The SST–Wind Causal Relationship during the Development of the IOD in Observations and Model Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Observational Data
2.3. Methods
3. Observed Evolution of the IOD
3.1. Statistical Analysis of the SST–Wind Causal Relationship
3.2. Case Analysis of the SST–Wind Causal Relationship
4. Model-Simulated Evolution of the IOD
4.1. IOD Intensity
4.2. SST–Wind Relationship in Coupled Experiments
4.3. Simulated SST–Wind Relationships during the Individual IOD Events
5. Summary and Discussion
5.1. Conclusions
5.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Yang, K.; Wu, L.; Huang, G.; Santoso, A.; Ng, B.; Wang, G.; Yamagata, T. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Chang. 2021, 11, 27–32. [Google Scholar] [CrossRef]
- Bjerknes, J. Monthly Weather Reyiew Atmospheric Teleconnections From the Equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Wyrtki, K. El Niño—The Dynamic Response of the Equatorial Pacific Oceanto Atmospheric Forcing. J. Phys. Oceanogr. 1975, 5, 572–584. [Google Scholar] [CrossRef]
- Chang, P.; Yamagata, T.; Schopf, P.; Behera, S.K.; Carton, J.; Kessler, W.S.; Meyers, G.; Qu, T.; Schott, F.; Shetye, S.; et al. Climate fluctuations of tropical coupled systems—The role of ocean dynamics. J. Clim. 2006, 19, 5122–5174. [Google Scholar] [CrossRef]
- Xie, S.P. Ocean-atmosphere interaction in the making of the walker circulation and equatorial cold tongue. J. Clim. 1998, 11, 189–201. [Google Scholar] [CrossRef]
- Vinayachandran, P.N.; Saji, N.H.; Yamagata, T. Response of the Equatorial Indian Ocean to an unusual wind event during 1994. Geophys. Res. Lett. 1999, 26, 1613–1616. [Google Scholar] [CrossRef]
- Cai, W.; Pan, A.; Roemmich, D.; Cowan, T.; Guo, X. Argo profiles a rare occurrence of three consecutive positive Indian Ocean Dipole events, 2006–2008. Geophys. Res. Lett. 2009, 36, 2006–2008. [Google Scholar] [CrossRef]
- Iskandar, I.; Mardiansyah, W.; Setiabudidaya, D.; Affandi, A.K.; Syamsuddin, F. Surface and subsurface oceanic variability observed in the eastern equatorial Indian Ocean during three consecutive Indian Ocean dipole events: 2006–2008. AIP Conf. Proc. 2014, 1617, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Duan, W.S. IOD-related optimal initial errors and optimal precursors for IOD predictions from reanalysis data. Sci. China Earth Sci. 2017, 60, 156–172. [Google Scholar] [CrossRef]
- Lu, B.; Ren, H.L. What Caused the Extreme Indian Ocean Dipole Event in 2019? Geophys. Res. Lett. 2020, 47, e2020GL087768. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Du, Y.; Cai, W.; Chen, Z.; Tozuka, T.; Yu, J.Y. Triggering the Indian Ocean Dipole From the Southern Hemisphere. Geophys. Res. Lett. 2020, 47, e2020GL088648. [Google Scholar] [CrossRef]
- Carniel, S.; Benetazzo, A.; Bonaldo, D.; Falcieri, F.M.; Miglietta, M.M.; Ricchi, A.; Sclavo, M. Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event. Ocean Model. 2016, 101, 101–112. [Google Scholar] [CrossRef]
- Olabarrieta, M.; Warner, J.C.; Armstrong, B.; Zambon, J.B.; He, R. Ocean-atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model. 2012, 43–44, 112–137. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Zambon, J.B.; He, R.; Warner, J.C. Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn. 2014, 64, 1535–1554. [Google Scholar] [CrossRef]
- Pokhrel, S.; Chaudhari, H.S.; Saha, S.K.; Dhakate, A.; Yadav, R.K.; Salunke, K.; Mahapatra, S.; Rao, S.A. ENSO, IOD and Indian Summer Monsoon in NCEP climate forecast system. Clim. Dyn. 2012, 39, 2143–2165. [Google Scholar] [CrossRef]
