Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and Frequency Ratio Techniques in the Northwest Himalayas, Pakistan
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Data Collection and Selection of the Causative Factors
3.2. Field Survey and Preparation of the Inventories
3.3. Geospatial Techniques
3.3.1. Analytical Hierarchy Process (AHP)
3.3.2. Frequency Ratio (FR)
3.3.3. Assembled Geospatial Techniques
3.4. Multi-Hazard Susceptibility Assessment
3.5. Accuracy Assessment
4. Results
4.1. Preparation of the Geo-Hazard Maps
4.1.1. Slope
4.1.2. Elevation
4.1.3. Hydrology
4.1.4. Aspect
4.1.5. Curvature
4.1.6. Road
4.1.7. Lithology
4.1.8. Structure
4.1.9. Land Use Land Cover (LULC)
4.1.10. Normalize Difference Vegetation Index (NDVI)
4.1.11. Rainfall
4.2. Multi-Hazard Susceptibility Assessment (MSA)
5. Discussion
5.1. Landslide Susceptibility Assessment (LSA) Map
5.2. Flood Susceptibility Assessment (FSA) Map
5.3. Multi-Hazard Susceptibility Assessment (MSA) Map
5.4. Accuracy Assessment and Validation of the Selected Model
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uitto, J.I. The geography of disaster vulnerability in megacities: A theoretical framework. Appl. Geogr. 1998, 18, 7–16. [Google Scholar] [CrossRef]
- Cannon, T. Vulnerability analysis and the explanation of ‘natural’disasters. Disasters Dev. Environ. 1994, 1, 13–30. [Google Scholar]
- Rehman, A.; Song, J.; Haq, F.; Ahamad, M.I.; Sajid, M.; Zahid, Z. Geo-physical hazards microzonation and suitable site selection through multicriteria analysis using geographical information system. Appl. Geogr. 2021, 135, 102550. [Google Scholar] [CrossRef]
- Sudmeier-Rieux, K.; Jaboyedoff, M.; Breguet, A.; Dubois, J. The 2005 Pakistan Earthquake Revisited: Methods for Integrated Landslide Assessment. Mt. Res. Dev. 2011, 31, 112–121. [Google Scholar] [CrossRef]
- Basharat, M.; Rohn, J.; Ehret, D.; Baig, M.S. Lithological and structural control of Hattian Bala rock avalanche triggered by the Kashmir earthquake 2005, sub-Himalayas, northern Pakistan. J. Earth Sci. 2012, 23, 213–224. [Google Scholar] [CrossRef]
- The International Federation of Red Cross and Red Crescent Societies. World Disasters Report. 2003, pp. 6–243. Available online: http://www.eurospanonline.com (accessed on 20 November 2021).
- Rafiq, L.; Blaschke, T. Disaster risk and vulnerability in Pakistan at a district level. Geomat. Nat. Hazards Risk 2012, 3, 324–341. [Google Scholar] [CrossRef]
- Asian Development Bank and World Bank. Preliminary Damage and Need Assessment (Pakistan Earthquake 2005). 2005, pp. 1–124. Available online: http://hdl.handle.net/10986/29570 (accessed on 23 July 2019).
- Peduzzi, P. Landslides and vegetation cover in the 2005 North Pakistan earthquake: A GIS and statistical quantitative approach. Nat. Hazards Earth Syst. Sci. 2010, 10, 623–640. [Google Scholar] [CrossRef]
- Basharat, M. The Distribution, Characteristics and Behaviour of Mass Movements Triggered by the Kashmir Earthquake 2005, NW Himalaya, Pakistan. Ph.D. Thesis, University of Erlangen-Nuremberg, Erlangen, Germany, 2012. [Google Scholar]
- Farooq, M.; Qasim, M.; Mateen, A.; Tariq, M.; Nisar, U.B.; Bukhari, A. GIS-based landslide susceptibility zonation mapping along the Muzaffarabad-Chakoti road in western Himalayan region of Pakistan. J. Himal. Earth Sci. 2012, 45, 41. [Google Scholar]
- Rahman, G.; Rahman, A.U.; Collins, A. Geospatial analysis of landslide susceptibility and zonation in shahpur valley, eastern hindu kush using frequency ratio model. Proc. Pak. Acad. Sci. 2017, 54, 149–163. [Google Scholar]
- Petley, D.; Dunning, S.; Rosser, N.; Kausar, A.B. Incipient landslides in the Jhelum Valley, Pakistan following the 8th October 2005 earthquake. In Disaster Mitigation of Debris Flows, Slope Failures and Landslides; Universal Academy Press, Inc.: Tokyo, Japan, 2006; pp. 47–55. [Google Scholar] [CrossRef]
- Basharat, M.; Rohn, J.; Baig, M.S.; Khan, M.R. Spatial distribution analysis of mass movements triggered by the 2005 Kashmir earthquake in the Northeast Himalayas of Pakistan. Geomorphology 2014, 206, 203–214. [Google Scholar] [CrossRef]
- Cheong, J.; Yuan, H. Trade to aid: EU’s temporary tariff waivers for flood-hit Pakistan. J. Dev. Econ. 2017, 125, 70–88. [Google Scholar] [CrossRef] [Green Version]
- Rana, I.A.; Routray, J.K. Integrated methodology for flood risk assessment and application in urban communities of Pakistan. Nat. Hazards 2018, 91, 239–266. [Google Scholar] [CrossRef]
- World Bank. Pakistan Floods 2010: Preliminary Damage and Needs Assessment Project; World Bank: Washington, DC, USA, 2010. (In English) [Google Scholar]
- UN. Johannsburg Plan of Implementation of the World Summit on Sustainable Development; Technical Report; United Nations: New York, NY, USA, 2002. [Google Scholar]
