Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring
Abstract
:1. Introduction
2. Data and Methods
2.1. Illumination
2.2. Crater Selection
2.3. Depth and Diameter Measurement
2.4. Uncertainties
3. Results
4. Discussion
5. Conclusions
- We analyzed the d/D ratio of 753 craters with a diameter between 200 and 1000 m and a slope smaller than 25° at the lunar south pole and groupped the craters in two groups: Craters containing PSRs and without PSRs;
- d/D ratios of craters containing PSRs vs. without PSRs, cluster in two distinct groups, which implies that the two groups might have some geomorphological differences;
- The results from the Mann–Whitney U statistical test support the hypothesis that two distinct groups exist;
- Possible secondary craters contamination will affect both crater population, therefore the contamination will only marginally affect the global results;
- The difference in d/D ratios can be caused by a subsurface ice layer present within the PSRs. However, we cannot discard the influence of diffusive crater degradation or different geological units.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, K.; Murray, B.C.; Brown, H. The behavior of volatiles on the lunar surface. J. Geophys. Res. 1961, 66, 3033–3045. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.R. Ice in the lunar polar regions. J. Geophys. Res. 1979, 84, 5659. [Google Scholar] [CrossRef]
- Nozette, S.; Spudis, P.D.; Robinson, M.S.; Bussey, D.B.J.; Lichtenberg, C.; Bonner, R. Integration of Lunar Polar Remote-Sensing Data Sets: Evidence for Ice at the Lunar South Pole. J. Geophys. Res. 2001, 106, 253–266. [Google Scholar] [CrossRef]
- McClanahan, T.; Mitrofanov, I.; Boynton, W.; Chin, G.; Bodnarik, J.; Droege, G.; Evans, L.; Golovin, D.; Hamara, D.; Harshman, K.; et al. Evidence for the sequestration of hydrogen-bearing volatiles towards the Moon’s southern pole-facing slopes. Icarus 2015, 255, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Susorney, H.C.; Ernst, C.M.; Chabot, N.L.; Deutsch, A.N.; Barnouin, O.S. Morphometry and Temperature of Simple Craters in Mercury’s Northern Hemisphere: Implications for Stability of Water Ice. Planet. Sci. J. 2021, 2, 97. [Google Scholar] [CrossRef]
- Eke, V.R.; Bartram, S.A.; Lane, D.A.; Smith, D.; Teodoro, L.F. Lunar polar craters—Icy, rough or just sloping? Icarus 2014, 241, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Haruyama, J.; Ohtake, M.; Matsunaga, T.; Morota, T.; Honda, C.; Yokota, Y.; Pieters, C.M.; Hara, S.; Hioki, K.; Saiki, K.; et al. Lack of Exposed Ice Inside Lunar South Pole Shackleton Crater. Science 2008, 322, 938–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokhanov, A.A.; Kreslavsky, M.A.; Karachevtseva, I.P. Small impact craters in the polar regions of the Moon: Peculiarities of morphometric characteristics. Sol. Syst. Res. 2015, 49, 295–302. [Google Scholar] [CrossRef]
- Rubanenko, L.; Venkatraman, J.; Paige, D.A. Thick ice deposits in shallow simple craters on the Moon and Mercury. Nat. Geosci. 2019, 12, 597–601. [Google Scholar] [CrossRef]
- Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; et al. Diviner Lunar Radiometer Observations of Cold Traps in the Moon’s South Polar Region. Science 2010, 330, 479–482. [Google Scholar] [CrossRef] [Green Version]
- Mitrofanov, I.G.; Sanin, A.B.; Boynton, W.V.; Chin, G.; Garvin, J.B.; Golovin, D.; Evans, L.G.; Harshman, K.; Kozyrev, A.S.; Litvak, M.L.; et al. Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND. Science 2010, 330, 483–486. [Google Scholar] [CrossRef]