- Yamagata, T.; Behera, S.K.; Luo, J.J.; Masson, S.; Jury, M.R.; Rao, S.A. Coupled ocean-atmosphere variability in the tropical Indian ocean. Geophys. Monogr. Ser. 2004, 147, 189–211. [Google Scholar] [CrossRef]
- Wieners, C.E.; Dijkstra, H.A.; de Ruijter, W.P.M. The interaction between the Western Indian Ocean and ENSO in CESM. Clim. Dyn. 2019, 52, 5153–5172. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Tang, Y.; Chen, D.; Zhou, L.; Li, X.; Lian, T.; Ul Islam, S. Assessment of the simulation of Indian Ocean Dipole in the CESM—Impacts of atmospheric physics and model resolution. J. Adv. Model. Earth Syst. 2016, 8, 1932–1952. [Google Scholar] [CrossRef]
- Hua, L.; Yu, Y. Nonlinear responses of oceanic temperature to wind stress anomalies in tropical pacific and indian oceans: A study based on numerical experiments with an OGCM. J. Meteorol. Res. 2015, 29, 608–626. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C. Different impacts of various El Niño events on the Indian Ocean Dipole. Clim. Dyn. 2014, 42, 991–1005. [Google Scholar] [CrossRef]
- Liu, L.; Xie, S.P.; Zheng, X.T.; Li, T.; Du, Y.; Huang, G.; Yu, W.D. Indian Ocean variability in the CMIP5 multi-model ensemble: The zonal dipole mode. Clim. Dyn. 2014, 43, 1715–1730. [Google Scholar] [CrossRef]
- Feng, R.; Duan, W. Investigating the Initial Errors that Cause Predictability Barriers for Indian Ocean Dipole Events Using CMIP5 Model Outputs. Adv. Atmos. Sci. 2018, 35, 1305–1320. [Google Scholar] [CrossRef]
- Cai, W.; Sullivan, A.; Cowan, T.; Ribbe, J.; Shi, G. Simulation of the Indian Ocean Dipole: A relevant criterion for selecting models for climate projections. Geophys. Res. Lett. 2011, 38, L03704. [Google Scholar] [CrossRef] [Green Version]
- Vertenstein, M.; Bertini, A.; Craig, T.; Edwards, J.; Mai, A.; Schollenberger, J. CESM User’s Guide (CESM1.2 Release Series User’s; National Center for Atmospheric Research: Boulder, CO, USA, 2013; Available online: http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/ug.pdf (accessed on 10 November 2020).
- Neale, R.B.; Chen, C.; Lauritzen, P.H.; Williamson, D.L.; Conley, A.J.; Smith, A.K.; Mills, M.; Morrison, H. Description of the NCAR Community Atmosphere Model (CAM 5.0); Ncar/Tn-464 + Str; National Center for Atmospheric Research: Boulder, CO, USA, 2004; p. 214. Available online: https://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf (accessed on 10 November 2020).
- Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.F.; Large, W.G.; Lawrence, D.; Lindsay, K.; et al. The community earth system model: A framework for collaborative research. Bull. Am. Meteorol. Soc. 2013, 94, 1339–1360. [Google Scholar] [CrossRef]
- Danabasoglu, G.; Bates, S.C.; Briegleb, B.P.; Jayne, S.R.; Jochum, M.; Large, W.G.; Peacock, S.; Yeager, S.G. The CCSM4 ocean component. J. Clim. 2012, 25, 1361–1389. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Thornton, P.E.; Swenson, S.C.; Lawrence, P.J.; Zeng, X.; Yang, Z.-L.; Levis, S.; Sakaguchi, K.; et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 2011, 3, M03001. [Google Scholar] [CrossRef]
- Holland, M.M.; Bailey, D.A.; Briegleb, B.P.; Light, B.; Hunke, E. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Clim. 2012, 25, 1413–1430. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Yan, D.; Kai, L.; Wei, Z.; Wei-Dong, Y. The Kelvin Wave Processes in the Equatorial Indian Ocean during the 2006–2008 IOD Events. Atmos. Ocean. Sci. Lett. 2012, 5, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Endo, S.; Tozuka, T. Two flavors of the Indian Ocean Dipole. Clim. Dyn. 2016, 46, 3371–3385. [Google Scholar] [CrossRef]
