Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change
Abstract
:1. Introduction
2. Datasets and Methodologies
2.1. Study Area
2.2. Methodology
2.2.1. NPP Estimation and Validation
2.2.2. Theil–Sen Median Method
2.2.3. Hurst Index
2.2.4. Partial Correlation Analysis
2.2.5. The RES-CON Method
3. Results
3.1. Spatiotemporal Variation in NPP from 2000 to 2019
3.2. The Contributions of Climate Change to NPP Variations
3.3. The Contributions of Anthropogenic Activities to NPP Variations
4. Discussion
4.1. Method Evaluation
4.2. Impact Mechanisms of Climate Change and Anthropogenic Activities on Vegetation Productivity in Xinjiang
4.2.1. Changes in Vegetation Productivity in Xinjiang
4.2.2. Impact Mechanisms of Climate Change on Vegetation Productivity
4.2.3. Impact Mechanisms of Anthropogenic Activities on Vegetation Productivity
4.3. Uncertainties and Limitations
5. Conclusions
- (1)
- The RES-CON method effectively separates the contributions of climate change and anthropogenic activities to the NPP variation. It avoids the problem of uncertain assessment regarding the impact of anthropogenic activities on vegetation far from human settlements. In addition, the effect of anthropogenic activities on vegetation productivity is not influenced by the number of meteorological factors considered.
- (2)
- Where anthropogenic activity occurs, it dominates vegetation NPP change, while the total area in Xinjiang where climate change is the most important driver is larger than the total area where anthropogenic activities are the dominant driver. The average contribution of climate change to the NPP variation (21.44%) is much greater than that of anthropogenic activities (3.46%). However, in areas where anthropogenic activities occur, the average contribution of anthropogenic activities to the NPP variation (75.01%) is much greater than the average contribution of climate change (15.53%).
- (3)
- NPP in the research area displayed an upward overall trend between 2000 and 2019. Most anthropogenic activities and climate change in Xinjiang contributed to the increase in NPP during the study period. For grasslands and woodlands, the increase in NPP was mainly due to increased moisture. The improvements in NPP in arable land, unused land and construction land areas were mainly related to proper human management.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, H.; Xu, X.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of Northern China from 2000 to 2015. Sci. Total Environ. 2020, 718, 134871. [Google Scholar] [CrossRef]
- Smithson, P.A. IPCC, 2001: Climate change 2001: The scientific basis. Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change, edited by J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. Van der linden, X. Dai, K. Maskell and C.A. Johnson (eds). Cambridge University Press, Cambridge, UK, and New York, USA, 2001. No. of pages: 881. Price £34.95, us$ 49.95, isbn 0-521-01495-6 (paperback). £90.00, us$ 130.00, isbn 0-521-80767-0 (hardback). Int. J. Climatol. 2002, 22, 1144. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Bailey, V.L.; Chen, M.; Gough, C.M.; Vargas, R. Globally rising soil heterotrophic respiration over recent decades. Nature 2018, 560, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, S.; Bai, X.; Luo, W.; Tang, H.; Cao, Y.; Wu, L.; Chen, F.; Li, Q.; Zeng, C.; et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink. Sci. Total Environ. 2018, 643, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K.; et al. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, Q.; Du, X.; Li, J.; Gang, C.; Zhou, W.; Wang, Z. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient. Sci. Total Environ. 2019, 652, 671–682. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Xiong, J.; Bian, J.; Jin, H.; Cheng, W.; Li, A. Vegetation change and its response to climate change in Yunnan province, China. Adv. Meteorol. 2021, 2021, 8857589. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Kheir, A.M.S. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 2018, 193, 538–546. [Google Scholar] [CrossRef]