- Akgun, A.; Türk, N. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environ. Earth Sci. 2009, 61, 595–611. [Google Scholar] [CrossRef]
- Kamp, U.; Owen, L.A.; Growley, B.J.; Khattak, G.A. Back analysis of landslide susceptibility zonation mapping for the 2005 Kashmir earthquake: An assessment of the reliability of susceptibility zoning maps. Nat. Hazards 2009, 54, 1–25. [Google Scholar] [CrossRef]
- Hashmi, H.N.; Siddiqui, Q.T.M.; Ghumman, A.R.; Kamal, M.A. A critical analysis of 2010 floods in Pakistan. Afr. J. Agric. Res. 2012, 7, 1054–1067. [Google Scholar]
- Basharat, M.; Shah, H.R.; Hameed, N. Landslide susceptibility mapping using GIS and weighted overlay method: A case study from NW Himalayas, Pakistan. Arab. J. Geosci. 2016, 9, 292. [Google Scholar] [CrossRef]
- Gill, J.C.; Malamud, B.D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dyn. 2016, 7, 659–679. [Google Scholar] [CrossRef] [Green Version]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef]
- Kaur, H.; Gupta, S.; Parkash, S.; Thapa, R. Application of geospatial technologies for multi-hazard mapping and characterization of associated risk at local scale. Ann. GIS 2018, 24, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Pourghasemi, H.R.; Gayen, A.; Panahi, M.; Rezaie, F.; Blaschke, T. Multi-hazard probability assessment and mapping in Iran. Sci. Total Environ. 2019, 692, 556–571. [Google Scholar] [CrossRef]
- Skilodimou, H.D.; Bathrellos, G.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Multi-hazard assessment modeling via multi-criteria analysis and GIS: A case study. Environ. Earth Sci. 2019, 78, 47. [Google Scholar] [CrossRef]
- El Morjani, Z.E.A.; Ebener, S.; Boos, J.; Ghaffar, E.A.; Musani, A. Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. Int. J. Health Geogr. 2007, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Westen, C.J. Remote sensing and GIS for natural hazards assessment and disaster risk management. Treatise Geomorphol. 2013, 3, 259–298. [Google Scholar]
- Ma, C.; Wu, X.; Li, B.; Hu, X. The susceptibility assessment of multi-hazard in the Pearl River Delta Economic Zone, China. Nat. Hazards Earth Syst. Sci. Discuss. 2018, 1–30. [Google Scholar] [CrossRef]
- AJK P&D. Azad Kashmir at a Glance; Statistics Section, Planning & Development Department, Azad Govt. of the State of Jammu and Kashmir: Muzaffarabad, Pakistan, 2015. [Google Scholar]
- GSP. Geological Survey of Pakistan. 2004. Available online: https://gsp.gov.pk/ (accessed on 12 September 2019).
- Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat. Hazards 2016, 83, 947–987. [Google Scholar] [CrossRef]
- Riaz, M.T.; Basharat, M.; Hameed, N.; Shafique, M.; Luo, J. A Data-Driven Approach to Landslide-Susceptibility Mapping in Mountainous Terrain: Case Study from the Northwest Himalayas, Pakistan. Nat. Hazards Rev. 2018, 19, 1–20. [Google Scholar] [CrossRef]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons: New York, NY, USA, 1999; p. 392. [Google Scholar]
- Malczewski, J. GIS-based land-use suitability analysis: A critical overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Greene, R.; Devillers, R.; Luther, J.E.; Eddy, B.G. GIS-Based Multiple-Criteria Decision Analysis. Geogr. Compass 2011, 5, 412–432. [Google Scholar] [CrossRef]
- Rahmati, O.; Zeinivand, H.; Besharat, M. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2015, 7, 1000–1017. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Comput. Geosci. 2009, 35, 1125–1138. [Google Scholar] [CrossRef]
- Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [Google Scholar] [CrossRef]
- Barredo, J.I.; Benavides, A.; Hervás, J.; Van Westen, C.J. Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int. J. Appl. Earth Obs. Geoinf. 2000, 2, 9–23. [Google Scholar] [CrossRef]
- Stefanidis, S.; Stathis, D. Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Nat. Hazards 2013, 68, 569–585. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Shabani, F.; Neamah, J.M.; Hong, H.; Chen, W.; Xie, X. GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomat. Nat. Hazards Risk 2017, 8, 1538–1561. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, G.; Fang, L.; Nie, Y. GIS-based integration of subjective and objective weighting methods for regional landslides susceptibility mapping. Sustainability 2016, 8, 334. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Saaty, R.W. Decision making in complex environments: The analytic network process (ANP) for dependence and feedback; A Manual for the ANP Software SuperDecisions. Creat. Decis. Found. Pittsburgh PA 2002, 15213, 4922. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M. Decision-Making Using the Analytic Hierarchy Process (AHP) and JMP Scripting Language. 2012. Available online: http://www.jmp.com/about/events/summit2012/resources/Paper_Melvin_Alexander.pdf (accessed on 2 January 2018).
