Towards the Combination of C2RCC Processors for Improving Water Quality Retrieval in Inland and Coastal Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Field Radiometry
2.3. Water Quality Measurements
2.4. Sentinel-2 Data
2.5. Atmospheric Correction Approaches
2.6. Match-Up Exercise
- (i)
- A 3 × 3 pixel window, centered at the coordinates of in situ measurements, was extracted for each date and location, and C2-Nets were quality-checked in all extracted pixels by applying the recommended flags [12]. These quality flags indicate issues related to the scope of the training range of the used NN and/or cloudy conditions [13,23] and should be considered for reducing potential artifacts and uncertainty.
- (ii)
- (iii)
- Outliers were defined through boxplot analysis applied separately to each pixel window and available spectral bands (B443-B783 and B865; Table 3).
- (iv)
- Pixels with outliers in any of the bands were removed. The number of pixels within the pixel windows was revised once more, and those with fewer than 5 pixels remaining were removed from the analysis.
- (v)
- The coefficient of variation (CV in Equation (1)) of B560 was computed for each remaining pixel window, removing those with CV > 15% [28].
2.7. Performance Assessment of C2-Nets
2.7.1. Validation of Remote Sensing Reflectance (Rrs)
- (i)
- Bands scoring
- (ii)
- Spectral shape fitting
- (iii)
- Match-up efficiency
2.7.2. Validation of Water Quality Products
3. Results
3.1. In Situ Water Quality
3.2. Match-Up Analysis
3.3. Validation of Rrs
3.4. Validation of Water Quality
4. Discussion
4.1. Performance on Retrieval of Rrs with C2-Nets
4.2. Recommendation on the Selection of C2-Nets
4.3. Recommendations for Water Quality Estimation with C2-Nets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
C2Net | Band | RMSE | RMSErel | RMSERE | |Bias| | r |
---|---|---|---|---|---|---|
C2RCC_TOA | B443 | 0.1260 | 30.900 | 0.0139 | 0.1250 | 0.615 |
C2RCC_Rrs | 0.0043 | 0.548 | 0.0030 | 0.0031 | 0.817 | |
C2X_TOA | 0.1250 | 20.200 | 0.0109 | 0.1240 | 0.672 | |
C2X_Rrs | 0.0052 | 0.4970 | 0.0044 | 0.0029 | 0.568 | |
C2XC_TOA | 0.1250 | 28.200 | 0.0159 | 0.1240 | 0.682 | |
C2XC_Rrs | 0.0036 | 0.806 | 0.0035 | 0.0004 | 0.739 | |
C2RCC_TOA | B490 | 0.1020 | 14.850 | 0.0193 | 0.0997 | 0.639 |
C2RCC_Rrs | 0.0051 | 0.552 | 0.0036 | 0.0036 | 0.853 | |
C2X_TOA | 0.1010 | 10.300 | 0.0140 | 0.0998 | 0.717 | |
C2X_Rrs | 0.0059 | 0.476 | 0.0049 | 0.0033 | 0.728 | |
C2XC_TOA | 0.1030 | 14.100 | 0.0207 | 0.1006 | 0.642 | |
C2XC_Rrs | 0.0041 | 0.886 | 0.0041 | 0.0000 | 0.814 | |
C2RCC_TOA | B560 | 0.0819 | 8.490 | 0.0235 | 0.0785 | 0.740 |
C2RCC_Rrs | 0.0047 | 0.587 | 0.0040 | 0.0025 | 0.894 | |
C2X_TOA | 0.0849 | 5.720 | 0.0189 | 0.0828 | 0.794 | |
C2X_Rrs | 0.0062 | 0.517 | 0.0061 | 0.0010 | 0.747 | |
C2XC_TOA | 0.0861 | 8.290 | 0.0226 | 0.0831 | 0.635 | |
C2XC_Rrs | 0.0051 | 0.921 | 0.0050 | 0.0003 | 0.809 | |
C2RCC_TOA | B665 | 0.0557 | 20.720 | 0.0252 | 0.0496 | 0.517 |
C2RCC_Rrs | 0.0022 | 0.543 | 0.0017 | 0.0014 | 0.972 | |
C2X_TOA | 0.0551 | 11.080 | 0.0212 | 0.0509 | 0.720 | |