- Kun, Y.; Chuanmin, H. Changes in vegetative coverage of the Hongze Lake national wetland nature reserve: A decade-long assessment using modis medium-resolution data. J. Appl. Remote Sens. 2013, 7, 073589. [Google Scholar]
- Xu, G.; Zhang, H.; Chen, B.; Zhang, H.; Innes, J.L.; Wang, G.; Yan, J.; Zheng, Y.; Zhu, Z.; Myneni, R.B. Changes in vegetation growth dynamics and relations with climate over China’s landmass from 1982 to 2011. Remote Sens. 2014, 6, 3263–3283. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Zhiqiang, G.; Xiaoling, P.; James, R.S.; Mingkui, C.; Jiaguo, Q.; Jie, Z.; Xiwu, Z.; Yingjun, M. Responses of net primary productivity (npp) in Xinjiang to climate changes from 1981–2000. Proc. SPIE 2003, 5153, 73–84. [Google Scholar]
- Zhuang, Q.; Shao, Z.; Li, D.; Huang, X.; Cai, B.; Altan, O.; Wu, S. Unequal weakening of urbanization and soil salinization on vegetation production capacity. Geoderma 2022, 411, 115712. [Google Scholar] [CrossRef]
- De Jong, R.; Schaepman, M.E.; Furrer, R.; de Bruin, S.; Verburg, P.H. Spatial relationship between climatologies and changes in global vegetation activity. Glob. Change Biol. 2013, 19, 1953–1964. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Zhou, M.; Zhang, L. Vulnerability of ecosystem services provisioning to urbanization: A case of China. Ecol. Indic. 2015, 57, 505–513. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.P.; Xiao, X.; Song, X.P.; Horion, S.; et al. Forest management in Southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef]
- Zhuang, Q.; Shao, Z.; Huang, X.; Zhang, Y.; Wu, W.; Feng, X.; Lv, X.; Ding, Q.; Cai, B.; Altan, O. Evolution of soil salinization under the background of landscape patterns in the irrigated northern slopes of Tianshan mountains, Xinjiang, China. Catena 2021, 206, 105561. [Google Scholar] [CrossRef]
- Stavi, I.; Roque de Pinho, J.; Paschalidou, A.K.; Adamo, S.B.; Galvin, K.; de Sherbinin, A.; Even, T.; Heaviside, C.; van der Geest, K. Food security among dryland pastoralists and agropastoralists: The climate, land-use change, and population dynamics nexus. Anthr. Rev. 2021, 20530196211007512. [Google Scholar] [CrossRef]
- Yang, H.; Mu, S.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial npp in Xinjiang, China. Catena 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, S.; Chen, D.; Wei, Z.; Dai, L.; Li, X. Determining the contributions of urbanisation and climate change to npp variations over the last decade in the Yangtze River Delta, China. Sci. Total Environ. 2014, 472, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Gu, L.; Chen, J.; Xu, C.-Y.; Kim, J.-S.; Chen, H.; Xia, J.; Zhang, L. The contribution of internal climate variability to climate change impacts on droughts. Sci. Total Environ. 2019, 684, 229–246. [Google Scholar] [CrossRef]
- He, C.; Tian, J.; Gao, B.; Zhao, Y. Differentiating climate—and human—induced drivers of grassland degradation in the Liao River Basin, China. Environ. Monit. Assess. 2015, 187, 4199. [Google Scholar] [CrossRef]
- Qi, X.; Jia, J.; Liu, H.; Lin, Z. Relative importance of climate change and human activities for vegetation changes on China’s silk road economic belt over multiple timescales. Catena 2019, 180, 224–237. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [Google Scholar] [CrossRef]
