Assessing the Usefulness of LiDAR for Monitoring the Structure of a Montane Forest on a Subtropical Oceanic Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Inventory
2.3. LiDAR Inventory
2.4. LiDAR Data Processing
2.5. Allometric Equations
2.6. Distinguishing Young-Growth and Old-Growth Laurel Forest
3. Results
3.1. Allometric Formulas
3.2. Mapping Structure Variables
3.3. Identifying Young-Growth and Old-Growth Laurel Forests through LiDAR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindenmayer, D. Forest Pattern and Ecological Process: A Synthesis of 25 Years of Research; CSIRO Publishing: Clayton, Australia, 2009; p. 320. [Google Scholar] [CrossRef]
- FAO. The State of the World´s Forests (SOFO); FAO: Rome, Italy; p. 139. Available online: http://www.fao.org/3/i9535en/i9535en.pdf (accessed on 22 May 2021).
- Roy, J.; Saugier, B.; Mooney, H.A. Terrestrial Global Productivity; Academic Press: San Diego, CA, USA, 2001; p. 573. [Google Scholar]
- Mackey, B.; Prentice, I.C.; Steffen, W.; House, J.I.; Lindenmayer, D.; Keith, H.; Berry, S. Untangling the confusion around land carbon science and climate change mitigation policy. Nat. Clim. Chang. 2013, 3, 552–557. [Google Scholar] [CrossRef]
- Gillespie, T.W.; Foody, G.M.; Rocchini, D.; Giorgi, A.P.; Saatchi, S. Measuring and modeling biodiversity from space. Progr. Phys. Geogr. 2008, 32, 203–221. [Google Scholar] [CrossRef]
- Baldeck, C.A.; Asner, G.P. Estimating vegetation beta diversity from airborne imaging spectroscopy and unsupervised clustering. Remote Sens. 2013, 5, 2057–2071. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Liu, R.; Shi, S.; Su, Y.; Li, W.; Guo, Q. Ecological niche modeling with LiDAR data: A case study of modeling the distribution of fisher in the southern Sierra Nevada Mountains, California. Biodivers. Sci. 2018, 26, 878–891. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Kranigk, J.; Myneni, R.B.; Panfyorov, O.; Gravenhorst, G. Influence of small-scale structure on radiative transfer and photosynthesis in vegetation cover. J. Geophys. Res. 1998, 103, 6133–6144. [Google Scholar] [CrossRef]
- Potter, C.; Tan, P.; Steinbach, M.; Klooster, S.; Kumar, V.; Myneni, R.; Genovese, V. Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Glob. Chang. Biol. 2003, 9, 1005–1021. [Google Scholar] [CrossRef] [Green Version]
- Coops, N.C.; Tompaski, P.; Nijland, W.; Rickbeil, G.J.M.; Nielsen, S.E.; Bater, C.W.; Stadt, J.J. A forest structure habitat index based on airborne laser scanning data. Ecol. Indic. 2016, 67, 346–357. [Google Scholar] [CrossRef]
- Muhammad, A.; Mengjiado, Y.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate Wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef] [Green Version]
- Underwood, E.; Ustin, S.; Di Pietro, D. Mapping nonnative plants using hyperspectral imagery. Remote Sens. Environ. 2003, 86, 150–161. [Google Scholar] [CrossRef]
- Mitchell, J.; Glenn, N.F. Leafy Spurge (Euphorbia esula L.) classification performance using hyper-spectral and multispectral sensors. Rangel. Ecol. Manag. 2009, 62, 16–27. [Google Scholar] [CrossRef]
- Sun, G.; Ranson, J. Forest biomass retrieval from lidar and radar. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Kaasalainenm, S.; Holopainen, M.; Karjalainen, M.; Vastaranta, M.; Kankare, V.; Karila, K.; Osmanoglu, B. Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects. Forests 2015, 6, 252–270. [Google Scholar] [CrossRef]
- Tanase, M.A.; Panciera, R.; Lowell, K.; Aponte, C.; Hacker, J.M.; Walker, J.P. Forest Biomass Estimation at High Spatial Resolution: Radar Versus Lidar Sensors. IEEE Geosci. Remote Sens. Lett. 2014, 11, 711–715. [Google Scholar] [CrossRef]