- Saaty, T.L. What is the analytic hierarchy process? In Mathematical Models for Decision Support; Springer: Berlin/Heidelberg, Germany, 1988; pp. 109–121. [Google Scholar]
- Fernández, D.S.; Lutz, M.A. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng. Geol. 2010, 111, 90–98. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Lootsma, F.A. Multi-Criteria Decision Analysis via Ratio and Difference Judgement; Springer Science & Business Media: Berlin, Germany, 2007; Volume 29. [Google Scholar]
- Arabameri, A.; Rezaei, K.; Cerda, A.; Lombardo, L.; Rodrigo-Comino, J. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci. Total Environ. 2019, 658, 160–177. [Google Scholar] [CrossRef]
- Lee, S.; Pradhan, B. Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J. Earth Syst. Sci. 2006, 115, 661–672. [Google Scholar] [CrossRef]
- Lee, S.; Sambath, T. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ. Geol. 2006, 50, 847–855. [Google Scholar] [CrossRef]
- Yilmaz, I. GIS based susceptibility mapping of karst depression in gypsum: A case study from Sivas basin (Turkey). Eng. Geol. 2007, 90, 89–103. [Google Scholar] [CrossRef]
- Mondal, S.; Maiti, R. Integrating the analytical hierarchy process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed, Darjeeling Himalaya. Int. J. Disaster Risk Sci. 2013, 4, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Son, S.; Han, J.; Lee, S.; Kim, J. Groundwater vulnerability assessment using an integrated DRASTIC model using frequency ratio and analytic hierarchy process in GIS. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4–13 April 2018. [Google Scholar]
- Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A. Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 2008, 94, 1–9. [Google Scholar] [CrossRef]
- Rahman, A.U.; Khan, A.N.; Collins, A.E. Analysis of landslide causes and associated damages in the Kashmir Himalayas of Pakistan. Nat. Hazards 2013, 71, 803–821. [Google Scholar] [CrossRef]
- Rasyid, A.R.; Bhandary, N.P.; Yatabe, R. Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron. Disasters 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Yesilnacar, E.K. The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey. Ph.D. Thesis, Department of Geomatics, The University of Melbourne, Parkville, Australia, 2005. [Google Scholar]
- Süzen, M.L.; Doyuran, V. A comparison of the GIS based landslide susceptibility assessment methods: Multivariate versus bivariate. Environ. Geol. 2004, 45, 665–679. [Google Scholar] [CrossRef]
- Süzen, M.L.; Doyuran, V. Data driven bivariate landslide susceptibility assessment using geographical information systems: A method and application to Asarsuyu catchment, Turkey. Eng. Geol. 2004, 71, 303–321. [Google Scholar] [CrossRef]
- Pradhan, B. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv. Space Res. 2010, 45, 1244–1256. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Tateishi, R. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef]
- Hayashi, M.; Rosenberry, D.O. Effects of ground water exchange on the hydrology and ecology of surface water. Groundwater 2002, 40, 309–316. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Chau, K.T.; Sze, Y.L.; Fung, M.K.; Wong, W.Y.; Fong, E.L.; Chan, L.C.P. Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Comput. Geosci. 2004, 30, 429–443. [Google Scholar] [CrossRef]
