RFI Suppression for SAR via a Dictionary-Based Nonconvex Low-Rank Minimization Framework and Its Adaptive Implementation
Abstract
:1. Introduction
- (1)
- The DNLRM framework is innovatively proposed to solve the inaccurate modeling problems and unify the preceding similar methods. The alternating direction method of multiplier (ADMM)-based detailed derivation for the closed-form solution is provided, along with the convergence analysis.
- (2)
- Different nonconvex functions and the corresponding supergradients are originally introduced into RFI suppression to overcome the improper punishment problem. Additionally, ADNLRM is uniquely proposed for adaptively selecting the optimal parameter, which improves the applicability for varying RFI suppression missions.
- (3)
- The artificial combination of the RFI-free real SAR data with the measured RFI are considered alongside the RFI-contaminated real SAR data, to further verify the practicability of the proposed methods in a realistic environment.
2. Materials
2.1. Signal Model
2.2. Optimization Frameworks
3. Methods
3.1. Nonconvex Regularizer
3.2. The Proposed DNLRM Framework
3.3. ADMM-Based Solution Derivation for the DNLRM Framework
Algorithm 1 The DNLRM-Based RFI Suppression Algorithm |
Input: Data Matrix: User Parameter: , , , , , and . Output: Solution and . Initial , and Repeat solve the subproblem by solve the subproblem by update update Until |
3.4. The Proposed Adaptive Selection Scheme for Parameter
4. Results
4.1. RFI-Free Real SAR Data with Measured RFI
4.1.1. RFI Suppression Analysis for the Sparse Scene
4.1.2. RFI Suppression Analysis for the Dense Scene
4.1.3. RFI Suppression Analysis against Different SIRs
4.2. RFI-Contaminated Real SAR Data
4.3. Model Parameter Analysis
5. Discussion
5.1. Convergence Analysis
5.2. Computational Complexity Analysis
5.3. Relationship with Preceding Optimization Frameworks
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Convergence Analysis of the Proposed DNLRM Method
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Deng, Y.; Zheng, H.; Wang, R. High-Fidelity SAR Intermittent Sampling Deceptive Jamming Suppression Using Azimuth Phase Coding. IEEE Geosci. Remote Sens. Lett. 2021, 18, 489–493. [Google Scholar] [CrossRef]
- Tao, M.; Su, J.; Huang, Y.; Wang, L. Mitigation of Radio Frequency Interference in Synthetic Aperture Radar Data: Current Status and Future Trends. Remote Sens. 2019, 11, 2438. [Google Scholar] [CrossRef] [Green Version]
- Meyer, F.J.; Nicoll, J.B.; Doulgeris, A.P. Correction and Characterization of Radio Frequency Interference Signatures in L-Band Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4961–4972. [Google Scholar] [CrossRef] [Green Version]
- Leng, X.; Ji, K.; Zhou, S.; Xing, X.; Zou, H. Discriminating Ship From Radio Frequency Interference Based on Noncircularity and Non-Gaussianity in Sentinel-1 SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 352–363. [Google Scholar] [CrossRef]
- Natsuaki, R.; Motohka, T.; Watanabe, M.; Shimada, M.; Suzuki, S. An Autocorrelation-Based Radio Frequency Interference Detection and Removal Method in Azimuth-Frequency Domain for SAR Image. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 5736–5751. [Google Scholar] [CrossRef]
- Chang, W.; Cherniakov, M.; Li, X.; Li, J. Performance analysis of the notch filter for RF Interference suppression in ultra-wideband SAR. In Proceedings of the 9th International Conference on Signal Processing, Beijing, China, 26–29 October 2008; pp. 2446–2451. [Google Scholar]
- Buckreuss, S.; Horn, R. E-SAR P-band SAR subsystem design and RF-interference suppression. In Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998; pp. 466–468. [Google Scholar]