- Huang, W.; Sun, G.; Dubayah, R.; Cook, B.; Montesano, P.; Ni, W.; Zhang, Z. Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales. Remote Sens. Environ. 2013, 134, 319–332. [Google Scholar] [CrossRef]
- García, M.; Saatchi, S.; Ferraz, A.; Silva, C.A.; Ustin, S.; Koltunov, A.; Balzter, H. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR. Carbon Balance Manag. 2017, 12, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens. Environ. 2011, 115, 636–649. [Google Scholar] [CrossRef]
- Mascaro, J.; Detto, M.; Asner, G.P.; Muller-Landau, H.C. Evaluating uncertainty in mapping forest carbon with airborne Lidar. Remote Sens. Environ. 2011, 115, 3770–3774. [Google Scholar] [CrossRef]
- Hall, S.A.; Burke, I.C.; Box, D.O.; Kaufmann, M.R.; Stoker, J.M. Estimating stand structure using discrete-return lidar: An example from low density, fire prone ponderosa pine forests. Ecol. Manag. 2005, 208, 189–209. [Google Scholar] [CrossRef]
- Næsset, E.; Gobakken, T. Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens. Environ. 2008, 112, 3079–3090. [Google Scholar] [CrossRef]
- García, M.; Riaño, D.; Chuvieco, E.; Danson, F.M. Estimating biomass carbon stocks for a Mediterranean forest in Spain using height and intensity LiDAR data. Remote Sens. Environ. 2010, 114, 816–830. [Google Scholar] [CrossRef]
- Rosette, J.A.B.; North, P.R.J.; Suarez, J.C.; Los, S.O. Uncertainty within satellite LiDAR estimations of vegetation and topography. Int. J. Remote Sens. 2010, 31, 1325–1342. [Google Scholar] [CrossRef]
- Yang, W.; Ni-Meister, W.; Lee, S. Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geometric optical and radiative transfer model. Remote Sens. Environ. 2011, 115, 2810–2822. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Q.; Kelly, M. Allometric equation choice impacts lidar-based forest biomass estimates: A case study from the Sierra National Forest, CA. Agric. For. Meteorol. 2012, 165, 64–72. [Google Scholar] [CrossRef]
- Sheridan, R.; Popescu, S.; Gatziolis, D.; Morgan, C.; Ku, N.-W. Modeling Forest Aboveground Biomass and Volume Using Airborne LiDAR Metrics and Forest Inventory and Analysis Data in the Pacific Northwest. Remote Sens. 2014, 7, 229–255. [Google Scholar] [CrossRef]
- Teobaldelli, M.; Cona, F.; Saulino, L.; Migliozzi, A.; D’Urso, G.; Langella, G.; Manna, P.; Saracino, A. Detection of diversity and stand parameters in Mediterranean forests using leaf-off discrete return LiDAR data. Remote Sens. Environ. 2017, 192, 126–138. [Google Scholar] [CrossRef]
- Borges, P.A.V.; Cardoso, P.; Kreft, H.; Whittaker, R.J.; Fattorini, S.; Emerson, B.C.; Gil, A.; Gillespie, R.G.; Matthews, T.J.; Santos, A.M.C.; et al. Global Island Monitoring Scheme (GIMS): A proposal for the long-term coordinated survey and monitoring of native island forest biota. Biodivers. Conserv. 2018, 27, 2567–2586. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, R.J.; Fernández-Palacios, J.M.; Matthews, T.J.; Borregaard, M.K.; Triantis, K.A. Island biogeography: Taking the long view of natures laboratories. Science 2017, 357, eaam8326. [Google Scholar] [CrossRef] [Green Version]
- Mittermeier, R.A.; Robles, G.; Hoffman, M.; Pilgrim, J.; Brooks, T.; Mittermeier, C.G.; Lamoreux, J.; Fonseca, G.A.B. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions; University of Chicago Press: Boston, MA, USA, 2005; p. 392. [Google Scholar]
- Nerelli, G.; Fernández-Palacios, J.M. Análisis de los servicios prestados por los ecosistemas a las comunidades humanas. El caso del monteverde gomero y del pinar grancanario. Boletín De La Real Soc. Económica De Amigos Del País De Tenerife 2010, 1, 237–250. [Google Scholar]
- Del Arco, M.J.; González-González, R.; Garzón-Machado, V.; Pizarro-Hernández, B. Actual and potential natural vegetation on the Canary Islands and its conservation status. Biodivers. Conserv. 2010, 19, 3089–3140. [Google Scholar] [CrossRef]