C2X_Rrs | 0.0039 | 0.600 | 0.0038 | 0.0006 | 0.863 | |
C2XC_TOA | 0.0579 | 20.600 | 0.0251 | 0.0522 | 0.332 | |
C2XC_Rrs | 0.0018 | 0.710 | 0.0018 | 0.0000 | 0.921 | |
C2RCC_TOA | B705 | 0.0519 | 29.300 | 0.0262 | 0.0449 | 0.581 |
C2RCC_Rrs | 0.0036 | 0.560 | 0.0033 | 0.0015 | 0.845 | |
C2X_TOA | 0.0524 | 14.226 | 0.0237 | 0.0467 | 0.798 | |
C2X_Rrs | 0.0026 | 0.793 | 0.0026 | 0.0004 | 0.949 | |
C2XC_TOA | 0.0593 | 29.300 | 0.0283 | 0.0520 | 0.690 | |
C2XC_Rrs | 0.0024 | 0.753 | 0.0024 | 0.0004 | 0.985 | |
C2RCC_TOA | B740 | 0.0467 | 78.200 | 0.0257 | 0.0391 | 0.282 |
C2RCC_Rrs | 0.0014 | 4.690 | 0.0014 | 0.0005 | 0.741 | |
C2X_TOA | 0.0422 | 42.000 | 0.0209 | 0.0367 | 0.476 | |
C2X_Rrs | 0.0007 | 0.761 | 0.0006 | 0.0004 | 0.975 | |
C2XC_TOA | 0.0508 | 86.300 | 0.0263 | 0.0435 | 0.347 | |
C2XC_Rrs | 0.0013 | 0.673 | 0.0012 | 0.0004 | 0.990 | |
C2RCC_TOA | B783 | 0.0468 | 65.640 | 0.0268 | 0.0384 | 0.281 |
C2RCC_Rrs | 0.0014 | 4.332 | 0.0013 | 0.0004 | 0.728 | |
C2X_TOA | 0.0423 | 40.990 | 0.0222 | 0.0361 | 0.460 | |
C2X_Rrs | 0.0009 | 0.753 | 0.0007 | 0.0005 | 0.977 | |
C2XC_TOA | 0.0506 | 84.802 | 0.0272 | 0.0427 | 0.289 | |
C2XC_Rrs | 0.0007 | 0.576 | 0.0007 | 0.0001 | 0.996 | |
C2RCC_TOA | B865 | 0.0430 | 246.000 | 0.0274 | 0.0332 | 0.194 |
C2RCC_Rrs | 0.0007 | 0.635 | 0.0006 | 0.0004 | 0.694 | |
C2X_TOA | 0.0371 | 55.900 | 0.0224 | 0.0296 | 0.313 | |
C2X_Rrs | 0.0004 | 0.659 | 0.0003 | 0.0001 | 0.957 | |
C2XC_TOA | 0.0455 | 291.000 | 0.0277 | 0.0361 | 0.077 | |
C2XC_Rrs | 0.0006 | 0.591 | 0.0005 | 0.0003 | 0.985 |
References
- Dörnhöfer, K.; Klinger, P.; Heege, T.; Oppelt, N. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Sci. Total Environ. 2018, 612, 1200–1214. [Google Scholar] [CrossRef] [PubMed]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Mostert, E. The European Water Framework Directive and water management research. Phys. Chem. Earth A/B/C 2003, 28, 523–527. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First experiences in mapping lake water quality parameters with sentinel-2 MSI imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Soriano-González, J.; Angelats, E.; Fernández-Tejedor, M.; Diogene, J.; Alcaraz, C. First Results of Phytoplankton Spatial Dynamics in Two NW-Mediterranean Bays from Chlorophyll-a Estimates Using Sentinel 2: Potential Implications for Aquaculture. Remote Sens. 2019, 11, 1756. [Google Scholar] [CrossRef] [Green Version]
- Bakker, W.H.; Gorte, B.G.H.; Horn, J.A.; Janssen, L.L.F.; Pohl, C.; Parkash, A.; Reeves, C.V.; Weir, M.J.C.; Woldai, T. Principles of Remote Sensing: An Introductory Textbook; ITC Educational Textbook Series 2; The International Institute for Aerospace Survey and Earth Sciences (ITC): Enschede, The Netherlands, 2001. [Google Scholar]
- IOCCG. Atmospheric Correction for Remotely-Sensed Ocean Colour Products; Wang, M., Ed.; Reports of the International Ocean-Colour Coordinating Group, No. 10; IOCCG: Darmouth, NS, Canada, 2010. [Google Scholar]
- Hoepffner, N.; Zibordi, G. Remote Sensing of Coastal Waters. Encycl. Ocean. Sci. 2009, 732–741. [Google Scholar] [CrossRef]
