/10.3390/rs14051202
APA StyleZeng, Z., & Zhu, H. (2022). Modern Dryland Source-to-Sink System Segments and Coupling Relationships from Digital Elevation Model Analysis: A Case Study from the Mongolian Altai. Remote Sensing, 14(5), 1202. https://doi.org/10.3390/rs14051202