- Kondraskov, P.; Schütz, N.; Schüßler, C.; Menezes de Sequeira, M.; Guerra, A.S.; Caujapé-Castells, J.; Jaén-Molina, R.; Marrero-Rodríguez, Á.; Koch, M.A.; Linder, P.; et al. Biogeography of Mediterranean Hotspot Biodiversity: Re-Evaluating the “Tertiary Relict” Hypothesis of Macaronesian Laurel Forests. PLoS ONE 2015, 10, e0132091. [Google Scholar] [CrossRef]
- Mairal, M.; Caujapé-Castells, J.; Pellissier, L.; Jaén-Molina, R.; Álvarez, N.; Heuertz, M.; Sanmartín, I. A tale of two forests: Ongoing aridification drives population decline and genetic diversity loss at continental scale in Afro-Macaronesian evergreen-forest archipelago endemics. Ann. Bot. 2018, 122, 1005–1017. [Google Scholar] [CrossRef]
- Otto, R.; Garzón-Machado, V.; Del Arco, M.J.; Fernández-Lugo, S.; de Nascimento, L.; Oromí, P.; Báez, M.; Ibáñez, M.; Alonso, M.R.; Fernández-Palacios, J.M. Unpaid extinction debts for endemic plants and invertebrates as a legacy of habitat loss on oceanic islands. Divers. Distrib. 2017, 23, 1031–1041. [Google Scholar] [CrossRef] [Green Version]
- Marrero, M.C.; Marrero, M.V.; Carqué, E.; Bañares, A.; Fernández, A.; Ojeda, E.; Hernández-Luis, A.; Afonso, L.; Acevedo, A. Euphorbia mellifera Aiton. In Atlas y Libro Rojo de la Flora Vascular Amenazada de España. Taxones Prioritarios; Bañares, A., Blanca, G., Güemes, J., Moreno, J.C., Ortiz, S., Eds.; Dirección General de Conservación de la Naturaleza: Madrid, Spain, 2004; pp. 256–257. [Google Scholar]
- Fernández, Á.B.; Gómez, L.A. Qué son los bosques antiguos de laurisilva. Su valor y situación en Canarias. In La Gomera, Entre Bosques y Taparuchas; Afonso-Carrillo, J., Ed.; Instituto de Estudios Hispánicos de Canarias: Tenerife, Spain, 2016; pp. 177–236. [Google Scholar]
- Núñez-Casillas, L.; Micand, F.; Somers, B.; Brito, P.; Arbelo, M. Plant species monitoring in the Canary Islands using WorldView-2 imagery. In Proceedings of the XXI International Society for Photogrammetry and Remote Sensing Congress, Melbourne, Australia, 9 January–8 May 2012. [Google Scholar]
- Martín-Luis, A.; Arbelo, M.; Hernánde-Leal, P.; Arbelo-Bayó, M. Mapping species distribution of Canarian Monteverde forest by field spectroradiometry and satellite imagery. In Proceedings of the SPIE Remote Sensing, Edinburg, UK, 25 October 2016. [Google Scholar] [CrossRef]
- Massetti, A.; Menezes de Sequeira, M.; Pupo, A.; Figueiredo, A.; Guiomar, N.; Gil, A. Assessing the effectiveness of RapidEye multispectral imagery for vegetation mapping in Madeira Island (Portugal). Eur. J. Remote Sens. 2016, 49, 643–672. [Google Scholar] [CrossRef] [Green Version]
- Devkota, R.S.; Field, R.; Hoffmann, S.; Walentowitz, A.; Medina, F.M.; Vetaas, O.R.; Chiarucci, A.; Weiser, F.; Jentsch, A.; Beierkuhnlein, C. Assessing the potential replacement of laurel forest by a novel ecosystem in the steep terrain of an Oceanic Island. Remote Sens. 2020, 12, 4013. [Google Scholar] [CrossRef]
- GRAFCAN and Agresta. Elaboración de cartografía de modelos de Combustibles Forestales. 2015. Available online: https://opendata.sitcan.es/dataset/modelos-de-combustible-forestales-de-canarias (accessed on 10 February 2021).
- Guillen-Climent, M.L.; Fernández-Landa, A.; Tomé, J.L.; Ranz, P.P. Análisis del estado de las masas forestales quemadas en el Parque Nacional de Garajonay (La Gomera) mediante el uso de técnicas de teledetección, sensores ópticos y LiDAR. In Proceedings of the XVI Congreso de la Asociación Española de Teledetección, Sevilla, Spain, 21–23 October 2015. [Google Scholar]
- GRAFCAN. WMS Service. OrtoExpress Año 2019. Available online: https://idecan1.grafcan.es/ServicioWMS/Historico/Ortofotos/OrtoExpress_2019? (accessed on 10 March 2021).