- Ozdemir, H.; Turoglu, H. Landslide susceptibility assessment using GIS and RS in the Havran River Basin (Balikesir-TURKEY). In Proceedings of the 12th Conference of the International Association of Mathematical Geology, Stanford, CA, USA, 23–27 August 2007; pp. 26–31. [Google Scholar]
- Shirzadi, A.; Bui, D.T.; Pham, B.T.; Solaimani, K.; Chapi, K.; Kavian, A.; Shahabi, H.; Revhaug, I. Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ. Earth Sci. 2017, 76, 60. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Dai, F.; Xiao, J.; Tan, X.; Yuan, R. Landslide hazard mapping using GIS and weight of evidence model in Qingshui River watershed of 2008 Wenchuan earthquake struck region. J. Earth Sci. 2012, 23, 97–120. [Google Scholar] [CrossRef]
- Ermini, L.; Catani, F.; Casagli, N. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 2005, 66, 327–343. [Google Scholar] [CrossRef]
- Tehrany, S.M.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 2015, 125, 91–101. [Google Scholar] [CrossRef]
- Wadia, D.N. The syntaxis of the northwest Himalaya: Its rocks, tectonics and orogeny. Rec. Geol. Surv. India 1931, 65, 189–220. [Google Scholar]
- Calkins, J.A.; Offield, T.W.; Abdullah, S.; Ali, S. Geology of the Southern Himalaya in Hazara, Pakistan, and Adjacent Areas; Professional Paper 716-C; U.S. Govt. Print. Off.: Washington, DC, USA, 1975; pp. 1–28. [CrossRef]
- Bossart, P.; Dietrich, D.; Greco, A.; Ottiger, R.; Ramsay, J.G. The tectonic structure of the Hazara-Kashmir syntaxis, southern Himalayas, Pakistan. Tectonics 1988, 7, 273–297. [Google Scholar] [CrossRef]
- Baig, M.S. Active Faulting and Earthquake Deformation in Hazara-Kashmir Syntaxis, Azad Kashmir, northwest Himalaya, Pakistan. In Extended Abstracts, International Conference on 8 October 2005 Earthquake in Pakistan: Its Implications and Hazard Mitigation, Islamabad, Pakistan, 18–19 January 2006; Kausar, A.B., Karim, T., Khna, T., Eds.; Geological Survey of Pakistan: Islamabad, Pakistan, 2006; pp. 27–28. [Google Scholar]
- Brothers, D.; Kilb, D.; Luttrell, K.; Driscoll, N.; Kent, G. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea. Nat. Geosci. 2011, 4, 486. [Google Scholar] [CrossRef]
- Zakaullah, U.; Saeed, M.M.; Ahmad, I.; Nabi, G. Flood frequency analysis of homogeneous regions of Jhelum river basin. Int. J. Water Resour. Environ. Eng. 2012, 4, 144–149. [Google Scholar]
- Seejata, K.; Yodying, A.; Wongthadam, T.; Mahavik, N.; Tantanee, S. Assessment of flood hazard areas using Analytical Hierarchy Process over the Lower Yom Basin, Sukhothai Province. Procedia Eng. 2018, 212, 340–347. [Google Scholar] [CrossRef]
- Al-Zahrani, M.; Al-Areeq, A.; Sharif, H.O. Estimating urban flooding potential near the outlet of an arid catchment in Saudi Arabia. Geomat. Nat. Hazards Risk 2017, 8, 672–688. [Google Scholar] [CrossRef] [Green Version]
- Avouac, J.-P.; Ayoub, F.; Leprince, S.; Konca, O.; Helmberger, D.V. The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet. Sci. Lett. 2006, 249, 514–528. [Google Scholar] [CrossRef] [Green Version]
Data Layers | Data Source | Data Type | Detail |
---|---|---|---|
Slope | ALOS-PALSER DEM | Raster | 12.5 × 12.5 m2 resolution DEM image |
Elevation | ALOS-PALSER DEM | Raster | 12.5 × 12.5 m2 resolution DEM image |
Hydrology | ALOS-PALSER DEM | Raster | 12.5 × 12.5 m2 resolution DEM image |