- Gordon, H.G.; Morel, A. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review; Springer: New York, NY, USA, 1983; p. 114. [Google Scholar]
- Renosh, P.; Doxaran, D.; Keukelaere, L.; Gossn, J. Evaluation of Atmospheric Correction Algorithms for Sentinel-2-MSI and Sentinel-3-OLCI in Highly Turbid Estuarine Waters. Remote Sens. 2020, 12, 1285. [Google Scholar] [CrossRef] [Green Version]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansperd, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Pereira-Sandoval, M.; Ruescas, A.B.; Urrego, P.; Ruiz-Verdú, A.; Tenjo, C.; Soria-Perpinyà, X.; Vicente, E.; Soria, J.M.; Moreno, J. Evaluation of Atmospheric Correction Algorithms over Spanish inland waters for Sentinel-2 MSI data. Remote Sens. 2019, 11, 1469. [Google Scholar] [CrossRef] [Green Version]
- Doerffer, R.; Schiller, H. The MERIS Case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]
- European Space Agency, Sentinel-2 Spectral Response Functions (S2-SRF) v3.0. Available online: https://earth.esa.int/web/entinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectralresponses (accessed on 16 April 2020).
- Shoaf, W.T.; Lium, B.W. Improved extraction of chlorophyll a and b from algae using dimethyl sulphoxide. Limnol. Oceanogr. 1976, 21, 926–928. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New Spectrophotometric Equations for Determining Chlorophylls a, b, C1 and C2 in Higher Plants, Algae and Natural Phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 27 September 2021).
- SNAP. ESA Sentinel Application Platform v8.0. Available online: https://step.esa.int/main/download/snap-download/ (accessed on 27 September 2021).
- Sentinel-2 MSI User Guide: Radiometric Resolutions. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric (accessed on 27 September 2021).
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- C2X-Complex. ESA Step Forum. Available online: https://forum.step.esa.int/t/c2x-complex/29392 (accessed on 27 September 2021).
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Ancillary Meteorological Ocean Color Data, NASA OB.DAAC. 2018. Available online: https://disc.gsfc.nasa.gov/datasets/OMTO3_003/summary (accessed on 29 February 2019).
- NASA Ocean Color Data. Available online: https://oceandata.sci.gsfc.nasa.gov (accessed on 27 September 2021).
- Cui, T.; Zhang, J.; Groom, S.; Sun, L.; Smyth, T.; Sathyendranath, S. Validation of MERIS ocean-color products in the Bohai Sea: A case study for turbid coastal waters. Remote Sens. Environ. 2010, 114, 2326–2336. [Google Scholar] [CrossRef]
- Müller, D.; Krasemann, H.; Brewin, R.J.W.; Brockmann, C.; Deschamps, P.Y.; Doerffer, R.; Fomferra, N.; Franz, B.A.; Grant, M.G.; Groom, S.B.; et al. The Ocean Colour Climate Change Initiative: I. A methodology for assessing atmospheric correction processors based on in situ measurements. Remote Sens. Environ. 2015, 162, 242–256. [Google Scholar] [CrossRef] [Green Version]
