Development of a Multi-Index Method Based on Landsat Reflectance Data to Map Open Water in a Complex Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Remote Sensing Data
2.3. GIS Data
2.4. Validation Data
2.5. Water Indices
2.6. Topology of the Murray Darling Basin
- Major Perennial Rivers (as defined within the Geofabric; [56]) with a 100 m buffer along the streamline;
- Large Water Storage (as defined within the Geofabric; [56]). Although it is defined as large water storage, this layer includes both small (~5 ha) and large artificial water reservoirs;
- Remaining area. This includes the remaining rivers and streams (those that are not already defined as major perennial rivers in the Geofabric, or within the ANAE Wetlands layer), small dams, agriculture and farming areas, native and plantation forests, areas with steep topography, and urban and other built-up areas.
2.7. Validation and Assessment
3. Results
3.1. Visual Assessment
3.2. Assessment from Independent Validation Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, D.A.; Kingston, D.G.; Todd, M.C. Uncertainty in water resources availability in the Okavango River basin as a result of climate change. Hydrol. Earth Syst. Sci. 2011, 15, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, M.; Tweed, S.; Van Dijk, A.; Timbal, B. A review of historic and future hydrological changes in the Murray–Darling Basin. Glob. Planet. Change 2012, 80–81, 226–246. [Google Scholar] [CrossRef]
- Arthington, A.H.; Balcombe, S.R. Extreme flow variability and the ‘boom and bust’ ecology of fish in arid-zone floodplain rivers: A case history with implications for environmental flows, conservation and management. Ecohydrology 2011, 4, 708–720. [Google Scholar] [CrossRef] [Green Version]
- State of the Climate 2020. Available online: http://www.bom.gov.au/state-of-the-climate/ (accessed on 4 August 2021).
- Federal Emergency Management Agency. Guidelines and Specifications for Flood Hazard Mapping Partners; Federal Emergency Management Agency: Washington, DC, USA, 2003; p. 49.
- World Meteorological Organization. Final Report on Flood Hazard Mapping Project; World Meteorological Organization: Geneva, Switzerland, 2009; p. 42. [Google Scholar]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Peña-Arancibia, J.L.; Zhang, Y.Q.; Pagendam, D.E.; Viney, N.R.; Lerat, J.; van Dijk, A.I.J.M.; Vaze, J.; Frost, A.J. Streamflow rating uncertainty: Characterisation and impacts on model calibration and performance. Environ. Model. Softw. 2015, 63, 32–44. [Google Scholar] [CrossRef]
- Petersen-Overleir, A. Accounting for heteroscedasticity in rating curve estimates. J. Hydrol. 2004, 292, 173–181. [Google Scholar] [CrossRef]
- Schumann, G.J.-P.; Brakenridge, G.R.; Kettner, A.J.; Kashif, R.; Niebuhr, E. Assisting flood disaster response with Earth observation data and products: A critical assessment. Remote Sens. 2018, 10, 1230. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 data for land cover/use mapping: A review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Kordelas, G.A.; Manakos, I.; Aragonés, D.; Diaz-Delgado, R.; Bustamante, J. Fast and automatic data-driven thresholding for inundation mapping with Sentinel-2 data. Remote Sens. 2018, 10, 910. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, G.; Davranche, A.; Willm, L.; Campagna, J.; Redmond, L.; Merle, C.; Guelmami, A.; Poulin, B. Introducing WIW for detecting the presence of water in wetlands with Landsat and Sentinel Satellites. Remote Sens. 2019, 11, 2210. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Brakenridge, R.; Anderson, E. MODIS-based flood detection, mapping and measurement: The potential for operational hydrological applications. In Nato Science Series: IV: Earth and Environmental Sciences; Springer: Dordrecht, The Netherlands, 2006; Volume 72, pp. 1–12. [Google Scholar]