Aspect | ALOS-PALSER DEM | Raster | 12.5 × 12.5 m2 resolution DEM image |
Curvature | ALOS-PALSER DEM | Raster | 12.5 × 12.5 m2 resolution DEM image |
Road | Topographical map | Thematic | Topographical map 1:50,000 from GSP [32] |
Lithology | Geological map | Thematic | Geological map 1:50,000 from GSP [32] |
Structure | Geological map | Thematic | Geological map 1:50,000 from GSP [32] |
NDVI | Sentinel-2 image | Raster | Sentinel-2 image 10 × 10 m2 resolution 2018 |
LULC | Sentinel-2 image | Raster | Sentinel-2 image 10 × 10 m2 resolution 2018 |
Rainfall | Meterological department | Attribute | Data collected for a 30-year period (1990–2020) from the Meterological Department of Pakistan |
Score Value | Definition | Examples |
---|---|---|
1 | Equally significant | Both parameters are equally favorable |
3 | Moderately significant | One parameter is slightly favorable |
5 | Strongly significant | One parameter is strongly favorable |
7 | Dominantly significant | One parameter is dominantly favorable |
9 | Extremely significant | One parameter is entirely favorable |
2, 4, 6, 8 | Intermediate significant | Intermediate value score |
Reciprocals | Inverse value significant | The score value of one parameter is inversely favorable to another |
1.1-1.9 | Closely significant | When a relationship between parameters shows a relatively small significance to another |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RI | 0 | 0 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 |
Slope (°) | Classes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | OW | FR |
---|---|---|---|---|---|---|---|---|---|---|
Landslide | 0–16 | 1 | 1/2 | 1/4 | 1/5 | 1/8 | 0.04 | 0.35 | ||
17–27 | 2 | 1 | 1/3 | 1/5 | 1/7 | 0.06 | 0.51 | |||
28–35 | 4 | 3 | 1 | 1/2 | 1/5 | 0.14 | 0.76 | |||
36–45 | 5 | 5 | 2 | 1 | 1/3 | 0.24 | 1.73 | |||
46–86 | 8 | 7 | 5 | 3 | 1 | 0.52 | 2.08 | |||
Consistency 5% | ||||||||||
Flood | 0–5 | 1 | 2 | 3 | 5 | 6 | 7 | 9 | 37.0 | 41.88 |
5–10 | 1/2 | 1 | 2 | 3 | 5 | 6 | 8 | 24.6 | 7.75 | |
10–15 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 6 | 15.2 | 2.23 | |
15–20 | 1/5 | 1/3 | 1/2 | 1 | 2 | 3 | 5 | 9.9 | 0.37 | |
20–25 | 1/6 | 1/5 | 1/3 | 1/2 | 1 | 2 | 4 | 6.5 | 0.08 | |
25–30 | 1/7 | 1/6 | 1/4 | 1/3 | 1/2 | 1 | 3 | 4.5 | 0.03 | |
30–86 | 1/9 | 1/8 | 1/6 | 1/5 | 1/4 | 1/3 | 1 | 2.4 | 0.00 | |
Consistency 4% |
Elevation (Meters) | Classes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | OW | FR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Landslide | 521–1048 | 1 | 2 | 5 | 6 | 8 | 4 | 4 | 0.36 | 2.28 | ||
1048–1413 | 1/2 | 1 | 4 | 5 | 6 | 3 | 3 | 0.24 | 1.17 | |||
1413–1777 | 1/5 | 1/4 | 1 | 2 | 3 | 1/3 | 1/3 | 0.06 | 0.66 | |||
1777–2176 | 1/6 | 1/5 | 1/2 | 1 | 2 | 1/4 | 1/4 | 0.04 | 0.56 | |||
2176–2602 | 1/8 | 1/6 | 1/3 | 1/2 | 1 | 1/6 | 1/6 | 0.03 | 0.50 | |||
2602–3157 | 1/4 | 1/3 | 3 | 4 | 6 | 1 | 1 | 0.13 | 0.70 | |||
3157–4435 | 1/4 | 1/3 | 3 | 4 | 6 | 1 | 1 | 0.13 | 0.70 | |||
Consistency 6% | ||||||||||||
Flood | 521–621 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 30.7 | 101.2 |
621–721 | 1/2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 21.8 | 11.73 | |
721–821 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 14.9 | 6.11 | |
821–921 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 5 | 5 | 6 | 11.3 | 0.85 | |