- Miao, L.; Jiang, C.; Xue, B.; Liu, Q.; He, B.; Nath, R.; Cui, X. Vegetation dynamics and factor analysis in arid and semi-arid inner mongolia. Environ. Earth Sci. 2015, 73, 2343–2352. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, X.; Yan, X. Modeling gross primary production of maize cropland and degraded grassland in northeastern China. Agric. For. Meteorol. 2010, 150, 1160–1167. [Google Scholar] [CrossRef]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; Kayad, A.G.; Jha, C.S. Estimation of gross primary production of irrigated maize using landsat-8 imagery and eddy covariance data. Saudi J. Biol. Sci. 2017, 24, 410–420. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Yan, H.; Feng, Z.; Yang, Y.; Liu, F. The supply-consumption relationship of ecological resources under ecological civilization construction in China. Resour. Conserv. Recycl. 2021, 172, 105679. [Google Scholar] [CrossRef]
- Niu, Z.; Yan, H.; Liu, F. Decreasing cropping intensity dominated the negative trend of cropland productivity in Southern China in 2000–2015. Sustainability 2020, 12, 10070. [Google Scholar] [CrossRef]
- Yan, H.; Fu, Y.; Xiao, X.; Huang, H.Q.; He, H.; Ediger, L. Modeling gross primary productivity for winter wheat–maize double cropping system using modis time series and CO2 eddy flux tower data. Agric. Ecosyst. Environ. 2009, 129, 391–400. [Google Scholar] [CrossRef]
- Yan, H.; Xue, Z.; Niu, Z. Ecological restoration policy should pay more attention to the high productivity grasslands. Ecol. Indic. 2021, 129, 107938. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B.; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Yan, H.; Xiao, X.; Huang, H.; Liu, J.; Chen, J.; Bai, X. Multiple cropping intensity in China derived from agro-meteorological observations and modis data. Chin. Geogr. Sci. 2014, 24, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Raich, J.W.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.; Steudler, P.A.; Peterson, B.J.; Grace, A.L.; Moore, B., 3rd; Vorosmarty, C.J. Potential net primary productivity in South America: Application of a global model. In Ecological Applications; Ecological Society of America: Washington, DC, USA, 1991; Volume 1, pp. 399–429. [Google Scholar]
- Fang, L.; Huimin, Y.; Fengxue, G.; Zhongen, N.; Mei, H. Net primary productivity increased on the loess plateau following implementation of the grain to green program. J. Resour. Ecol. 2017, 8, 413–421. [Google Scholar] [CrossRef]
- Yan, H.; Ji, Y.; Liu, J.; Liu, F.; Hu, Y.; Kuang, W. Potential promoted productivity and spatial patterns of medium- and low-yield cropland land in China. J. Geogr. Sci. 2016, 26, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Albrizio, R.; Steduto, P. Photosynthesis, respiration and conservative carbon use efficiency of four field grown crops. Agric. For. Meteorol. 2003, 116, 19–36. [Google Scholar] [CrossRef]
- Luo, Y.; Sims, D.A.; Thomas, R.B.; Tissue, D.T.; Ball, J.T. Sensitivity of leaf photosynthesis to CO2 concentration is an invariant function for c3 plants: A test with experimental data and global applications. Glob. Biogeochem. Cycles 1996, 10, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Sims, D.A.; Luo, Y.; Coleman, J.S.; Johnson, D.W. Photosynthesis, respiration, and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations: An invariant npp:Gpp ratio? Glob. Change Biol. 2000, 6, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Gifford, R.M. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: Long-term vs. Short-term distinctions for modelling. Glob. Change Biol. 1995, 1, 385–396. [Google Scholar] [CrossRef]