- Del Arco, M.J.; Garzón-Machado, V. Mapa del estado de la vegetación del Parque Nacional de Garajonay en el año 1951 y comparación con el estado actual. 2010; Unpublished document. [Google Scholar]
- Aboal, J.R.; Arévalo, J.R.; Fernández, Á. Allometric relationships of different tree species and stand above ground biomass in the Gomera laurel forest (Canary Islands). Flora 2005, 200, 264–274. [Google Scholar] [CrossRef]
- Fernández-Palacios, J.M.; García, J.J.; López Esteban, R.J.; Luzardo, M.C. Aproximación a la estima de la biomasa y producción neta aéreas en una estación de la Laurisilva tinerfeña. Vieraea 1991, 20, 11–20. [Google Scholar]
- Pielou, E.C. An introduction to Mathematical Ecology; Wiley Interscience: New York, NY, USA, 1969; p. 286. [Google Scholar]
- Bello-Rodríguez, V.; Gómez, L.A.; Fernández López, Á.; Del-Arco-Aguilar, M.J.; Hernández-Hernández, R.; Emerson, B.; González-Mancebo, J.M. Short- and long-term effects of fire in subtropical cloud forests on an oceanic island. Land Degrad. Dev. 2019, 30, 448–458. [Google Scholar] [CrossRef]
- GRAFCAN. Tienda Virtual. Datos LiDAR. Available online: http://tiendavirtual.grafcan.es/visor.jsf?currentSeriePk=340230144 (accessed on 10 February 2021).
- Instituto Geográfico Nacional (IGN). Plan Nacional de Ortofotografía Aérea (PNOA). LiDAR 2ª Cobertura (2015-Actualidad). Available online: http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=LIDAR (accessed on 10 February 2021).
- Hyyppä, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume estimates from 3-D tree height model produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39, 969–975. [Google Scholar] [CrossRef]
- Persson, A.; Holmgren, J.; Södermann, U. Detecting and measuring individual trees using an airborne laser scanner. Photogram. Eng. Remote Sens. 2002, 68, 925–932. [Google Scholar]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.E. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 2003, 29, 564–577. [Google Scholar] [CrossRef]
- Kwak, D.A.; Lee, W.K.; Lee, J.H.; Biging, G.S.; Gong, P. Detection of individual trees and estimation of tree height using lidar data. J. For. Res. 2007, 12, 425–434. [Google Scholar] [CrossRef]
- Ferraz, A.; Saatchi, S.; Mallet, C.; Jacquemoud, S.; Gonçalves, G.; Silva, C.A.; Soares, P.; Tomé, M.; Pereira, L. Airborne lidar estimation of aboveground forest biomass in the absence of field inventory. Remote Sens. 2016, 8, 653. [Google Scholar] [CrossRef] [Green Version]
- Khorrami, R.; Naeimi, Z.; Tabari, M.; Eslahchi, M.R. A new method for detecting individual trees in aerial LiDAR point clouds using absolute height maxima. Environ. Monit. Assess. 2018, 190, 1–16. [Google Scholar] [CrossRef]
- McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; U.S. Department of Agriculture, Forest Service: Seattle, WA, USA, 2014. [Google Scholar]
- Lumley, T.; Miller, A. Package ‘Leaps’. CRAN Repository. 2020. Available online: https://cran.r-project.org/web/packages/leaps/leaps.pdf (accessed on 15 April 2021).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Benesty, M.; et al. Package ‘caret’. 2021. Available online: https://cran.r-project.org/web/packages/caret/caret.pdf (accessed on 15 April 2021).
- GRAFCAN. WMS Service. OrtoExpress Año 2015. Available online: https://idecan1.grafcan.es/ServicioWMS/Historico/Ortofotos/OrtoExpress_2015? (accessed on 10 February 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 5 April 2021).
- Therneau, T.; Atkinson, B.; Ripley, B. Package ‘rpart’. CRAN Repository. 2019. Available online: https://cran.r-project.org/web/packages/rpart/rpart.pdf (accessed on 20 April 2021).