- Chen, Y.; Huang, C.; Ticehurst, C.; Merrin, L.; Thew, P. An evaluation of MODIS daily and 8-day composite products for floodplain and wetland inundation mapping. Wetlands 2013, 33, 823–835. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Warren, G.; Byrne, G.; Lymburner, L.; Mueller, N.; Van-Dijk, A. MODIS-based standing water detection for flood and large reservoir mapping: Algorithm development and applications for the Australian continent. In Water for a Healthy Country National Research Flagship Report; CSIRO: Canberra, Australia, 2011. [Google Scholar]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic–spectral classification algorithm. Int. J. Digit. Earth 2015, 9, 113–133. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Schaffer-Smith, D.; Swenson, J.J.; Barbaree, B.; Reiter, M.E. Three decades of Landsat-derived spring surface water dynamics in an agricultural wetland mosaic; Implications for migratory shorebirds. Remote Sens. Environ. 2017, 193, 180–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soulard, C.E.; Walker, J.J.; Petrakis, R.E. Implementation of a surface water extent model in Cambodia using cloud-based remote sensing. Remote Sens. 2020, 12, 984. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Ko, B.C.; Kim, H.H.; Nam, J.Y. Classification of potential water bodies using Landsat 8 OLI and a combination of two boosted random forest classifiers. Sensors 2015, 15, 13763–13777. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Sun, W.; Chen, J.; Gong, P. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 2012, 33, 6854–6875. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for assessment of water logging by integrating digital elevation model and groundwater level. Geocarto Int. 2015, 30, 650–661. [Google Scholar] [CrossRef]
- Crist, E.P. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Dunn, B.; Lymburner, L.; Newey, V.; Hicks, A.; Carey, H. Developing a tool for wetland characterization using fractional cover, Tasseled Cap Wetness and Water Observations from Space. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6095–6097. [Google Scholar] [CrossRef]
- Donchyts, G.; Schellekens, J.; Winsemius, H.; Eisemann, E.; Van de Giesen, N. A 30 m resolution surface water mask including estimation of positional and thematic differences using Landsat 8, SRTM and OpenStreetMap: A case study in the Murray-Darling Basin, Australia. Remote Sens. 2016, 8, 386. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Sims, N.C.; Warren, G.; Overton, I.C.; Austin, J.; Gallant, J.; King, D.J.; Merrin, L.E.; Donohue, R.; McVicar, T.R.; Hodgen, M.J.; et al. RiM-FIM Floodplain Inundation Modelling for the Edward-Wakool, Lower Murrumbidgee and Lower Darling River Systems. Report prepared for the Murray-Darling Basin Authority. In Water for a Healthy Country Flagship; CSIRO: Canberra, Australia, 2014. [Google Scholar]
- Sims, N.; Anstee, J.; Barron, O.; Botha, E.; Lehmann, E.; Li, L.; McVicar, T.; Paget, M.; Ticehurst, C.; Van Niel, T.; et al. Earth observation remote sensing. In A Technical Report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, Part of the National Water Infrastructure Development Fund: Water Resource Assessments; CSIRO: Canberra, Australia, 2016. [Google Scholar]
- Karim, F.; Peña-Arancibia, J.; Ticehurst, C.; Marvanek, S.; Gallant, J.; Hughes, J.; Dutta, D.; Vaze, J.; Petheram, C.; Seo, L.; et al. Floodplain inundation mapping and modelling for the Fitzroy, Darwin and Mitchell catchments. In A Technical Report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, Part of the National Water Infrastructure Development Fund: Water Resource Assessments; CSIRO: Canberra, Australia, 2018. [Google Scholar]
- Dutta, D.; Vaze, J.; Karim, F.; Kim, S.; Mateo, C.; Ticehurst, C.; Teng, J.; Marvanek, S.; Gallant, J.; Austin, J. Floodplain Inundation Mapping and Modelling in the Northern Regions, the Murray Darling Basin. In Land and Water; CSIRO: Canberra, Australia, 2016. [Google Scholar]
- Vaze, J.; Mateo, C.M.; Kim, S.; Marvanek, S.; Ticehurst, C.; Wang, B.; Gallant, J.; Crosbie, R.S.; Holland, K.L. Floodplain inundation modelling for the Cooper basin, Australia. In Geological and Bioregional Assessment Program: Stage 3. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia; CSIRO: Canberra, Australia, 2021. [Google Scholar]
- Jones, J.W. Efficient wetland surface water detection and monitoring via Landsat: Comparison with in situ data from the Everglades Depth Estimation Network. Remote Sens. 2015, 7, 12503–12538. [Google Scholar] [CrossRef] [Green Version]
- Zhai, K.; Wu, X.; Qin, Y.; Du, P. Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-Spat. Inf. Sci. 2015, 18, 32–42. [Google Scholar] [CrossRef]
- Ticehurst, C.; Dutta, D.; Karim, F.; Vaze, J. Validation of surface water maps in selected Australian floodplains derived from Landsat imagery using hydrodynamic modelling. In Proceedings of the 22nd International Congress on Modelling and Simulation, Hobart, Australia, 3–8 December 2017; Available online: https://www.mssanz.org.au/modsim2017 (accessed on 9 January 2022).