- Kalnay, E.; White, G.; Woollen, J.; Chelliah, M.; Fiorino, M.; Kanamitsu, M.; Jenne, R.; Kistler, R.; Saha, S.; Kousky, V.; et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 2, 247–267. [Google Scholar] [CrossRef]
- Tokinaga, H.; Tanimoto, Y. Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and Indian Ocean dipole years. J. Meteorol. Soc. Japan 2004, 82, 1007–1018. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.P.; Cao, J. North Indian Ocean tropical cyclone activities influenced by the Indian Ocean Dipole mode. Sci. China Earth Sci. 2013, 56, 855–865. [Google Scholar] [CrossRef]
- Andrews, H.; Patterson, C. Singular Value Decomposition (SVD) Image Coding. IEEE Trans. Commun. 1976, 24, 425–432. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T. Why is the amplitude of the Indian ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett. 2013, 40, 1200–1205. [Google Scholar] [CrossRef]
- Schott, F.A.; Xie, S.-P.; McCreary, J.P. Indian Ocean circulation and climate variability. Rev. Geophys. 2009, 47, RG1002. [Google Scholar] [CrossRef]
- Iskandar, I.; McPhaden, M.J. Dynamics of wind-forced intraseasonal zonal current variations in the equatorial Indian Ocean. J. Geophys. Res. Ocean. 2011, 116, C06019. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Murtugudde, R.; Kumar, A. Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Clim. Dyn. 2016, 47, 2481–2500. [Google Scholar] [CrossRef]
- Li, T.; Wang, B.; Chang, C.P.; Zhang, Y. A theory for the Indian Ocean dipole-zonal mode. J. Atmos. Sci. 2003, 60, 2119–2135. [Google Scholar] [CrossRef] [Green Version]
- Horii, T.; Hase, H.; Ueki, I.; Masumoto, Y. Oceanic precondition and evolution of the 2006 Indian Ocean dipole. Geophys. Res. Lett. 2008, 35, L03607. [Google Scholar] [CrossRef]
- Feng, M.; Meyers, G. Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean Dipole. Deep. Res. Part II Top. Stud. Oceanogr. 2003, 50, 2263–2284. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zhang, Y.; Lu, E.; Wang, D. Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett. 2002, 29, 2110. [Google Scholar] [CrossRef] [Green Version]
- Tanizaki, C.; Tozuka, T.; Doi, T.; Yamagata, T. Relative importance of the processes contributing to the development of SST anomalies in the eastern pole of the Indian Ocean Dipole and its implication for predictability. Clim. Dyn. 2017, 49, 1289–1304. [Google Scholar] [CrossRef]
- Prasad, T.G.; McClean, J.L. Mechanisms for anomalous warming in the western Indian Ocean during dipole mode events. J. Geophys. Res. Ocean. 2004, 109, C02019. [Google Scholar] [CrossRef]
- Annamalai, H.; Murtugudde, R.; Potemra, J.; Xie, S.P.; Liu, P.; Wang, B. Coupled dynamics over the Indian Ocean: Spring initiation of the Zonal Mode. Deep. Res. Part II Top. Stud. Oceanogr. 2003, 50, 2305–2330. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Ma, H.Y.; Boyle, J.S.; Klein, S.A.; Zhang, Y. On the Correspondence between short- and long-time-scale systematic errors in CAM4/CAM5 for the year of tropical convection. J. Clim. 2012, 25, 7937–7955. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Duan, W.; Mu, M. Estimating observing locations for advancing beyond the winter predictability barrier of Indian Ocean dipole event predictions. Clim. Dyn. 2017, 48, 1173–1185. [Google Scholar] [CrossRef] [Green Version]
- McPhaden, M.J.; Nagura, M. Indian Ocean dipole interpreted in terms of recharge oscillator theory. Clim. Dyn. 2014, 42, 1569–1586. [Google Scholar] [CrossRef]