- Argamosa, R.J.L.; Paringit, E.C.; Quinton, K.R.; Tandc, F.A.M.; Faelga, R.A.G.; Ibañez, C.A.G.; Posilero, M.A.V.; Zaragosa, G.P. Fully automated GIS-Based individual tree Crown delineation based on curvature values from a LiDAR derived canopy height model in a coniferous plantation. In Proceedings of the XXIII International Society for Photogrammetry and Remote Sensing Congress, Prague, Czech Republic, 12–19 July 2016. [Google Scholar]
- Montesano, P.M.; Cook, B.D.; Sun, G.; Simard, M.; Nelson, R.F.; Ranson, K.J.; Zhang, Z.; Luthcke, S. Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error. Remote Sens. Environ. 2013, 130, 153–170. [Google Scholar] [CrossRef]
- Naesset, E.; Gobakken, T.; Solberg, S.; Gregoire, T.G.; Nelson, R.; Ståhl, G.; Weydahl, D. Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area. Remote Sens. Environ. 2011, 115, 3599–3614. [Google Scholar] [CrossRef]
- Parada-Díaz, J.; Kluge, J.; Bello-Rodriguez, V.; Del Arco, M.J.; González-Mancebo, J.M. To what extent does the species composition of Macaronesian laurel forests depend on their human disturbance history and environmental drivers? For. Ecol Manag. 2021, 497, 119468. [Google Scholar] [CrossRef]
- Fernández-Palacios, J.M.; Arévalo, J.R.; Balguerías, E.; Barone, R.; de Nascimento, L.; Delgado, J.D.; Elías, R.B.; Fernández-Lugo, S.; Méndez, J.; Menezes de Sequeira, M.; et al. La Laurisilva: Canarias, Madeira y Azores; Macaronesia Editorial: Santa Cruz de Tenerife, Spain, 2017; p. 412. [Google Scholar]
- Janssen, J.A.M.; Rodwell, J.S.; García Criado, M.; Gubbay, S.; Haynes, T.; Nieto, A.; Sanders, N.; Landucci, F.; Loidi, J.; Ssymank, A.; et al. European Red List of Habitats. Part 2. Terrestrial and Freshwater Habitats; Publication Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Asner, P.G.; Hughes, R.F.; Varga, T.A.; Knapp, D.E.; Kennedy-Bowdoin, T. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems 2009, 12, 261–278. [Google Scholar] [CrossRef]
- Ledo, A.; Illian, J.B.; Schnitzer, S.A.; Wright, S.J.; Dalling, J.W.; Burslem, D.F.R.P. Lianas and soil nutrients predict fine-scale distribution of above-ground biomass in a tropical moist forest. J. Ecol. 2016, 104, 1819–1828. [Google Scholar] [CrossRef] [Green Version]
- Muscarella, R.; Kolyaie, S.; Morton, D.C.; Zimmerman, J.K.; Uriarte, M. Effects of topography on tropical forest structure depend on climate context. J. Ecol. 2019, 108, 145–159. [Google Scholar] [CrossRef]
- Galen, L.G.; Jordan, G.J.; Musk, R.A.; Beeton, N.J.; Wardlaw, T.J.; Baker, S.C. Quantifying floristic and structural forest maturity: An attribute-based method for wet eucalypt forests. J. Appl. Ecol. 2018, 55, 1668–1681. [Google Scholar] [CrossRef]
- Courbaud, B.; Pupin, C.; Letort, A.; Cabanettes, A.; Larrieu, L. Modelling the probability of microhabitat formation on trees using cross-sectional data. Methods Ecol. Evol. 2017, 8, 1347–1359. [Google Scholar] [CrossRef] [Green Version]
- Patiño, J.; Gómez-Rodríguez, C.; Pupo-Correia, A.; Menezes de Sequeira, M.; Vanderpoorten, A. Trees as habitat islands: Temporal variation in alpha and beta diversity in epiphytic laurel forest bryophyte communities. J. Biogeogr. 2018, 45, 1727–1738. [Google Scholar] [CrossRef]
LiDAR Metrics | Metric Description | LiDAR Metrics | Metric Description |
---|---|---|---|
Hmax | Maximum height | Hom | Height of median energy. Height which the sum of intensities of points below and the sum of intensities of points above is identical |