- Fisher, E.A.; Lucey, P.G.; Lemelin, M.; Greenhagen, B.T.; Siegler, M.A.; Mazarico, E.; Aharonson, O.; Williams, J.-P.; Hayne, P.O.; Neumann, G.A.; et al. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment. Icarus 2017, 292, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Sanin, A.B.; Mitrofanov, I.G.; Litvak, M.L.; Malakhov, A.; Boynton, W.V.; Chin, G.; Droege, G.; Evans, L.G.; Garvin, J.; Golovin, D.V.; et al. Testing lunar permanently shadowed regions for water ice: LEND results from LRO. J. Geophys. Res. Planets 2012, 117, E12. [Google Scholar] [CrossRef] [Green Version]
- Sanin, A.; Mitrofanov, I.; Litvak, M.; Bakhtin, B.; Bodnarik, J.; Boynton, W.; Chin, G.; Evans, L.; Harshman, K.; Fedosov, F.; et al. Hydrogen distribution in the lunar polar regions. Icarus 2017, 283, 20–30. [Google Scholar] [CrossRef]
- Hayne, P.O.; Hendrix, A.; Sefton-Nash, E.; Siegler, M.A.; Lucey, P.G.; Retherford, K.D.; Williams, J.-P.; Greenhagen, B.T.; Paige, D.A. Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus 2015, 255, 58–69. [Google Scholar] [CrossRef]
- Spudis, P.; Bussey, D.; Baloga, S.; Cahill, J.; Glaze, L.; Patterson, G.; Raney, R.; Thompson, T.; Thomson, B.; Ustinov, E. Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar. J. Geophys. Res. Planets 2013, 118, 2016–2029. [Google Scholar] [CrossRef]
- Campbell, B.; Campbell, D.; Ler, J.; Hine, A.; Nolan, M.; Perillat, P. Radar imaging of the lunar poles. Nature 2003, 426, 137–138. [Google Scholar] [CrossRef] [PubMed]
- Thomson, B.J.; Bussey, D.B.J.; Neish, C.D.; Cahill, J.T.S.; Heggy, E.; Kirk, R.L.; Patterson, G.W.; Raney, R.K.; Spudis, P.D.; Thompson, T.W.; et al. An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Harmon, J.K.; Slade, M.A.; Vélez, R.A.; Crespo, A.; Dryer, M.J.; Johnson, J.M. Radar mapping of Mercury’s polar anomalies. Nature 1994, 369, 213–215. [Google Scholar] [CrossRef]
- Ostro, S.J.; Campbell, D.B.; Simpson, R.A.; Hudson, R.S.; Chandler, J.F.; Rosema, K.D.; Shapiro, I.I.; Standish, E.M.; Winkler, R.; Yeomans, D.K.; et al. Europa, Ganymede, and Callisto: New radar results from Arecibo and Goldstone. J. Geophys. Res. 1992, 97, 227. [Google Scholar] [CrossRef] [Green Version]
- Baloga, S.M.; Glaze, L.S.; Spudis, P.D. Inferred Lunar Boulder Distributions at Decimeter Scales. In Proceedings of the 43rd Lunar and Planetary Science Conference, Woodlands, TX, USA, 19–23 March 2012; LPI Contribution No. 1659, id.1647. Volume 43. [Google Scholar]
- Raney, R.K.; Cahill, J.T.S.; Patterson, G.W.; Bussey, D.B.J. The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef]
- Stokes, G.G. On the Composition and Resolution of Streams of Polarized Light from different Sources. Trans. Camb. Philos. Soc. 1851, 9, 399. [Google Scholar]
- Raney, R.K.; Cahill, J.T.S.; Patterson, G.W.; Bussey, D.B.J.; Team, M.-R. Characterization of Lunar Craters Using M-Chi Decompositions of Mini-RF Radar Data. In Proceedings of the 43rd Lunar and Planetary Science Conference, Woodlands, TX, USA, 19–23 March 2012; LPI Contribution No. 1659, id.2676. Volume 43. [Google Scholar]
- Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head Iii, J.; Isaacson, P.; Malaret, E.; et al. The Moon Mineralogy Mapper (M 3) on Chandrayaan-1. Curr. Sci. 2009, 96. [Google Scholar] [CrossRef]
- Li, S.; Lucey, P.G.; Milliken, R.E.; Hayne, P.O.; Fisher, E.; Williams, J.P.; Hurley, D.M.; Elphic, R.C. Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. USA 2018, 115, 8907–8912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCord, T.B.; Taylor, L.A.; Combe, J.-P.; Kramer, G.; Pieters, C.M.; Sunshine, J.M.; Clark, R.N. Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. 2011, 116, E00G05. [Google Scholar] [CrossRef] [Green Version]
- Combe, J.; Mccord, T.B.; Hayne, P.O.; Paige, D.A. Mapping of Lunar Volatiles with Moon Mineralogy Mapper Spectra: A Challenge Due to Thermal Emission. In EPSC Abstracts Vol. 6, EPSC-DPS2011-1644. 2011, pp. 8–9. Available online: https://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-1644.pdf (accessed on 5 November 2021).