- National Water Account. Murray–Darling Basin: Geographic Information. 2020. Available online: http://www.bom.gov.au/water/nwa/2020/mdb/regiondescription/geographicinformation.shtml#geographic_information (accessed on 5 August 2021).
- Ramsar 2022 Ramsar. Available online: https://ramsar.org/ (accessed on 9 January 2022).
- The Murray–Darling Basin and Why Its Important. Available online: https://www.mdba.gov.au/importance-murray-darling-basin (accessed on 6 August 2021).
- CSIRO. Water Availability in the Murray-Darling Basin. A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project; CSIRO: Canberra, Australia, 2008; 67p.
- Issues Facing the Murray–Darling Basin. Available online: https://www.mdba.gov.au/issues-murray-darling-basin (accessed on 9 January 2022).
- Dhu, T.; Dunn, B.; Lewis, B.; Lymburner, L.; Mueller, N.; Telfer, E.; Lewis, A.; McIntyre, A.; Minchin, S.; Phillips, C. Digital earth Australia—Unlocking new value from earth observation data. Big Earth Data 2017, 1, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J.; et al. The Australian Geoscience Data Cube—Foundations and lessons learned. Remote Sens. Environ. 2017, 202, 276–292. [Google Scholar] [CrossRef]
- Digital Earth Australia. Available online: https://www.ga.gov.au/dea/home (accessed on 5 August 2021).
- National Computational Infrastructure Australia. Available online: https://nci.org.au/ (accessed on 5 August 2021).
- Australian Government, Bureau of Meteorology. Australia Hydrological Geospatial Fabric (Geofabric) Product Guide, Version 3; Bureau of Meteorology Report; Australian Government, Bureau of Meteorology: Melbourne, Australia, 2015.
- Atkinson, R.; Power, R.; Lemon, D.; O’Hagan, R.; Dovey, D.; Kinny, D. The Australian hydrological geospatial fabric—Development methodology and conceptual architecture. In Water for a Healthy Country; CSIRO: Canberra, Australia, 2008. [Google Scholar]
- Brooks, S.; Cottingham, P.; Butcher, R.; Hale, J. Murray-Darling Basin Aquatic Ecosystem Classification: Stage 2 Report; Peter Cottingham & Associates Report to the Commonwealth Environmental Water Office and Murray-Darling Basin Authority: Canberra, Australia, 2014. [Google Scholar]
- Brooks, S. ANAE Classification of the Murray-Darling Basin v2.0; Murray-Darling Basin Authority and Commonwealth Environmental Water Office: Canberra, Australia, 2017.
- Vaze, J.; Mateo, C.M.; Kim, S.; Marvanek, S.; Keogh, A.; Ticehurst, C.; Teng, J.; Gallant, J.; Austin, J.; Karim, F.; et al. Floodplain Inundation Modelling for the Edward-Wakool Region. In Land and Water; CSIRO: Canberra, Australia, 2018. [Google Scholar]
- Interim Classification of Aquatic Ecosystems in the Murray Darling Basin Based on the Australian National Aquatic Ecosystems (ANAE) Classification Framework—Wetlands. Available online: http://www.environment.gov.au/fed/catalog/search/resource/details.page?uuid=%7B20B5D7C5-E3D1-47EB-888E-F23940374393%7D (accessed on 5 August 2021).