P10 | 10th heights percentile | D00 | Relative height density computed for bin 2–7 m |
P25 | 25th heights percentile | D01 | Relative height density computed for bin 7–12 m |
P50 | 50th heights percentile | D02 | Relative height density computed for bin 12–17 m |
P75 | 75th heights percentile | D03 | Relative height density computed for bin 17–22 m |
P90 | 90th heights percentile | D04 | Relative height density computed for bin 22–27 m |
P95 | 95th heights percentile | D05 | Relative height density computed for bin > 27 m |
P99 | 99th heights percentile | Vc00 | Vertical complexity index for bin 2–7 m |
Avg | Mean of heights | Vc01 | Vertical complexity index for bin 7–12 m |
Qav | Average square of heights | Vc02 | Vertical complexity index for bin 12–17 m |
Std | Standard deviation of heights | Vc03 | Vertical complexity index for bin 17–22 m |
Kur | Kurtosis heights | Vc04 | Vertical complexity index for bin 22–27 m |
Ske | Skewness heights | Vc05 | Vertical complexity index for bin > 27 m |
Cov | Canopy cover; percent of returns > 2.0 m |
Response Variables | Explanatory Variables | Equations | R2 | RMSE | RMSE% | Bias | Bias% |
---|---|---|---|---|---|---|---|
Vertical complexity (J’) | x1 = avg x2 = d00 | Log(Y + 1) = −0.471860 +0.357721·log(x1 + 1) + 0.010078·log(x2 + 1) | 0.99 | 0.01 | 3.1 | <0.00 | 0.005 |
AGB (Mg. ha−1) | x1 = P25·Cov | Log(Y + 1) = −0.63655 +0.89599·log(x1 + 1) | 0.87 | 93.4 | 42.8 | 15.3 | 7 |
Basal area (m2 ha−1) | x1 = Cov x2 = P25 | Log(Y + 1) = −0.7133 +0.6852·log(x1 + 1) +0.6228·log(x2 + 1) | 0.78 | 17.4 | 40.4 | 2.5 | 5.7 |
DBH mean (cm) | x1 = P99·d01 x2 = Avg | Log(Y + 1) = 0.48783 − 0.10154·log(x1 + 1) + 1.13816·log(x2 + 1) | 0.75 | 3.5 | 28.5 | 0.3 | 2.7 |
Stem density (N. ha−1) | x1 = D00·D01 x2 = P75 | Log(Y + 1) = 9.1215 + 0.1884·log(x1 + 1) −1.0091·log(x2 + 1) | 0.62 | 1097.9 | 41.7 | 191.6 | 0.6 |
Method | Accuracy | Sensitivity | Specificity |
---|---|---|---|
Decision tree | 0.786 | 0.779 | 0.791 |
Logistic regression | 0.785 | 0.783 | 0.788 |
Explanatory Variables | β | p-Value |
---|---|---|
Intersect | −2.45075 | <0.0001 |
x1 = D01 | 0.86825 | <0.0001 |
x2 = D02 | 1.57076 | <0.0001 |
x3 = D03 | 2.46523 | <0.0001 |
x4 = D04 | 2.18273 | 0.000377 |
x5 = vertical complexity (J’) | 4.77977 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parada-Díaz, J.; Fernández López, Á.B.; Gómez González, L.A.; del Arco Aguilar, M.J.; González-Mancebo, J.M. Assessing the Usefulness of LiDAR for Monitoring the Structure of a Montane Forest on a Subtropical Oceanic Island. Remote Sens. 2022, 14, 994. https://doi.org/10.3390/rs14040994
Parada-Díaz J, Fernández López ÁB, Gómez González LA, del Arco Aguilar MJ, González-Mancebo JM. Assessing the Usefulness of LiDAR for Monitoring the Structure of a Montane Forest on a Subtropical Oceanic Island. Remote Sensing. 2022; 14(4):994. https://doi.org/10.3390/rs14040994
Chicago/Turabian StyleParada-Díaz, Jesús, Ángel B. Fernández López, Luis A. Gómez González, Marcelino J. del Arco Aguilar, and Juana María González-Mancebo. 2022. "Assessing the Usefulness of LiDAR for Monitoring the Structure of a Montane Forest on a Subtropical Oceanic Island" Remote Sensing 14, no. 4: 994. https://doi.org/10.3390/rs14040994
APA StyleParada-Díaz, J., Fernández López, Á. B., Gómez González, L. A., del Arco Aguilar, M. J., & González-Mancebo, J. M. (2022). Assessing the Usefulness of LiDAR for Monitoring the Structure of a Montane Forest on a Subtropical Oceanic Island. Remote Sensing, 14(4), 994. https://doi.org/10.3390/rs14040994