Longitudinal Evolution of Storm-Enhanced Densities: A Case Study
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster, J. Storm time plasma transport at middle and high latitudes. J. Geophys. Res. Earth Surf. 1993, 98, 1675–1689. [Google Scholar] [CrossRef]
- Coster, A.J.; Colerico, M.J.; Foster, J.C.; Rideout, W.; Rich, F. Longitude sector comparisons of storm enhanced density. Geophys. Res. Lett. 2007, 34, L18105. [Google Scholar] [CrossRef]
- Foster, J.; Vo, H. Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res. Atmos. 2002, 107, 1475. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.C.; Erickson, P.J.; Coster, A.J.; Goldstein, J.; Rich, F.J. Ionospheric signatures of plasmaspheric tails. Geophys. Res. Lett. 2002, 29, 1623. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.C.; Coster, A.J.; Erickson, P.J.; Rich, F.J.; Sandel, B.R. Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause. Geophys. Res. Lett. 2004, 31, L08809. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.; Rideout, W.; Sandel, B.; Forrester, W.; Rich, F. On the relationship of SAPS to storm-enhanced density. J. Atmos. Solar Terr. Phys. 2007, 69, 303–313. [Google Scholar] [CrossRef]
- Fagundes, P.R.; Cardoso, F.A.; Fejer, B.G.; Venkatesh, K.; Ribeiro, B.A.G.; Pillat, V.G. Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. J. Geophys. Res. Space Phys. 2016, 121, 5613–5625. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.; Sandel, B.R.; Hairston, M.R.; Reiff, P.H. Control of plasmaspheric dynamics by both convection and sub-auroral polarization stream. Geophys. Res. Lett. 2003, 30, 2243. [Google Scholar] [CrossRef] [Green Version]
- Sojka, J.J.; David, M.; Schunk, R.W.; Heelis, R.A. A modeling study of the longitudinal dependence of storm time midlatitude dayside total electron content enhancements. J. Geophys. Res. Earth Surf. 2012, 117, A02315. [Google Scholar] [CrossRef]
- Vo, H.B.; Foster, J.C. A quantitative study of ionospheric density gradients at midlatitudes. J. Geophys. Res. Earth Surf. 2001, 106, 21555–21563. [Google Scholar] [CrossRef]
- Weimer, D.R. A flexible, IMF dependent model of high-latitude electric potentials having ‘‘ace weather’’ applications. Geophys. Res. Lett. 1996, 23, 2549. [Google Scholar] [CrossRef]
- Yizengaw, E.; Moldwin, M.B.; Galvan, D.A. Ionospheric signatures of a plasmaspheric plume over Europe. Geophys. Res. Lett. 2006, 33, L17103. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, B.; Liu, R.; Dunlop, M.W.; Lockwood, M.; Moen, J.; Yang, H.; Hu, H.; Hu, Z.; Liu, S.; et al. On the importance of interplanetary magnetic field |By| on polar cap patch formation. J. Geophys. Res. 2011, 116, A05308. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, B.; Moen, J.; Lockwood, M.; McCrea, I.W.; Yang, H.; Hu, H.; Liu, R.; Zhang, S.; Lester, M. Polar cap patch segmentation of the tongue of ionization in the morning convection cell. Geophys. Res. Lett. 2013, 40, 2918–2922. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, T. Extreme enhancement in total electron content after sunset on 8 November 2004 and its connection with storm enhanced density. Geophys. Res. Lett. 2006, 33, L20111. [Google Scholar] [CrossRef]
- Liu, J.; Nakamura, T.; Liu, L.; Wang, W.; Balan, N.; Nishiyama, T.; Hairston, M.R.; Thomas, E.G. Formation of polar ionospheric tongue of ionization during minor geomagnetic disturbed conditions. J. Geophys. Res. Space Phys. 2015, 117, 6860–6873. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Burns, A.; Yue, X.; Zhang, S.; Zhang, Y.; Huang, C. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2016, 121, 727–744. [Google Scholar] [CrossRef]
- Zou, S.; Ridley, A.J.; Moldwin, M.B.; Nicolls, M.J.; Coster, A.J.; Thomas, E.G.; Ruohoniemi, J.M. Multi-instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes. J. Geophys. Res. Space Phys. 2013, 118, 7798–7809. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Moldwin, M.B.; Ridley, A.J.; Nicolls, M.J.; Coster, A.J.; Thomas, E.G.; Ruohoniemi, J.M. On the generation/decay of the storm-enhanced density plumes: Role of the convection flow and field-aligned ion flow. J. Geophys. Res. Space Phys. 2014, 119, 8543–8559. [Google Scholar] [CrossRef]
- Yizengaw, E.; Dewar, J.; MacNeil, J.; Moldwin, M.B.; Galvan, D.; Sanny, J.; Berube, D.; Sandel, B. The occurrence of ionospheric signatures of plasmaspheric plumes over different longitudinal sectors. J. Geophys. Res. Earth Surf. 2008, 113, A08318. [Google Scholar] [CrossRef]
- Goldstein, J.; Spasojevic, M.; Reiff, P.; Sandel, B.R.; Forrester, W.T.; Gallagher, D.L.; Reinisch, B.W. Identifying the plasmapause in IMAGE EUV data using IMAGE RPI in situ steep density gradients. J. Geophys. Res. Earth Surf. 2003, 108, 1147. [Google Scholar] [CrossRef] [Green Version]