- Poole, H.H.; Atkins, W.R.G. Photoelectric measurements of submarine illumination throughout the year. J. Mar. Biol. Assoc. U. K. 1929, 16, 297–324. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R. The Secchi disk in turbid coastal waters. Limnol. Oceanogr. 1970, 15, 688–694. [Google Scholar] [CrossRef]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Inter-Comparison of Methods for Chlorophyll-a Retrieval: Sentinel-2 Time-Series Analysis in Italian Lakes. Remote Sens. 2021, 13, 2381. [Google Scholar] [CrossRef]
- Ligi, M.; Kutser, T.; Kallio, K.; Attila, J.; Koponen, S.; Paavel, B.; Soomets, T.; Reinart, A. Testing the Performance of Empirical Remote Sensing Algorithms in the Baltic Sea Waters with Modelled and in Situ Reflectance Data. Oceanologia 2017, 59, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Tavares, M.H.; Lins, R.C.; Harmel, T.; Fragoso, C.R.; Martínez, J.M.; Motta-Marques, D. Atmospheric and sunglint correction for retrieving chlorophyll-a in a productive tropical estuarine-lagoon system using Sentinel-2 MSI imagery. ISPRS J. Photogramm. Remote Sens. 2021, 174, 215–236. [Google Scholar] [CrossRef]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and comparison of water quality products in baltic lakes using sentinel-2 msi and sentinel-3 OLCI data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uudeberg, K.; Ansko, I.; Põru, G.; Ansper, A.; Reinart, A. Using optical water types to monitor changes in optically complex inland and coastal waters. Remote Sens. 2019, 11, 2297. [Google Scholar] [CrossRef] [Green Version]
- Ansper, A.; Alikas, K. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European Union water framework directive reporting purposes. Remote Sens. 2019, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Spyrakos, E.; O’Donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.H.; Neil, C.; Barbosa, C.C.F.; Binding, C.E.; Bradt, S.; et al. Optical types of inland and coastal waters. Limnol. Oceanogr. 2018, 63, 846–870. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.S.; Dowell, M.D.; Bradt, S.; Ruiz-Verdú, A. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sens. Environ. 2014, 143, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Sòria-Perpinyà, X.; Vicente, E.; Urrego, P.; Pereira-Sandoval, M.; Tenjo, C.; Ruíz-Verdú, A.; Delegido, J.; Soria, J.M.; Peña, R.; Moreno, J. Validation of water quality monitoring algorithms for sentinel-2 and sentinel-3 in Mediterranean inland waters with in situ reflectance data. Water 2021, 13, 686. [Google Scholar] [CrossRef]
- Caballero, I.; Fernández, R.; Escalante, O.M.; Mamán, L.; Navarro, G. New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Gons, H.J.; Rijkeboer, M.; Ruddick, K.G. Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and coastal waters. J. Plankton Res. 2005, 27, 125–127. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Gernez, P.; Lafon, V.; Lerouxel, A.; Curti, C.; Lubac, B.; Cerisier, S.; Barillé, L. Toward sentinel-2 high resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (take5) experiment in the Loire and Gironde estuaries. Remote Sens. 2015, 7, 9507–9528. [Google Scholar] [CrossRef] [Green Version]