- Story, M.; Congalton, R.G. Accuracy Assessment: A User’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, J.R. An Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice Hall: Hoboken, NJ, USA, 2005; p. 526. [Google Scholar]
- MDBA (Murray Darling Basin Authority). A Case Study for Compliance Monitoring Using Satellite Imagery; Murray-Darling Basin Authority: Canberra, Australia, 2018.
- Parks Victoria. Strategic Action Plan: Protection of Floodplain Marshes in Barmah National Park and Barmah Forest Ramsar Site; Parks Victoria: Melbourne, Australia, 2018.
- Department of the Environment Directory of Important Wetlands in Australia (DIWA) Spatial Database (Public). Bioregional Assessment Source Dataset. 2015. Available online: http://data.bioregionalassessments.gov.au/dataset/6636846e-e330-4110-afbb-7b89491fe567 (accessed on 13 March 2019).
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef] [Green Version]
- Lehner, B.; Verdin, K.L.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Yan, D.; Wang, K.; Qin, T.; Weng, B.; Wang, H.; Bi, W.; Li, X.; Li, M.; Lv, Z.; Liu, F.; et al. A data set of global river networks and corresponding water resources zones divisions. Sci. Data 2019, 6, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Wetlands. Available online: https://www2.cifor.org/global-wetlands/ (accessed on 15 February 2022).
- Tootchi, A.; Jost, A.; Ducharne, A. Multi-source global wetland maps combining surface water imagery and groundwater constraints. Earth Syst. Sci. Data 2019, 11, 189–220. [Google Scholar] [CrossRef] [Green Version]
- Ogilvie, A.; Belaud, G.; Massuel, S.; Mulligan, M.; Le Goulven, P.; Calvez, R. Surface water monitoring in small water bodies: Potential and limits of multi-sensor Landsat time series. Hydrol. Earth Syst. Sci. 2018, 22, 4349–4380. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.C.; Roy, D.P. The availability of cloud-free Landsat ETM plus data over the conterminous United States and globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Ticehurst, C.; Dutta, D.; Vaze, J. A comparison of Landsat and MODIS flood inundation maps for hydrodynamic modelling in the Murray Darling Basin. In Proceedings of the 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 November–4 December 2015; Available online: https://www.mssanz.org.au/modsim2015 (accessed on 9 January 2022).
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. Detection of temporary flooded vegetation using Sentinel-1 time series data. Remote Sens. 2018, 10, 1286. [Google Scholar] [CrossRef] [Green Version]
Water Index | Algorithm | Threshold | Name | References |
---|---|---|---|---|
modified Normalised Difference Water Index (mNDWI) | 0.0 | mNDWI0 | [29,31] | |
−0.3 | mNDWInp3 | [39] | ||
Fisher’s Water Index (FWI) | 0.63 | FWI | [31] | |
Water Observations from Space (WOfS) | (see footnote 1) | NA | WOfS | [7] |
Tasseled Cap Wetness index (TCW) | −0.01 | TCWnp01 | [31] | |