- Menezes, V.V.; Vianna, M.L. Quasi-biennial Rossby and Kelvin waves in the South Indian Ocean: Tropical and subtropical modes and the Indian Ocean Dipole. Deep. Res. Part II Top. Stud. Oceanogr. 2019, 166, 43–63. [Google Scholar] [CrossRef]
Experiment | Atmospheric Physics Model | Resolution (Atmosphere) | Resolution (Ocean) | Time Period | ||
---|---|---|---|---|---|---|
Horizontal | Vertical | Horizontal | Vertical | |||
CPL4(2°) | CAM4 | 1.9° × 2.5° | 26 | gx1v6 | 60 | 50 years |
CPL4(1°) | CAM4 | 0.9° × 1.25° | 26 | gx1v6 | 60 | 50 years |
CPL5(2°) | CAM5 | 1.9° × 2.5° | 30 | gx1v6 | 60 | 50 years |
CPL5(1°) | CAM5 | 0.9° × 1.25° | 30 | gx1v6 | 60 | 50 years |
Year | EIO SST Month | WIO SST Month | SMWI Month | ZWI Month | EIO SST STD(°C) | WIO SST STD(°C) | EIO SST → WIND → WIO SST | IOD Intensity |
---|---|---|---|---|---|---|---|---|
1961 | May | May | July | May | 2.7 | 1.1 | No | 3.0 × STD |
1963 | Last December | August | Feb | Feb | 2.1 | 1.3 | Yes | 2.0 × STD |
1967 | May | August | June | July | 2.2 | 0.4 | Yes | 1.3 × STD |
1972 | March | April | July | July | 1.3 | 2.6 | No | 2.7 × STD |
1982 | Last December | December | July | August | 1.6 | 1.4 | Yes | 1.9 × STD |
1987 | April | March | June | June | 0.1 | 2.4 | No | 1.5 × STD |
1994 | March | August | March | June | 3.2 | 0.6 | Yes | 2.5 × STD |
1997 | May | October | May | June | 2.9 | 2.1 | Yes | 3.3 × STD |
2006 | June | September | July | July | 2.1 | 0.9 | Yes | 1.7 × STD |
2015 | June | March | May | July | 0.3 | 2.3 | No | 1.4 × STD |
2018 | April | July | May | July | 1.6 | 1.0 | Yes | 1.8 × STD |
2019 | May | August | July | July | 2.8 | 2.1 | Yes | 2.7 × STD |
EIO SSTA and ZWI | EIO SSTA and SMWI | WIO SSTA and ZWI | WIO SSTA and SMWI | |||||
---|---|---|---|---|---|---|---|---|
Lead Time | Correlation | Lead Time | Correlation | LEAD TIME | Correlation | Lead Time | Correlation | |
OBS | −2 | 0.35 | −2 | −0.33 | 1 | −0.44 | 1 | 0.40 |
CPL4(1°) | −1 | 0.61 | −2 | −0.56 | 1 | −0.63 | 2 | 0.51 |
CPL4(2°) | −1 | 0.72 | −2 | −0.59 | 1 | −0.70 | 1 | 0.66 |
CPL5(1°) | −1 | 0.71 | −2 | −0.69 | 1 | −0.87 | 1 | 0.74 |
CPL5(2°) | −2 | 0.72 | −3 | −0.67 | 1 | −0.82 | 1 | 0.73 |
Experiment | CPL4(1°) | CPL4(2°) | CPL5(1°) | CPL5(2°) | Total | ||||
---|---|---|---|---|---|---|---|---|---|
Number | Proportion | Number | Proportion | Number | Proportion | Number | Proportion | ||
DMI > 1.5 × STD | 7 | 3/7 | 7 | 3/7 | 9 | 6/9 | 9 | 7/9 | 19/32 (59%) |
DMI < 1.5 × STD | 4 | 2/4 | 6 | 1/6 | 6 | 2/6 | 0 | 5/16 (31%) | |
Total | 11 | 5 (45%) | 13 | 4 (31%) | 15 | 8 (53%) | 9 | 7 (78%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Tang, Y.; Tan, X.; Wu, Y.; Yao, Z. The SST–Wind Causal Relationship during the Development of the IOD in Observations and Model Simulations. Remote Sens. 2022, 14, 1064. https://doi.org/10.3390/rs14051064
Xiao Y, Tang Y, Tan X, Wu Y, Yao Z. The SST–Wind Causal Relationship during the Development of the IOD in Observations and Model Simulations. Remote Sensing. 2022; 14(5):1064. https://doi.org/10.3390/rs14051064
Chicago/Turabian StyleXiao, Yao, Youmin Tang, Xiaoxiao Tan, Yanling Wu, and Zhixiong Yao. 2022. "The SST–Wind Causal Relationship during the Development of the IOD in Observations and Model Simulations" Remote Sensing 14, no. 5: 1064. https://doi.org/10.3390/rs14051064
APA StyleXiao, Y., Tang, Y., Tan, X., Wu, Y., & Yao, Z. (2022). The SST–Wind Causal Relationship during the Development of the IOD in Observations and Model Simulations. Remote Sensing, 14(5), 1064. https://doi.org/10.3390/rs14051064