- Alvado, B.; Sòria-Perpinyà, X.; Vicente, E.; Delegido, J.; Urrego, P.; Ruíz-Verdú, A.; Soria, J.M.; Moreno, J. Estimating Organic and Inorganic Part of Suspended Solids from Sentinel 2 in Different Inland Waters. Water 2021, 13, 2453. [Google Scholar] [CrossRef]
Location | NDates | Elevation (m) | Surface (km2) | Salinity (PSU) | Pressure (hPa) | O3 (DU) | NRadiometry | N[Chl-a] | [Chl-a] (mg/m3) | NTSM | [TSM] (g/m3) | NZSD | ZSD (m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alarcón | 2 | 814 | 68.4 | 1 | [1014.1–1016.64] | [247–252] | 10 | 10 | [1.1–5.26] | - | - | 10 | [1.75–4.6] |
Bellús | 3 | 159 | 8 | 1 | [1006.14–1007.85] | [251–252] | 6 | 6 | [13.86–68.01] | 6 | [18.66–22.13] | 6 | [0.45–0.63] |
Benagéber | 2 | 530 | 12 | 1 | [1011.38–1011.74] | [249–277] | 7 | 6 | [2.49–12.40] | 6 | [1.82–2.72] | 6 | [4–7.7] |
Beniarrés | 2 | 321 | 2.6 | 1 | [1008.54–1012.23] | [258–281] | 6 | 6 | [8.36–17.17] | 6 | [4.42–6.97] | 6 | [1.15–1.8] |
Contreras | 6 | 679 | 27.1 | 1 | [1002.66–1014.47] | [235–280] | 23 | 21 | [0.79–2.47] | 15 | [1.4–28.02] | 21 | [0.95–7.3] |
María Cristina | 1 | 138 | 3.3 | 1 | 1004 | 245 | 2 | 2 | [2.72–2.92] | 2 | [10.32–11.87] | 2 | 0.75 |
Pedrera | 1 | 111 | 12.7 | 1 | 1014.01 | 255 | 5 | 5 | [0.86–1.19] | - | - | 5 | [2.95–3.25] |
Regajo | 3 | 407 | 0.8 | 1 | [1009.43–1015.96] | [264–271] | 10 | 10 | [4.03–10.21] | 10 | [2.95–9.12] | 10 | [0.95–4.25] |
Sitjar | 2 | 584 | 3.2 | 1 | [1015.56–1004] | [245–275] | 4 | 4 | [0.59–0.68] | 4 | [2.28–2.71] | 4 | [2.2–3.15] |
Tous | 4 | 163 | 9.8 | 1 | [1007.74–1015.65] | [251–273] | 9 | 9 | [0.58–1.72] | 6 | [0.67–1.13] | 9 | [6–9.1] |
Alfacs | 2 | 0 | 56 | 35 | [999.78–1011.34] | [243–249] | 9 | 9 | [3.65–6.73] | - | - | 9 | [1.55–3] |
Pétrola | 1 | 852 | 3.4 | 60 | [1009.28–1015.07] | [239–267] | 5 | 5 | [77.58–309.2] | 3 | [142.27–162.33] | 5 | [0.17–0.45] |
Total N | 29 | - | - | - | - | - | 96 | 93 | - | 58 | - | 93 | - |
Instrument | Ocean Optics HR4000 | ASD FieldSpec® HandHeld 2 |
---|---|---|
Manufacturer | Ocean Optics, Inc.; Orlando, FL, USA | Analytical Spectral Devices, Inc.; Boulder, CO, USA |
Acceptance angle | 8° | 8° |
Spectral sampling interval | 0.2 nm | 1 nm |
Spectral range | 200–1100 nm | 325–1075 nm |
Bands | ID in the Study | Spectral Region | Spatial Resolution (m) | λS2A (nm) | λS2B (nm) | Bandwidth S2A–S2B (nm) | C2-Nets |
---|---|---|---|---|---|---|---|
B1 | B443 | Coastal aerosol | 60 | 442.7 | 442.2 | 21–21 | Y |
B2 | B490 | Blue | 10 | 492.4 | 492.1 | 66–66 | Y |
B3 | B560 | Green | 10 | 559.8 | 559 | 36–36 | Y |
B4 | B665 | Red | 10 | 664.6 | 664.9 | 31–31 | Y |
B5 | B705 | Red-edge1 | 20 | 704.1 | 703.8 | 15–16 | Y |
B6 | B740 | Red-edge2 | 20 | 740.5 | 739.1 | 15–15 | Y |
B7 | B783 | Red-edge3 | 20 | 782.8 | 779.7 | 20–20 | Y |
B8 | B842 | NIR | 10 | 832.8 | 832.9 | 106–106 | N |
B8A | B865 | NIR narrow | 20 | 864.7 | 864 | 21–22 | Y |
B9 | B945 | Water vapor | 60 | 945.1 | 943.2 | 20–21 | N |
B10 | B1620 | SWIR/Cirrus | 60 | 1373.5 | 1376.9 | 31–30 | N |
B11 | B1620 | SWIR1 | 20 | 1613.7 | 1610.4 | 91–94 | N |
B12 | B2200 | SWIR2 | 20 | 2202.4 | 2185.7 | 175–185 | N |
IOPs (m−1) | Description | C2RCC | C2X | C2XC |
---|---|---|---|---|