- Zhou, F.; Wu, R.; Xing, M.; Bao, Z. Eigensubspace-Based Filtering With Application in Narrow-Band Interference Suppression for SAR. IEEE Geosci. Remote Sens. Lett. 2007, 4, 75–79. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Y.; Dong, Z.; Liang, D. Eigen-Decomposition Method for RFI Suppression Applied to SAR Data. In Proceedings of the 2010 International Conference on Multimedia Technology, Ningbo, China, 29–31 October 2010; pp. 1–4. [Google Scholar]
- Lord, R.T.; Inggs, M.R. Approaches to RF interference suppression for VHF/UHF synthetic aperture radar. In Proceedings of the 1998 South African Symposium on Communications and Signal Processing, Rondebosch, South Africa, 8 September 1998; pp. 95–100. [Google Scholar]
- Le, C.T.C.; Hensley, S.; Chapin, E. Adaptive Filtering of RFI in Wideband SAR Signals. In Proceedings of the 1998 7th Airborne Geoscience Workshop, Pasadena, CA, USA, 12 January 1998; pp. 41–50. [Google Scholar]
- Lord, R.T.; Inggs, M.R. Efficient RFI suppression in SAR using a LMS adaptive filter with sidelobe suppression integrated with the range-Doppler algorithm. In Proceedings of the 1999 IEEE International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; pp. 574–576. [Google Scholar]
- Zhou, F.; Xing, M.; Bai, X.; Sun, G.; Bao, Z. Narrow-Band Interference Suppression for SAR Based on Complex Empirical Mode Decomposition. IEEE Geosci. Remote Sens. Lett. 2009, 6, 423–427. [Google Scholar] [CrossRef]
- Ojowu, O.; Li, J. RFI Suppression for Synchronous Impulse Reconstruction UWB Radar Using RELAX. Int. J. Remote Sens. Appl. 2013, 3, 33–46. [Google Scholar]
- Yang, Z.; Du, W.; Liu, Z.; Liao, G. WBI Suppression for SAR Using Iterative Adaptive Method. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 1008–1014. [Google Scholar] [CrossRef]
- Nguyen, L.; Dao, M.; Tran, T. Radio-frequency interference separation and suppression from ultrawideband radar data via low-rank modeling. In Proceedings of the 2014 IEEE International Conference on Image Processing, Paris, France, 27–30 October 2014; pp. 116–120. [Google Scholar]
- Nguyen, L.; Tran, T. RFI-radar signal separation via simultaneous low-rank and sparse recovery. In Proceedings of the 2016 IEEE Radar Conference, Philadelphia, PA, USA, 2–6 May 2016; pp. 1–5. [Google Scholar]
- Huang, Y.; Liao, G.; Li, J.; Xu, J. Narrowband RFI Suppression for SAR System via Fast Implementation of Joint Sparsity and Low-Rank Property. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2748–2761. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Xiang, Y.; Zhang, Z.; Li, J.; Nehorai, A. Reweighted Nuclear Norm and Reweighted Frobenius Norm Minimizations for Narrowband RFI Suppression on SAR System. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5949–5962. [Google Scholar] [CrossRef]
- Lu, X.; Yang, J.; Yu, W.; Su, W.; Gu, H.; Yeo, T.S. Enhanced LRR-Based RFI Suppression for SAR Imaging Using the Common Sparsity of Range Profiles for Accurate Signal Recovery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1302–1318. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Xu, J.; Li, J. Narrowband RFI Suppression for SAR System via Efficient Parameter-Free Decomposition Algorithm. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3311–3322. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Zhang, Z.; Xiang, Y.; Li, J.; Nehorai, A. Fast Narrowband RFI Suppression Algorithms for SAR Systems via Matrix-Factorization Techniques. IEEE Trans. Geosci. Remote Sens. 2019, 57, 250–262. [Google Scholar] [CrossRef]
- Candès, E.J.; Li, X.D.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 11. [Google Scholar] [CrossRef]