−0.035 | TCWnp035 | [34] |
Index | Water (%) | Dry (%) | K | Index | Water (%) | Dry (%) | K |
---|---|---|---|---|---|---|---|
All Plots | Large Water Storage | ||||||
FWI | 84.03 | 97.88 | 0.821 | FWI | 93.02 | 98.10 | 0.837 |
mNDWI0 | 85.27 | 97.40 | 0.828 | mNDWI0 | 92.48 | 98.21 | 0.827 |
mNDWInp3 | 93.84 | 86.59 | 0.804 | mNDWInp3 | 91.99 | 89.97 | 0.813 |
TCWnp035 | 90.15 | 93.51 | 0.837 | TCWnp035 | 86.29 | 94.41 | 0.814 |
TCWnp01 | 83.21 | 97.30 | 0.806 | TCWnp01 | 79.26 | 96.57 | 0.776 |
WOfS | 74.59 | 97.66 | 0.775 | WOfS | 89.27 | 97.40 | 0.768 |
Maxfwi_ndwi | 86.08 | 97.33 | 0.835 | Maxfwi_ndwi | 93.39 | 97.82 | 0.843 |
Major Perennial Rivers | Remaining plots with water | ||||||
FWI | 69.42 | 97.54 | 0.548 | FWI | 85.32 | 97.76 | 0.843 |
mNDWI0 | 72.28 | 96.95 | 0.716 | mNDWI0 | 87.65 | 97.28 | 0.859 |
mNDWInp3 | 91.61 | 94.88 | 0.867 | mNDWInp3 | 93.57 | 88.34 | 0.822 |
TCWnp035 | 87.46 | 96.96 | 0.854 | TCWnp035 | 89.80 | 94.21 | 0.831 |
TCWnp01 | 78.82 | 99.17 | 0.801 | TCWnp01 | 82.11 | 97.21 | 0.770 |
WOfS | 67.52 | 96.86 | 0.673 | WOfS | 83.98 | 98.33 | 0.852 |
Maxfwi_ndwi | 73.63 | 96.91 | 0.728 | Maxfwi_ndwi | 88.05 | 97.25 | 0.862 |
Wetlands | Remaining plots without water | ||||||
FWI | 82.08 | 95.86 | 0.587 | FWI | nil | 99.81 | |
mNDWI0 | 82.64 | 94.56 | 0.711 | mNDWI0 | nil | 99.68 | |
mNDWInp3 | 97.73 | 81.51 | 0.824 | mNDWInp3 | nil | 68.76 | |
TCWnp035 | 95.94 | 87.51 | 0.837 | TCWnp035 | nil | 88.38 | |
TCWnp01 | 92.34 | 91.44 | 0.804 | TCWnp01 | nil | 97.93 | |
WOfS | 44.44 | 96.64 | 0.314 | WOfS | nil | 96.48 | |
Maxfwi_ndwi | 83.50 | 94.42 | 0.721 | Maxfwi_ndwi | nil | 99.64 |
Index | Water (%) | Dry (%) | K |
---|---|---|---|
FWI | 57.66 | 99.73 | 0.699 |
mNDWI0 | 54.40 | 99.78 | 0.674 |
mNDWInp3 | 90.30 | 82.09 | 0.393 |
TCWnp035 | 62.65 | 84.43 | 0.294 |
TCWnp01 | 41.61 | 97.23 | 0.445 |
WOfS | 48.41 | 99.82 | 0.623 |
Maxfwi_ndwi | 60.04 | 99.69 | 0.716 |
MIM | 79.06 | 98.50 | 0.791 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ticehurst, C.; Teng, J.; Sengupta, A. Development of a Multi-Index Method Based on Landsat Reflectance Data to Map Open Water in a Complex Environment. Remote Sens. 2022, 14, 1158. https://doi.org/10.3390/rs14051158
Ticehurst C, Teng J, Sengupta A. Development of a Multi-Index Method Based on Landsat Reflectance Data to Map Open Water in a Complex Environment. Remote Sensing. 2022; 14(5):1158. https://doi.org/10.3390/rs14051158
Chicago/Turabian StyleTicehurst, Catherine, Jin Teng, and Ashmita Sengupta. 2022. "Development of a Multi-Index Method Based on Landsat Reflectance Data to Map Open Water in a Complex Environment" Remote Sensing 14, no. 5: 1158. https://doi.org/10.3390/rs14051158
APA StyleTicehurst, C., Teng, J., & Sengupta, A. (2022). Development of a Multi-Index Method Based on Landsat Reflectance Data to Map Open Water in a Complex Environment. Remote Sensing, 14(5), 1158. https://doi.org/10.3390/rs14051158