921–1021 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 5 | 7.7 | 0.54 | |
1021–1121 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 5.4 | 0.00 | |
1121–1221 | 1/7 | 1/6 | 1/5 | 1/5 | 1/3 | 1/2 | 1 | 2 | 3 | 3.7 | 0.00 | |
1221–1321 | 1/8 | 1/7 | 1/5 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 2.7 | 0.00 | |
1321–4435 | 1/9 | 1/8 | 1/6 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 1.9 | 0.00 | |
Consistency 4% |
Stream Buffer (Meters) | Classes | 1 | 2 | 3 | 4 | 5 | OW | FR |
---|---|---|---|---|---|---|---|---|
Landslide | 050 | 1 | 1/5 | 1/4 | 1/2 | 3 | 0.08 | 1.54 |
50100 | 5 | 1 | 2 | 3 | 8 | 0.43 | 3.36 | |
100150 | 4 | 1/2 | 1 | 2 | 7 | 0.28 | 3.22 | |
150200 | 2 | 1/3 | 1/2 | 1 | 5 | 0.16 | 1.99 | |
>200 | 1/3 | 1/8 | 1/7 | 1/5 | 1 | 0.04 | 0.62 | |
Consistency 2% | ||||||||
Flood | 050 | 1 | 2 | 3 | 5 | 8 | 43.1 | 9.07 |
50100 | 1/2 | 1 | 3 | 4 | 6 | 29.6 | 6.33 | |
100150 | 1/3 | 1/3 | 1 | 2 | 4 | 14.3 | 2.35 | |
150200 | 1/5 | 1/4 | 1/2 | 1 | 3 | 8.8 | 0.90 | |
>200 | 1/8 | 1/6 | 1/4 | 1/3 | 1 | 4.1 | 0.07 | |
Consistency 3% |
Aspect | Classes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | OW | FR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Landslide | Flat | 1 | 1/2 | 1/3 | 1/5 | 1/7 | 1/9 | 1/8 | 1/6 | 1/4 | 0.02 | 0.00 |
N | 2 | 1 | 1/2 | 1/3 | 1/5 | 1/8 | 1/6 | 1/4 | 1/2 | 0.03 | 0.55 | |
NE | 3 | 2 | 1 | 1/2 | 1/4 | 1/6 | 1/6 | 1/3 | 1/2 | 0.04 | 0.60 | |
E | 5 | 3 | 2 | 1 | 1/3 | 1/4 | 1/4 | 1/2 | 2 | 0.06 | 0.69 | |
SE | 7 | 5 | 4 | 3 | 1 | 1/3 | 1/2 | 2 | 4 | 0.15 | 1.23 | |
S | 9 | 8 | 6 | 4 | 3 | 1 | 2 | 4 | 5 | 0.30 | 1.50 | |
SW | 8 | 6 | 6 | 4 | 2 | 1/2 | 1 | 3 | 4 | 0.22 | 1.42 | |
W | 6 | 4 | 3 | 2 | 1/2 | 1/4 | 1/3 | 1 | 3 | 0.11 | 1.01 | |
NW | 4 | 2 | 2 | 1/2 | 1/4 | 1/5 | 1/4 | 1/3 | 1 | 0.06 | 0.63 | |
Consistency 4% |
Curvature | Classes | 1 | 2 | 3 | OW | FR |
---|---|---|---|---|---|---|
Landslide | Concave | 1 | 6 | 1/2 | 0.34 | 0.95 |
Flat | 1/6 | 1 | 1/8 | 0.07 | 0.43 | |
Convex | 2 | 8 | 1 | 0.59 | 1.09 | |
Consistency 7% |
Road Buffer (Meters) | Classes | 1 | 2 | 3 | 4 | OW | FR |
---|---|---|---|---|---|---|---|
Landslide | 0–50 | 1 | 3 | 5 | 9 | 56.8 | 2.27 |
50–100 | 1 | 2 | 7 | 24.5 | 1.63 | ||
100–150 | 1 | 5 | 14.5 | 1.39 | |||
>150 | 1 | 4.2 | 0.85 | ||||
Consistency 7% |
Lithology | Classes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | OW | FR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Landslide | Alluvium | 1 | 6 | 5 | 2 | 6 | 2 | 1/2 | 7 | 2 | 6 | 0.19 | 1.91 |
Kamlial Fm | 1/6 | 1 | 1/3 | 1/5 | 1/2 | 1/4 | 1/5 | 3 | 1/4 | 1 | 0.03 | 0.35 | |
Murree Fm | 1/5 | 3 | 1 | 1/4 | 2 | 1/2 | 1/4 | 4 | 1/3 | 4 | 0.06 | 0.91 | |
Paleo/Eocene Rocks | 1/2 | 5 | 4 | 1 | 6 | 2 | 1/3 | 6 | 3 | 6 | 0.17 | 1.90 | |
Panjal Metasediments | 1/6 | 2 | 1/2 | 1/6 | 1 | 1/3 | 1/5 | 4 | 1/4 | 3 | 0.05 | 0.67 | |
Panjal Volcanics | 1/2 | 4 | 2 | 1/2 | 3 | 1 | 1/2 | 5 | 1 | 4 | 0.10 | 1.13 | |
Muzaffarabad Fm | 2 | 5 | 4 | 3 | 5 | 2 | 1 | 9 | 3 | 6 | 0.24 | 5.10 | |
Neelum/Jura Granite | 1/7 | 1/3 | 1/4 | 1/6 | 1/4 | 1/5 | 1/9 | 1 | 1/5 | 1/2 | 0.02 | 0.13 | |
Tanol Fm | 1/2 | 4 | 3 | 1/3 | 4 | 1 | 1/3 | 5 | 1 | 5 | 0.11 | 1.38 | |
Hazara Fm | 1/6 | 1 | 1/4 | 1/6 | 1/3 | 1/4 | 1/6 | 2 | 1/5 | 1 | 0.03 | 0.34 | |
Consistency 6% | |||||||||||||
Flood | Alluvium | 1 | 6 | 4 | 3 | 9 | 9 | 5 | 9 | 9 | 2 | 0.30 | 6.85 |