- Lobell, D.B.; Hicke, J.A.; Asner, G.P.; Field, C.B.; Tucker, C.J.; Los, S.O. Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–1998. Glob. Change Biol. 2002, 8, 722–735. [Google Scholar] [CrossRef]
- Li, Z.; Huffman, T.; McConkey, B.; Townley-Smith, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series modis ndvi with climate and stocking data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Jiang, L.; Guli, J.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef]
- Gu, Z.; Duan, X.; Shi, Y.; Li, Y.; Pan, X. Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River basin, China. Ecol. Indic. 2018, 93, 54–64. [Google Scholar] [CrossRef]
- Li, Y.; Qin, Y. The response of net primary production to climate change: A case study in the 400 mm annual precipitation fluctuation zone in China. Int. J. Environ. Res. Public Health 2019, 16, 1497. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xu, G.; Li, P.; Li, Z.; Zhang, Y.; Cheng, Y.; Jia, L.; Zhang, J. Vegetation dynamics and their relationships with climatic factors in the Qinling mountains of China. Ecol. Indic. 2020, 108, 105719. [Google Scholar] [CrossRef]
- Kamali, A.; Khosravi, M.; Hamidianpour, M. Spatial–temporal analysis of net primary production (npp) and its relationship with climatic factors in Iran. Environ. Monit. Assess. 2020, 192, 718. [Google Scholar] [CrossRef]
- Liu, C.; Dong, X.; Liu, Y. Changes of npp and their relationship to climate factors based on the transformation of different scales in Gansu, China. Catena 2015, 125, 190–199. [Google Scholar] [CrossRef]
- Yan, M.; Xue, M.; Zhang, L.; Tian, X.; Chen, B.; Dong, Y. A decade’s change in vegetation productivity and its response to climate change over Northeast China. Plants 2021, 10, 821. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid. Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Zhang, M.; Zhang, C. Impacts of climate change and human activities on vegetation cover in hilly Southern China. Ecol. Eng. 2015, 81, 451–461. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, J.; Ha, S.; Lai, Q.; Ma, Q. Dynamics of fractional vegetation coverage and its relationship with climate and human activities in inner Mongolia, China. Remote Sens. 2016, 8, 776. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Wang, K.; Yue, Y.; Brandt, M.; Liu, B.; Zhang, C.; Liao, C.; Fensholt, R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the Karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, C.; Shen, Y.; Jia, W.; Li, J. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena 2016, 147, 789–796. [Google Scholar] [CrossRef]
- Zhou, W.; Gang, C.; Zhou, F.; Li, J.; Dong, X.; Zhao, C. Quantitative assessment of the individual contribution of climate and human factors to desertification in Northwest China using net primary productivity as an indicator. Ecol. Indic. 2015, 48, 560–569. [Google Scholar] [CrossRef]
- Pan, N.; Wang, S.; Liu, Y.; Hua, T.; Zhang, J.; Xue, F.; Fu, B. Quantifying responses of net primary productivity to agricultural expansion in drylands. Land Degrad. Dev. 2021, 32, 2050–2060. [Google Scholar] [CrossRef]
- Wu, L.; Wang, S.; Bai, X.; Tian, Y.; Luo, G.; Wang, J.; Li, Q.; Chen, F.; Deng, Y.; Yang, Y.; et al. Climate change weakens the positive effect of human activities on Karst vegetation productivity restoration in Southern China. Ecol. Indic. 2020, 115, 106392. [Google Scholar] [CrossRef]