- Clark, R.; Pieters, C.M.; Green, R.O.; Science, T.M. Thermal removal from moon mineralogy mapper (M3) data. In Proceedings of the 40th Lunar and Planetary Science Conference, Woodlands, TX, USA, 23–27 March 2009. [Google Scholar]
- Mazarico, E.; Neumann, G.A.; Smith, D.E.; Zuber, M.T.; Torrence, M.H. Illumination conditions of the lunar polar regions using LOLA topography. Icarus 2011, 211, 1066–1081. [Google Scholar] [CrossRef]
- Zuber, M.T.; Head, J.W.; Smith, D.E.; Neumann, G.A.; Mazarico, E.; Torrence, M.H.; Aharonson, O.; Tye, A.R.; Fassett, C.I.; Rosenburg, M.A.; et al. Constraints on the volatile distribution within Shackleton crater at the lunar south pole. Nature 2012, 486, 378–381. [Google Scholar] [CrossRef] [Green Version]
- Kereszturi, A.; Steinmann, V. Characteristics of small young lunar impact craters focusing on current production and degradation on the Moon. Planet. Space Sci. 2017, 148, 12–27. [Google Scholar] [CrossRef]
- Daubar, I.J.; Atwood-Stone, C.; Byrne, S.; McEwen, A.S.; Russell, P.S. The morphology of small fresh craters on Mars and the Moon. J. Geophys. Res. Planets 2014, 119, 2620–2639. [Google Scholar] [CrossRef]
- Stopar, J.D.; Robinson, M.S.; Speyerer, E.J.; Burns, K.; Gengl, H. Regolith characterization using lroc nac digital elevation models of small lunar craters. In Proceedings of the 43rd Lunar and Planetary Science Conference, Woodlands, TX, USA, 19–23 March 2012. [Google Scholar]
- Lagain, A.; Benedix, G.K.; Servis, K.; Baratoux, D.; Doucet, L.S.; Rajšic, A.; Devillepoix, H.A.R.; Bland, P.A.; Towner, M.C.; Sansom, E.K.; et al. The Tharsis mantle source of depleted shergottites revealed by 90 million impact craters. Nat. Commun. 2021, 12, 6352. [Google Scholar] [CrossRef]
- Craddock, R.A.; Howard, A.D. Simulated degradation of lunar impact craters and a new method for age dating farside mare deposits. J. Geophys. Res. Planets 2000, 105, 20387–20401. [Google Scholar] [CrossRef]
- Robbins, S.J.; Watters, W.A.; Chappelow, J.E.; Bray, V.J.; Daubar, I.J.; Craddock, R.A.; Beyer, R.A.; Landis, M.; Ostrach, L.R.; Tornabene, L.; et al. Measuring impact crater depth throughout the solar system. Meteorit. Planet. Sci. 2018, 53, 583–637. [Google Scholar] [CrossRef]
- Elachi, C.; Kobrick, M.; Roth, L.; Tiernan, M.; Brown, W.E. Local lunar topography from the Apollo 17 Alse radar imagery and altimetry. Moon 1976, 15, 119–131. [Google Scholar] [CrossRef]
- Schultz, P.H.; Gault, D.; Greeley, R. Interpreting statistics of small lunar craters. In Proceedings of the Lunar Science Conference, Houston, TX, USA, 14–18 March 1977; Proceedings Volume 3. (A78-41551 18-91). Pergamon Press, Inc.: New York, NY, USA, 1977; Volume 8, pp. 3539–3564. [Google Scholar]
- Stopar, J.D.; Robinson, M.S.; Barnouin, O.S.; McEwen, A.S.; Speyerer, E.J.; Henriksen, M.R.; Sutton, S.S. Relative depths of simple craters and the nature of the lunar regolith. Icarus 2017, 298, 34–48. [Google Scholar] [CrossRef]