Kamlial Fm | 1/6 | 1 | 1/3 | 1/3 | 4 | 4 | 1/2 | 4 | 4 | 1/4 | 0.07 | 0.65 | |
Murree Fm | 1/4 | 3 | 1 | 1/2 | 5 | 5 | 1 | 5 | 5 | 1/2 | 0.11 | 0.84 | |
Paleo/Eocene Rocks | 1/3 | 3 | 2 | 1 | 6 | 6 | 2 | 6 | 6 | 1/2 | 0.14 | 1.23 | |
Panjal Metasediments | 1/9 | 1/4 | 1/5 | 1/6 | 1 | 1 | 1/5 | 1 | 1 | 1/7 | 0.02 | 0 | |
Panjal Volcanics | 1/9 | 1/4 | 1/5 | 1/6 | 1 | 1 | 1/5 | 1 | 1 | 1/7 | 0.02 | 0 | |
Muzaffarabad Fm | 1/5 | 2 | 1 | 1/2 | 5 | 5 | 1 | 5 | 5 | 1/3 | 0.07 | 0.74 | |
Neelum/Jura Granite | 1/9 | 1/4 | 1/5 | 1/6 | 1 | 1 | 1/5 | 1 | 1 | 1/7 | 0.02 | 0 | |
Tanol Fm | 1/9 | 1/4 | 1/5 | 1/6 | 1 | 1 | 1/5 | 1 | 1 | 1/7 | 0.02 | 0 | |
Hazara Fm | 1/2 | 4 | 2 | 2 | 7 | 7 | 3 | 7 | 7 | 1 | 0.19 | 3.27 | |
Consistency 4% |
Fault Buffer (Meters) | Classes | 1 | 2 | 3 | 4 | 5 | OW | FR |
---|---|---|---|---|---|---|---|---|
Landslide | 0–250 | 1 | 3 | 4 | 5 | 9 | 0.48 | 3.42 |
250–500 | 1/3 | 1 | 2 | 4 | 7 | 0.24 | 2.81 | |
500–750 | 1/4 | 1/2 | 1 | 3 | 5 | 0.16 | 2.46 | |
750–1000 | 1/5 | 1/4 | 1/3 | 1 | 4 | 0.07 | 1.89 | |
>1000 | 1/9 | 1/7 | 1/5 | 1/4 | 1 | 0.03 | 0.69 | |
Consistency 7% | ||||||||
Flood | 0–250 | 1 | 4 | 1/2 | 2 | 6 | 0.28 | 3.07 |
250–500 | 1/4 | 1 | 1/5 | 1/2 | 3 | 0.09 | 2.51 | |
500–750 | 2 | 5 | 1 | 3 | 7 | 0.43 | 3.31 | |
750–1000 | 1/2 | 2 | 1/3 | 1 | 5 | 0.16 | 2.97 | |
>1000 | 1/6 | 1/3 | 1/7 | 1/5 | 1 | 0.04 | 0.64 | |
Consistency 3% |
LULC | Classes | 1 | 2 | 3 | 4 | 5 | 6 | OW | FR |
---|---|---|---|---|---|---|---|---|---|
Landslide | Barren Land | 1 | 2 | 5 | 4 | 9 | 7 | 0.41 | 2.30 |
Built-up Land | 1/2 | 1 | 4 | 3 | 8 | 6 | 0.28 | 1.27 | |
Forest | 1/5 | 1/4 | 1 | 1/2 | 4 | 3 | 0.06 | 0.58 | |
Grass land | 1/4 | 1/3 | 2 | 1 | 5 | 4 | 0.14 | 0.95 | |
Snow Cover | 1/9 | 1/8 | 1/4 | 1/5 | 1 | 1/2 | 0.03 | 0.00 | |
Water Bodies | 1/7 | 1/6 | 1/3 | 1/4 | 2 | 1 | 0.05 | 0.26 | |
Consistency 5% | |||||||||
Flood | Barren Land | 1 | 1/3 | 4 | 2 | 5 | 1/4 | 13.7 | 1.46 |
Built-up Land | 3 | 1 | 6 | 4 | 8 | 1/3 | 26.3 | 2.46 | |
Forest | 1/4 | 1/6 | 1 | 1/3 | 2 | 1/7 | 4.6 | 0.11 | |
Grass land | 1/2 | 1/4 | 3 | 1 | 4 | 1/5 | 9.4 | 0.62 | |
Snow Cover | 1/5 | 1/8 | 1/2 | 1/4 | 1 | 1/9 | 3.0 | 0.00 | |
Water Bodies | 4 | 3 | 7 | 5 | 9 | 1 | 43.1 | 7.83 | |
Consistency 7% |
NDVI | Classes | 1 | 2 | 3 | OW | FR |
---|---|---|---|---|---|---|
Landslide | Dense Vegetation | 1 | 1/3 | 1/8 | 0.08 | 0.58 |
Sparse Vegetation | 3 | 1 | 1/4 | 0.21 | 0.93 | |
No Vegetation | 8 | 4 | 1 | 0.72 | 1.59 | |
Consistency 3% | ||||||
Flood | Dense Vegetation | 1 | 1/3 | 1/7 | 8.5 | 0.11 |
Sparse Vegetation | 3 | 1 | 1/4 | 21.3 | 0.62 | |
No Vegetation | 7 | 4 | 1 | 70.1 | 2.48 | |
Consistency 7% |
Rainfall | Classes | 1 | 2 | 3 | OW | FR |
---|---|---|---|---|---|---|
Landslide | 1330–1350 | 1 | 1/3 | 5 | 0.28 | 0.93 |
1350–1370 | 3 | 1 | 7 | 0.64 | 1.09 | |
1370–1390 | 1/5 | 1/7 | 1 | 0.07 | 0.40 | |
Consistency 3% | ||||||
Flood | 1330–1350 | 1 | 1/8 | 1/4 | 7.2 | 0.00 |
1350–1370 | 8 | 1 | 4 | 70.2 | 1.33 | |
1370–1390 | 4 | 1/4 | 1 | 22.7 | 0.26 | |
Consistency 7% |
Causative Factors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | SW |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) Slope | 1 | 6 | 3 | 6 | 7 | 2 | 1/3 | 1/3 | 4 | 5 | 5 | 0.141 |
(2) Elevation | 1/6 | 1 | 1/4 | 1 | 3 | 1/5 | 1/6 | 1/7 | 1/3 | 1/4 | 1 | 0.026 |
(3) Stream Buffer | 1/3 | 4 | 1 | 5 | 7 | 1/2 | 1.4 | 1/5 | 3 | 3 | 4 | 0.087 |