- Bouwmans, T.; Javed, S.; Zhang, H.; Lin, Z.; Otazo, R. On the Applications of Robust PCA in Image and Video Processing. Proc. IEEE 2018, 106, 1427–1457. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Wang, R.; Li, F.; Deng, Y.; Liu, Y. Ground Moving Target Extraction in a Multichannel Wide-Area Surveillance SAR/GMTI System via the Relaxed PCP. IEEE Geosci. Remote Sens. Lett. 2013, 10, 617–621. [Google Scholar] [CrossRef]
- Cai, J.-F.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Proceedings of the 23rd Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; pp. 2080–2088. [Google Scholar]
- Liu, H.; Li, D.; Zhou, Y.; Truong, T.-K. Joint Wideband Interference Suppression and SAR Signal Recovery Based on Sparse Representations. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1542–1546. [Google Scholar] [CrossRef]
- Lu, C.; Tang, J.; Yan, S.; Lin, Z. Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm. IEEE Trans. Image Process. 2016, 25, 829–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Guo, Y.; Wang, Y.; Wang, D.; Peng, C.; He, G. Denoising of Hyperspectral Images Using Nonconvex Low Rank Matrix Approximation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5366–5380. [Google Scholar] [CrossRef]
- Xie, T.; Li, S.; Sun, B. Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition. IEEE Trans. Image Process. 2019, 29, 44–56. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Gu, Y.; Jacob, M. Hyperspectral Image Recovery Using Nonconvex Sparsity and Low-Rank Regularizations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 532–545. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Tran, T.; Do, T. Sparse models and sparse recovery for ultra-wideband SAR applications. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 940–958. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Zhu, F.; Halimi, A.; Honeine, P.; Chen, B.; Zheng, N. Correntropy Maximization via ADMM: Application to Robust Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4944–4955. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted Nuclear Norm Minimization with Application to Image Denoising. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar]
- Wright, S.J.; Nowak, R.D.; Figueiredo, M.A.T. Sparse Reconstruction by Separable Approximation. IEEE Trans. Signal Process. 2009, 57, 2479–2493. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yin, W.; Zhang, Y.; Wang, Y. A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imag. Sci. 2009, 2, 569–592. [Google Scholar] [CrossRef]
- Shevlyakov, G.; Andrea, K.; Choudur, L.; Smirnov, P.; Ulanov, A.; Vassilieva, N. Robust versions of the Tukey boxplot with their application to detection of outliers. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6506–6510. [Google Scholar]
- Zhang, C.; Li, G.; Cui, W. High resolution remote sensing image change detection based on law of cosines with box-whisker plot. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, 18–21 May 2017; pp. 1–9. [Google Scholar]
- Zhang, S.; Xing, M.; Guo, R.; Zhang, L.; Bao, Z. Interference Suppression Algorithm for SAR Based on Time–Frequency Transform. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3765–3779. [Google Scholar] [CrossRef]
- Clarke, F.H. Nonsmooth analysis and optimization. In Proceedings of the International Congress of Mathematicians, Helsinki, Finland, 7 October 1978; pp. 847–853. [Google Scholar]
Parameter | Value |
---|---|
Pulse Width | |
Sensor Velocity | 7062 m/s |
Carrier Frequency | 5.3 GHz |
Signal Bandwidth | 30.11 MHz |
Sampling Frequency | 32.32 MHz |
Pulse Repetition Frequency | 1256.98 Hz |
SIR | NMSE (dB) | |||||||
---|---|---|---|---|---|---|---|---|
NF [7] | ESP [9] | RNN [20] | DLRM [17] | Lp-DNLRM | Log-DNLRM | Lp-ADNLRM | Log-ADNLRM | |