- Förster, M.; Jakowski, N. Geomagnetic Storm Effects on the Topside Ionosphere and Plasmasphere: A Compact Tutorial and New Results. Surv. Geophys. 2000, 21, 47–87. [Google Scholar] [CrossRef]
- Swisdak, M.; Huba, J.D.; Joyce, G.; Huang, C.-S. Simulation study of a positive ionospheric storm phase observed at Millstone Hill. Geophys. Res. Lett. 2006, 33, L02104. [Google Scholar] [CrossRef] [Green Version]
- Seaton, M. A possible explanation of the drop in f-region critical densities accompanying major ionospheric storms. J. Atmos. Terr. Phys. 1956, 8, 122–124. [Google Scholar] [CrossRef]
- Venkatesh, K.; Ram, S.T.; Fagundes, P.R.; Seemala, G.K.; Batista, I.S. Electrodynamic disturbances in the Brazilian equatorial and low-latitude ionosphere on St. Patrick’s Day storm of 17 March 2015. J. Geophys. Res. Space Phys. 2017, 122, 4553–4570. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Atmos. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Rishbeth, H.; Moffett, R.J.; Quegan, S. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Atmos. 1996, 101, 2343–2353. [Google Scholar] [CrossRef]
- Spasojevic, M.; Goldstein, J.; Carpenter, D.L.; Inan, U.S.; Sandel, B.R.; Moldwin, M.B.; Reinisch, B.W. Global response of the plasmasphere to a geomagnetic disturbance. J. Geophys. Res. Earth Surf. 2003, 108, 1340. [Google Scholar] [CrossRef]
- Rideout, W.; Coster, A. Automated GPS processing for global total electron content data. GPS Solut. 2006, 10, 219–228. [Google Scholar] [CrossRef]
- Gjerloev, J.W. The SuperMAG data processing technique. J. Geophys. Res. Atmos. 2012, 117, A09213. [Google Scholar] [CrossRef]
- Chisham, G.; Lester, M.; Milan, S.; Freeman, M.; Bristow, W.A.; Grocott, A.; McWilliams, K.A.; Ruohoniemi, J.M.; Yeoman, T.; Dyson, P.L.; et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surv. Geophys. 2007, 28, 33–109. [Google Scholar] [CrossRef] [Green Version]
- Nishitani, N.; Ruohoniemi, J.M.; Lester, M.; Baker, J.B.H.; Koustov, A.V.; Shepherd, S.G.; Chisham, G.; Hori, T.; Thomas, E.G.; Makarevich, R.A.; et al. Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars. Prog. Earth Planet. Sci. 2019, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, S.G.; Ruohoniemi, J.M. Electrostatic potential patterns in the high-latitude ionosphere constrained by SuperDARN measurements. J. Geophys. Res. Earth Surf. 2000, 105, 23005–23014. [Google Scholar] [CrossRef]
- Thomas, E.G.; Baker, J.B.H.; Ruohoniemi, J.M.; Clausen, L.B.N.; Coster, A.J.; Foster, J.C.; Erickson, P.J. Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. J. Geophys. Res. Space Phys. 2013, 118, 1180–1189. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.-G.; Deng, X.-H.; Wang, J.-F. DMSP/GPS observations of intense ion upflow in the midnight polar ionosphere associated with the SED plume during a super geomagnetic storm. Geophys. Res. Lett. 2008, 35, L19110. [Google Scholar] [CrossRef]
- Foster, J.C.; Holt, J.M.; Musgrove, R.G.; Evans, D.S. Ionospheric convection associated with discrete levels of particle precipitation. Geophys. Res. Lett. 1986, 13, 656–659. [Google Scholar] [CrossRef]
- Yeh, H.-C.; Foster, J.C.; Rich, F.J.; Swider, W. Storm time electric field penetration observed at mid-latitude. J. Geophys. Res. Space Phys. 1991, 96, 5707–5721. [Google Scholar] [CrossRef]
- Yin, P.; Mitchell, C.N.; Spencer, P.S.J.; Foster, J.C. Ionospheric electron concentration imaging using GPS over the USA during the storm of July 2000. Geophys. Res. Lett. 2004, 31, L12806. [Google Scholar] [CrossRef]
- Weimer, D.R. An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res. Atmos. 2001, 106, 407–416. [Google Scholar] [CrossRef]
- Yue, X.; Wan, W.; Liu, L.; Liu, J.; Zhang, S.; Schreiner, W.S.; Zhao, B.; Hu, L. Mapping the conjugate and corotating storm-enhanced density during 17 March 2013 storm through data assimilation. J. Geophys. Res. Space Phys. 2016, 121, 210. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Le, H.; Li, W.; Chen, Y.; Liu, L. Longitudinal Evolution of Storm-Enhanced Densities: A Case Study. Remote Sens. 2022, 14, 6340. https://doi.org/10.3390/rs14246340
Li B, Le H, Li W, Chen Y, Liu L. Longitudinal Evolution of Storm-Enhanced Densities: A Case Study. Remote Sensing. 2022; 14(24):6340. https://doi.org/10.3390/rs14246340
Chicago/Turabian StyleLi, Bo, Huijun Le, Wenbo Li, Yiding Chen, and Libo Liu. 2022. "Longitudinal Evolution of Storm-Enhanced Densities: A Case Study" Remote Sensing 14, no. 24: 6340. https://doi.org/10.3390/rs14246340
APA StyleLi, B., Le, H., Li, W., Chen, Y., & Liu, L. (2022). Longitudinal Evolution of Storm-Enhanced Densities: A Case Study. Remote Sensing, 14(24), 6340. https://doi.org/10.3390/rs14246340