- Boyce, J.M.; Mouginis-Mark, P.; Garbeil, H. Ancient oceans in the northern lowlands of Mars: Evidence from impact crater depth/diameter relationships. J. Geophys. Res. Planets 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- De Rosa, D.; Bussey, B.; Cahill, J.T.; Lutz, T.; Crawford, I.A.; Hackwill, T.; Gasselt, S.V.; Neukum, G.; Witte, L.; McGovern, A.; et al. Characterisation of potential landing sites for the European Space Agency’s Lunar Lander project. Planet. Space Sci. 2012, 74, 224–246. [Google Scholar] [CrossRef] [Green Version]
- Kokhanov, A.; Karachevtseva, I.; Zubarev, A.; Patraty, V.; Rodionova, Z.; Oberst, J. Mapping of potential lunar landing areas using LRO and SELENE data. Planet. Space Sci. 2017. [Google Scholar] [CrossRef]
- Lemelin, M.; Blair, D.M.; Roberts, C.E.; Runyon, K.D.; Nowka, D.; Kring, D.A. High-priority lunar landing sites for in situ and sample return studies of polar volatiles. Planet. Space Sci. 2014, 101, 149–161. [Google Scholar] [CrossRef]
- Robinson, M.; Brylow, S.; Tschimmel, M.; Humm, D.; Lawrence, S.; Thomas, P.; Denevi, B.; Bowman-cisneros, E.; Zerr, J.; Ravine, M.; et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci. Rev. 2010, 150, 81–124. [Google Scholar] [CrossRef]
- Gläser, P.; Scholten, F.; De Rosa, D.; Marco Figuera, R.; Oberst, J.; Mazarico, E.; Neumann, G.A.; Robinson, M.S. Illumination conditions at the lunar south pole using high resolution digital terrain models from lola. Icarus 2014, 243, 78–90. [Google Scholar] [CrossRef]
- Barker, M.; Mazarico, E.; Neumann, G.; Zuber, M.; Haruyama, J.; Smith, D. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Gläser, P.; Haase, I.; Oberst, J.; Neumann, G. Co-registration of laser altimeter tracks with digital terrain models and applications in planetary science. Planet. Space Sci. 2013, 89, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Bussey, D.B.J.; McGovern, J.A.; Spudis, P.D.; Neish, C.D.; Noda, H.; Ishihara, Y.; Sørensen, S.A. Illumination conditions of the south pole of the Moon derived using Kaguya topography. Icarus 2010, 208, 558–564. [Google Scholar] [CrossRef]
- Noda, H.; Araki, H.; Goossens, S.; Ishihara, Y.; Matsumoto, K.; Tazawa, S.; Kawano, N.; Sasaki, S. Illumination conditions at the lunar polar regions by KAGUYA(SELENE) laser altimeter. Geophys. Res. Lett. 2008, 35, L24203. [Google Scholar] [CrossRef]
- Marco Figuera, R. Analysis of Illumination Conditions at the Lunar South Pole Using Parallel Computing Techniques. Master’s Thesis, Technische Universität Berlin, Berlin, Germany, 2014. [Google Scholar]
- Marco Figuera, R.; Gläser, P.; Oberst, J.; De Rosa, D. Calculation of illumination conditions at the lunar south pole—Parallel programming approach. In Proceedings of the European Planetary Science Congress 2014, Cascais, Portugal, 7–12 September 2014; Volume 9, p. EPSC2014-476. [Google Scholar]
- Chappelow, J.E. Simple impact crater shape determination from shadows. Meteorit. Planet. Sci. 2013, 48, 1863–1872. [Google Scholar] [CrossRef] [Green Version]
- Christensen, P.R.; Engle, E.; Anwar, S.; Dickenshied, S.; Noss, D.; Gorelick, N.; Weiss-Malik, M. JMARS—A Planetary GIS. In Proceedings of the American Geophysical Union, Fall Meeting 2009, San Francisco, CA, USA, 13–18 December 2009; Available online: https://ui.adsabs.harvard.edu/abs/2009AGUFMIN22A..06C/abstract (accessed on 5 November 2021).