−10 dB | −8.84 | −8.27 | −11.15 | −6.15 | −11.18 | −11.24 | −11.18 | −11.24 |
−15 dB | −4.65 | −6.99 | −9.88 | −8.95 | −10.23 | −10.32 | −10.24 | −10.32 |
−20 dB | 0.01 | −4.95 | −8.72 | −6.27 | −9.48 | −9.55 | −9.48 | −9.56 |
SIR | Image Entropy | |||||||
---|---|---|---|---|---|---|---|---|
NF [7] | ESP [9] | RNN [20] | DLRM [17] | Lp-DNLRM | Log-DNLRM | Lp-ADNLRM | Log-ADNLRM | |
−10 dB | 3.46 | 3.50 | 3.25 | 2.80 | 3.23 | 3.24 | 3.24 | 3.24 |
−15 dB | 3.83 | 3.57 | 3.26 | 3.23 | 3.23 | 3.24 | 3.25 | 3.24 |
−20 dB | 4.39 | 3.77 | 3.29 | 3.60 | 3.24 | 3.26 | 3.24 | 3.24 |
SIR | Image Contrast | |||||||
---|---|---|---|---|---|---|---|---|
NF [7] | ESP [9] | RNN [20] | DLRM [17] | Lp-DNLRM | Log-DNLRM | Lp-ADNLRM | Log-ADNLRM | |
−10 dB | 499.58 | 498.91 | 512.71 | 498.83 | 513.68 | 513.90 | 513.70 | 513.89 |
−15 dB | 460.35 | 487.28 | 504.70 | 499.14 | 508.34 | 508.70 | 508.20 | 508.81 |
−20 dB | 407.20 | 467.15 | 495.95 | 472.52 | 503.13 | 503.67 | 503.15 | 503.83 |
SIR | NMSE (dB) | |||||||
---|---|---|---|---|---|---|---|---|
NF [7] | ESP [9] | RNN [20] | DLRM [17] | Lp-DNLRM | Log-DNLRM | Lp-ADNLRM | Log-ADNLRM | |
−10 dB | −5.94 | −5.75 | −9.61 | −6.24 | −9.36 | −9.47 | −9.37 | −9.47 |
−15 dB | −1.50 | −4.27 | −8.60 | −7.27 | −8.64 | −8.81 | −8.64 | −8.80 |
−20 dB | 3.25 | −1.77 | −7.55 | −3.59 | −7.92 | −8.13 | −7.96 | −8.13 |
SIR | Image Entropy | |||||||
---|---|---|---|---|---|---|---|---|
NF [7] | ESP [9] | RNN [20] | DLRM [17] | Lp-DNLRM | Log-DNLRM | Lp-ADNLRM | Log-ADNLRM | |
−10 dB | 4.31 | 4.31 | 4.07 | 3.65 | 4.04 | 4.05 | 4.03 | 4.04 |
−15 dB | 4.67 | 4.37 | 4.07 | 4.08 | 4.02 | 4.02 | 4.01 | 4.02 |
−20 dB | 5.25 | 4.57 | 4.07 | 4.43 | 3.97 | 4.00 | 3.99 | 4.02 |
SIR | Image Contrast | |||||||
---|---|---|---|---|---|---|---|---|
NF [7] | ESP [9] | RNN [20] | DLRM [17] | Lp-DNLRM | Log-DNLRM | Lp-ADNLRM | Log-ADNLRM | |
−10 dB | 284.96 | 286.08 | 305.03 | 292.56 | 304.47 | 305.12 | 304.69 | 305.22 |
−15 dB | 257.08 | 275.95 | 300.34 | 291.89 | 301.21 | 302.56 | 301.46 | 302.46 |
−20 dB | 235.35 | 257.82 | 294.58 | 267.77 | 298.21 | 299.33 | 298.11 | 299.13 |
Parameter | Value |
---|---|
Pulse Width | |
Sensor Velocity | 97 m/s |
Carrier Frequency | 450 MHz |
Signal Bandwidth | 90 MHz |
Sampling Frequency | 100 MHz |
Pulse Repetition Frequency | 250 Hz |
Methods | RFI | NF [7] | ESP [9] | RNN [20] | DLRM [17] | Lp-DNLRM | Log-DNLRM | Lp-ADNLRM | Log-ADNLRM |
---|---|---|---|---|---|---|---|---|---|
SNRs | 2.00 | 9.38 | 8.72 | 10.24 | 9.13 | 10.49 | 10.43 | 10.49 | 10.49 |
Entropy | 4.76 | 3.15 | 3.25 | 3.23 | 3.19 | 3.06 | 3.03 | 3.04 | 3.04 |
Contrast | 1403.72 | 2112.08 | 2036.97 | 2110.87 | 2063.75 | 2169.41 | 2163.64 | 2171.19 | 2162.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Deng, Y.; Zheng, H. RFI Suppression for SAR via a Dictionary-Based Nonconvex Low-Rank Minimization Framework and Its Adaptive Implementation. Remote Sens. 2022, 14, 678. https://doi.org/10.3390/rs14030678
Tang Z, Deng Y, Zheng H. RFI Suppression for SAR via a Dictionary-Based Nonconvex Low-Rank Minimization Framework and Its Adaptive Implementation. Remote Sensing. 2022; 14(3):678. https://doi.org/10.3390/rs14030678
Chicago/Turabian StyleTang, Zhouyang, Yunkai Deng, and Huifang Zheng. 2022. "RFI Suppression for SAR via a Dictionary-Based Nonconvex Low-Rank Minimization Framework and Its Adaptive Implementation" Remote Sensing 14, no. 3: 678. https://doi.org/10.3390/rs14030678
APA StyleTang, Z., Deng, Y., & Zheng, H. (2022). RFI Suppression for SAR via a Dictionary-Based Nonconvex Low-Rank Minimization Framework and Its Adaptive Implementation. Remote Sensing, 14(3), 678. https://doi.org/10.3390/rs14030678