a_pig | Absorption coefficient of phytoplankton pigments | [≈0, 5.3] | [≈0, 51.0] | [≈0, 30.81] |
a_det | Absorption coefficient of detritus | [≈0, 5.9] | [≈0, 60.0] | [≈0, 17.0] |
a_gelb | Absorption coefficient of gelbstoff (CDOM absorption) | [≈0, 1.0] | [≈0, 60.0] | [≈0, 4.25] |
b_wit | Scattering coefficient of white particles (calcareous sediments) | [≈0, 60.0] | [≈0, 590.0] | - |
b_part | Scattering coefficient of typical sediments | [≈0, 60.0] | [≈0, 590.0] | - |
b_tot | Scattering coefficient of typical sediment and white particles | - | - | [≈0, 1000.0] |
WQ Parameters | N | min | max | median | mean | σ |
---|---|---|---|---|---|---|
[Chl-a] (mg/m3) | 93 | 0.58 | 309.6 | 2.72 | 20.55 | 61.5 |
ZSD (m) | 93 | 0.17 | 9.10 | 3.00 | 3.34 | 2.4 |
[TSM] (g/m3) | 58 | 0.67 | 162.3 | 3.65 | 13.70 | 33.5 |
C2Net | Parameter | In Situ min–max | C2-Nets min–max | MAE | RMSE | Bias | r | R2 | m | b |
---|---|---|---|---|---|---|---|---|---|---|
C2RCC | [Chl-a] | 0.58–68.01 | 0.43–23.68 | 5.7 | 11.5 | −1.16 | 0.72 | 0.52 | 0.26 | 4.38 |
C2X | 0.61–68.01 | 1.84–100.25 | 10.2 | 17.3 | 5.85 | 0.81 | 0.66 | 1.16 | 3.96 | |
C2XC | 0.59–309.20 | 0.01–139.56 | 17.8 | 48.1 | −12.1 | 0.94 | 0.88 | 0.45 | 5.03 | |
C2RCC | [TSM] | 0.74–28.02 | 0.93–19.13 | 2.9 | 4.6 | −0.13 | 0.75 | 0.56 | 0.65 | 2.17 |
C2X | 2.28–28.02 | 3.84–56.22 | 10.9 | 14.9 | 8.77 | 0.68 | 0.46 | 1.42 | 3.95 | |
C2XC | 2.28–162.33 | 0.33–58.52 | 13.1 | 29.0 | −2.76 | 0.81 | 0.65 | 0.33 | 9.71 | |
C2RCC | ZSD | 0.45–9.1 | 0.45–7.03 | - | - | - | 0.77 | 0.59 | 1.09 | 0.08 |
C2X | 0.45–5.80 | 0.27–4.00 | - | - | - | 0.82 | 0.67 | 1.09 | 0.29 | |
C2XC | 0.17–7.70 | 0.27–6.63 | - | - | - | 0.94 | 0.88 | 0.88 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano-González, J.; Urrego, E.P.; Sòria-Perpinyà, X.; Angelats, E.; Alcaraz, C.; Delegido, J.; Ruíz-Verdú, A.; Tenjo, C.; Vicente, E.; Moreno, J. Towards the Combination of C2RCC Processors for Improving Water Quality Retrieval in Inland and Coastal Areas. Remote Sens. 2022, 14, 1124. https://doi.org/10.3390/rs14051124
Soriano-González J, Urrego EP, Sòria-Perpinyà X, Angelats E, Alcaraz C, Delegido J, Ruíz-Verdú A, Tenjo C, Vicente E, Moreno J. Towards the Combination of C2RCC Processors for Improving Water Quality Retrieval in Inland and Coastal Areas. Remote Sensing. 2022; 14(5):1124. https://doi.org/10.3390/rs14051124
Chicago/Turabian StyleSoriano-González, Jesús, Esther Patricia Urrego, Xavier Sòria-Perpinyà, Eduard Angelats, Carles Alcaraz, Jesús Delegido, Antonio Ruíz-Verdú, Carolina Tenjo, Eduardo Vicente, and José Moreno. 2022. "Towards the Combination of C2RCC Processors for Improving Water Quality Retrieval in Inland and Coastal Areas" Remote Sensing 14, no. 5: 1124. https://doi.org/10.3390/rs14051124
APA StyleSoriano-González, J., Urrego, E. P., Sòria-Perpinyà, X., Angelats, E., Alcaraz, C., Delegido, J., Ruíz-Verdú, A., Tenjo, C., Vicente, E., & Moreno, J. (2022). Towards the Combination of C2RCC Processors for Improving Water Quality Retrieval in Inland and Coastal Areas. Remote Sensing, 14(5), 1124. https://doi.org/10.3390/rs14051124