- Kneissl, T.; van Gasselt, S.; Neukum, G. Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS. Planet. Space Sci. 2011, 59, 1243–1254. [Google Scholar] [CrossRef]
- Michael, G.; Neukum, G. Planetary surface dating from crater size–frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 2010, 294, 223–229. [Google Scholar] [CrossRef]
- Robbins, S.; Antonenko, I.; Kirchoff, M.; Chapman, C.; Fassett, C.; Herrick, R.; Singer, K.; Zanetti, M.; Lehan, C.; Huang, D.; et al. The variability of crater identification among expert and community crater analysts. Icarus 2014, 234, 109–131. [Google Scholar] [CrossRef] [Green Version]
- Fassett, C.; Thomson, B. Crater degradation on the lunar maria: Topographic diffusion and the rate of erosion on the Moon. J. Geophys. Res. Planets 2014, 119, 2255–2271. [Google Scholar] [CrossRef]
- MacFarland, T.W.; Yates, J.M. Mann–Whitney U Test. In Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer: Berlin/Heidelberg, Germany, 2016; pp. 103–132. [Google Scholar]
Crater No. | Lat | Long | Min D (m) | Mean D (m) | Max D (m) | Dstd(m) | Error Dstd (%) |
---|---|---|---|---|---|---|---|
1 | −89.42 | −130.88 | 241.43 | 241.78 | 242.18 | 0.38 | 0.16 |
2 | −89.57 | −162.27 | 254.18 | 254.67 | 255.32 | 0.58 | 0.061 |
3 | −89.19 | 140.19 | 384.08 | 384.35 | 384.77 | 0.37 | 0.10 |
4 | −89.39 | −161.05 | 374.14 | 374.99 | 375.64 | 0.76 | 0.051 |
5 | −89.18 | 140.18 | 471.42 | 471.95 | 472.23 | 0.45 | 0.10 |
6 | −89.62 | −149.27 | 442.18 | 442.78 | 443.09 | 0.52 | 0.13 |
7 | −89.28 | 122.88 | 522.55 | 523.42 | 523.98 | 0.76 | 0.15 |
8 | −89.63 | −170.122 | 545.70 | 545.84 | 546.09 | 0.20 | 0.012 |
9 | −89.25 | −97.28 | 611.43 | 612.03 | 612.61 | 0.59 | 0.10 |
10 | −89.67 | −164.85 | 655.24 | 655.87 | 656.34 | 0.56 | 0.09 |
11 | −89.21 | −76.14 | 715.66 | 715.97 | 716.14 | 0.27 | 0.04 |
12 | −89.65 | −155.36 | 748.69 | 749.04 | 749.37 | 0.34 | 0.04 |
13 | −89.40 | −112.03 | 840.47 | 840.81 | 841.22 | 0.38 | 0.05 |
14 | −89.27 | −82.32 | 819.07 | 819.38 | 819.72 | 0.32 | 0.04 |
15 | −89.21 | 145.95 | 972.08 | 972.41 | 972.92 | 0.45 | 0.05 |
16 | −89.62 | −153.32 | 967.04 | 967.28 | 967.44 | 0.21 | 0.01 |
1 | −89.42 | −130.88 | 84.19 | 84.23 | 84.27 | 0.04 | 0.05 |
2 | −89.57 | −162.27 | 36.11 | 36.31 | 36.51 | 0.19 | 0.025 |
3 | −89.19 | 140.19 | 70.90 | 70.97 | 71.01 | 0.06 | 0.08 |
4 | −89.39 | −161.05 | 58.07 | 58.32 | 58.70 | 0.33 | 0.65 |
5 | −89.18 | 140.18 | 96.74 | 96.77 | 96.81 | 0.04 | 0.04 |
6 | −89.62 | −149.27 | 64.45 | 65.07 | 65.69 | 0.62 | 0.94 |
7 | −89.28 | 122.88 | 112.20 | 112.21 | 112.22 | 0.01 | 0.01 |
8 | −89.63 | −170.122 | 87.79 | 87.90 | 88.09 | 0.16 | 0.21 |
9 | −89.25 | −97.28 | 150.29 | 150.30 | 150.32 | 0.02 | 0.01 |
10 | −89.67 | −164.85 | 143.67 | 143.99 | 144.29 | 0.31 | 0.01 |
11 | −89.21 | −76.14 | 100.32 | 100.38 | 100.40 | 0.04 | 0.04 |
12 | −89.65 | −155.36 | 148.77 | 149.21 | 149.42 | 0.37 | 0.14 |
13 | −89.40 | −112.03 | 184.48 | 184.50 | 184.52 | 0.02 | 0.01 |
14 | −89.27 | −82.32 | 181.90 | 182.98 | 183.70 | 0.95 | 0.58 |
15 | −89.21 | 145.95 | 197.91 | 198.01 | 198.06 | 0.08 | 0.04 |
16 | −89.62 | −153.32 | 167.11 | 167.48 | 167.92 | 0.40 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marco Figuera, R.; Riedel, C.; Rossi, A.P.; Unnithan, V. Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring. Remote Sens. 2022, 14, 450. https://doi.org/10.3390/rs14030450
Marco Figuera R, Riedel C, Rossi AP, Unnithan V. Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring. Remote Sensing. 2022; 14(3):450. https://doi.org/10.3390/rs14030450
Chicago/Turabian StyleMarco Figuera, Ramiro, Christian Riedel, Angelo Pio Rossi, and Vikram Unnithan. 2022. "Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring" Remote Sensing 14, no. 3: 450. https://doi.org/10.3390/rs14030450
APA StyleMarco Figuera, R., Riedel, C., Rossi, A. P., & Unnithan, V. (2022). Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring. Remote Sensing, 14(3), 450. https://doi.org/10.3390/rs14030450