- Jiao, K.; Gao, J.; Wu, S. Climatic determinants impacting the distribution of greenness in China: Regional differentiation and spatial variability. Int. J. Biometeorol. 2019, 63, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yang, Z.; Han, F.; Wang, Z.; Wang, C. Ndvi-based vegetation dynamics and their response to recent climate change: A case study in the Tianshan mountains, China. Environ. Earth Sci. 2016, 75, 1189. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Yasuda, H.; Shimizu, K.; Kawai, T.; Ebabu, K.; Berihun, M.L.; Sultan, D.; et al. Cropland expansion outweighs the monetary effect of declining natural vegetation on ecosystem services in Sub-Saharan Africa. Ecosyst. Serv. 2020, 45, 101154. [Google Scholar] [CrossRef]
- He, B.; Miao, L.; Cui, X.; Wu, Z. Carbon sequestration from China’s afforestation projects. Environ. Earth Sci. 2015, 74, 5491–5499. [Google Scholar] [CrossRef]
- Sheikhy Narany, T.; Aris, A.Z.; Sefie, A.; Keesstra, S. Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Sci. Total Environ. 2017, 599–600, 844–853. [Google Scholar] [CrossRef]
- Lu, C.; Zhao, T.; Shi, X.; Cao, S. Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J. Clean. Prod. 2018, 176, 1213–1222. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, T.; Jiang, C.; Cao, S. Opportunity cost of water allocation to afforestation rather than conservation of natural vegetation in China. Land Use Policy 2016, 50, 67–73. [Google Scholar] [CrossRef]
Drivers | The Criteria for the Division of Drivers | Contributions (%) | ||
---|---|---|---|---|
Climate Change | ||||
>0 | CC&O1 | >0 | >0 | |
CC | >0 | <0 | 100 | |
O1 | <0 | >0 | 0 | |
<0 | CC&O1 | <0 | <0 | |
CC | <0 | >0 | 100 | |
O1 | >0 | <0 | 0 |
Year | 2000 | ||||||||
---|---|---|---|---|---|---|---|---|---|
LULC | 1 | 2 | 3 | 4 | 5 | 6 | Total | Increase | |
2019 | 1 | 62,356.50 | 612.20 | 24,860.30 | 112.17 | 97.76 | 4932.39 | 92,971.33 | 30,614.83 |
2 | 50.14 | 26,723.25 | 299.69 | 3.92 | 5.89 | 169.82 | 27,252.71 | 529.46 | |
3 | 1494.99 | 1198.52 | 467,943.25 | 804.36 | 15.90 | 9336.11 | 480,793.13 | 12,849.88 | |
4 | 18.85 | 13.69 | 903.95 | 31,851.75 | 1.20 | 2316.00 | 35,105.43 | 3253.68 | |
5 | 1154.44 | 39.28 | 1480.99 | 22.67 | 5060.50 | 1937.96 | 9695.84 | 4635.34 | |
6 | 40.65 | 69.93 | 9828.86 | 480.50 | 6.15 | 974,990.75 | 985,416.84 | 10,426.09 | |
Total | 65,115.57 | 28,656.86 | 505,317.04 | 33,275.38 | 5187.40 | 993,683.03 | 1,631,235.28 | \ | |
Decrease | 2759.07 | 1933.61 | 37,373.79 | 1423.63 | 126.90 | 18,692.28 | \ | \ |
LULC Change | NPP2019–NPP2000 (gC/m2·a) | NPPhuman (gC/m2·a) |
---|---|---|
1 | 131.31 | 0.00 |
1 to 2/3/4/5/6 | 6.62 | −124.69 |
2 | 20.68 | 0.00 |
2 to 1/3/4/5/6 | 45.73 | 25.05 |
3 | 12.63 | 0.00 |
3 to 1/2/4/5/6 | 155.47 | 142.83 |
4 | 3.31 | 0.00 |
4 to 1/2/3/5/6 | 13.68 | 10.37 |
5 | 55.65 | 0.00 |
5 to 1/2/3/4/6 | 111.15 | 55.51 |
6 | 1.55 | 0.00 |
6 to 1/2/3/4/5 | 34.23 | 32.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Wu, S.; Zhuang, Q.; Zhang, Z.; Hou, G.; Luo, G.; Hu, Z. Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change. Remote Sens. 2022, 14, 1092. https://doi.org/10.3390/rs14051092
Xie C, Wu S, Zhuang Q, Zhang Z, Hou G, Luo G, Hu Z. Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change. Remote Sensing. 2022; 14(5):1092. https://doi.org/10.3390/rs14051092
Chicago/Turabian StyleXie, Conghui, Shixin Wu, Qingwei Zhuang, Zihui Zhang, Guanyu Hou, Geping Luo, and Zengyun Hu. 2022. "Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change" Remote Sensing 14, no. 5: 1092. https://doi.org/10.3390/rs14051092
APA StyleXie, C., Wu, S., Zhuang, Q., Zhang, Z., Hou, G., Luo, G., & Hu, Z. (2022). Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change. Remote Sensing, 14(5), 1092. https://doi.org/10.3390/rs14051092