(4) Aspect | 1/6 | 1 | 1/5 | 1 | 1 | 1/5 | 1/7 | 1/8 | 1/4 | 1/4 | 1/3 | 0.019 |
(5) Curvature | 1/7 | 1/3 | 1/7 | 1 | 1 | 1/6 | 1/8 | 1/8 | 1/5 | 1/5 | 1/4 | 0.016 |
(6) Road Buffer | 1/2 | 5 | 2 | 5 | 6 | 1 | 1/4 | 1/4 | 3 | 3 | 4 | 0.100 |
(7) Lithology | 3 | 6 | 4 | 7 | 8 | 4 | 1 | 1/2 | 5 | 5 | 6 | 0.209 |
(8) Fault Buffer | 3 | 7 | 5 | 8 | 8 | 4 | 2 | 1 | 5 | 6 | 7 | 0.258 |
(9) NDVI | 1/4 | 3 | 1/3 | 4 | 5 | 1/3 | 1/5 | 1/5 | 1 | 2 | 3 | 0.059 |
(10) LULC | 1/5 | 4 | 1/3 | 4 | 5 | 1/3 | 1/5 | 1/6 | 1/2 | 1 | 2 | 0.051 |
(11) Rainfall | 1/5 | 1 | 1/4 | 3 | 4 | 1/4 | 1/6 | 1/7 | 1/3 | 1/2 | 1 | 0.033 |
Consistency ratio (CR) = 9.00% |
Causative Factors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | SW |
---|---|---|---|---|---|---|---|---|---|
(1) Slope | 1 | 1/3 | 1/3 | 2 | 3 | 5 | 4 | 5 | 0.151 |
(2) Elevation | 3 | 1 | 1 | 4 | 4 | 5 | 5 | 6 | 0.268 |
(3) Stream | 3 | 1 | 1 | 4 | 5 | 5 | 5 | 7 | 0.280 |
(4) Lithology | 1/2 | 1.4 | 1/4 | 1 | 2 | 3 | 3 | 4 | 0.100 |
(5) Faults | 1/3 | 1/4 | 1/5 | 1/2 | 1 | 3 | 3 | 4 | 0.083 |
(6) NDVI | 1/5 | 1/5 | 1/5 | 1/3 | 1/3 | 1 | 1/2 | 2 | 0.040 |
(7) LULC | 1/4 | 1/5 | 1/5 | 1/3 | 1/3 | 2 | 1 | 3 | 0.052 |
(8) Rainfall | 1/5 | 1/6 | 1/7 | 1/4 | 1/4 | 1/2 | 1/3 | 1 | 0.027 |
Consistency ratio = 7% |
Geo-Hazard | Class | Very Low | Low | Medium | High | Very High |
---|---|---|---|---|---|---|
LSA | % Area | 31.42 | 36.82 | 15.13 | 9.51 | 7.34 |
% Landslide | 4.63 | 15.67 | 21.79 | 26.57 | 31.34 | |
SCAI | 3.70 | 2.63 | 1.04 | 0.44 | 0.29 | |
Frequency | 0.15 | 0.43 | 1.44 | 2.79 | 4.27 | |
FSA | % Area | 17.56 | 57.45 | 14.66 | 7.96 | 2.37 |
% Flood | 0.00 | 1.92 | 5.29 | 19.23 | 73.56 | |
SCAI | 0.00 | 29.87 | 2.77 | 0.41 | 0.03 | |
Frequency | 0.00 | 0.03 | 0.36 | 2.42 | 31.04 | |
MSA | % Area | 31.78 | 24.38 | 19.54 | 17.30 | 7.00 |
% Landslide | 8.51 | 9.25 | 18.81 | 39.10 | 24.33 | |
SCAI | 3.74 | 2.63 | 1.04 | 0.44 | 0.29 | |
Frequency | 0.27 | 0.38 | 0.96 | 2.26 | 3.47 | |
% Flood | 0.00 | 0.96 | 4.81 | 32.69 | 61.54 | |
SCAI | 0.00 | 25.35 | 4.07 | 0.53 | 0.11 | |
Frequency | 0.00 | 0.04 | 0.25 | 1.89 | 8.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, A.; Song, J.; Haq, F.; Mahmood, S.; Ahamad, M.I.; Basharat, M.; Sajid, M.; Mehmood, M.S. Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and Frequency Ratio Techniques in the Northwest Himalayas, Pakistan. Remote Sens. 2022, 14, 554. https://doi.org/10.3390/rs14030554
Rehman A, Song J, Haq F, Mahmood S, Ahamad MI, Basharat M, Sajid M, Mehmood MS. Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and Frequency Ratio Techniques in the Northwest Himalayas, Pakistan. Remote Sensing. 2022; 14(3):554. https://doi.org/10.3390/rs14030554
Chicago/Turabian StyleRehman, Adnanul, Jinxi Song, Fazlul Haq, Shakeel Mahmood, Muhammad Irfan Ahamad, Muhammad Basharat, Muhammad Sajid, and Muhammad Sajid Mehmood. 2022. "Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and Frequency Ratio Techniques in the Northwest Himalayas, Pakistan" Remote Sensing 14, no. 3: 554. https://doi.org/10.3390/rs14030554
APA StyleRehman, A., Song, J., Haq, F., Mahmood, S., Ahamad, M. I., Basharat, M., Sajid, M., & Mehmood, M. S. (2022). Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and Frequency Ratio Techniques in the Northwest Himalayas, Pakistan. Remote Sensing, 14(3), 554. https://doi.org/10.3390/rs14030554