Impact of Errors in Environmental Correction on Gravity Field Recovery Using Interferometric Radar Altimeter Observations
Abstract
:1. Introduction
2. Method
2.1. Deflection of the Vertical and Gravity Anomaly Recovery
2.2. Errors in Environmental Correction Simulation
2.3. Data Processing Flow
3. Data and Study Area
4. Results and Analysis
4.1. Gravity Field Recovery without Errors in Environmental Correction
4.2. Impact of Errors in Environmental Correction on SSH
4.3. Impact of Errors in Environmental Correction on the Recovery of DV
4.4. Influence of Residual Environmental Errors on GA Accuracy
4.5. Comparison in the Spectral Domain
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Sandwell, D.T.; Jin, T.; Li, D. Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections. J. Appl. Geophys. 2017, 137, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.B.; Tozer, B.; Harper, H.; Boston, B.; Shillington, D.J.; Dunn, R. Evaluation of Shipboard and Satellite-Derived Bathymetry and Gravity Data over Seamounts in the Northwest Pacific Ocean. J. Geophys. Res. Solid Earth 2020, 125, e2020JB020396. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Ji, B.; Wan, X.; Zhang, S. A Review of Marine Gravity Field Recovery from Satellite Altimetry. Remote Sens. 2022, 14, 4790. [Google Scholar] [CrossRef]
- Andersen, O.B.; Knudsen, P.; Berry, P.A.M. The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J. Geod. 2010, 84, 191–199. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Harper, H.; Tozer, B.; Smith, W.H.F. Gravity field recovery from geodetic altimeter missions. Adv. Space Res. 2019, 68, 1059–1072. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Smith, W.H.F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. Solid Earth 1997, 102, 10039–10054. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Annan, R.F.; Wang, W. Assessment of HY-2A GM data by deriving the gravity field and bathymetry over the Gulf of Guinea. Earth Planets Space 2020, 72, 151. [Google Scholar] [CrossRef]
- Hwang, C. Inverse Vening Meinesz formula and deflection-geoid formula: Applications to the predictions of gravity and geoid over the South China Sea. J. Geod. 1998, 72, 304–312. [Google Scholar] [CrossRef]
- Esteban-Fernandez, D.; Rodriguez, E.; Fu, L.-L.; Alsdorf, D.; Vaze, P. The Surface Water and Ocean Topography Mission: Centimetric Spaceborne Radar Interferometry. In Sensors, Systems, and Next-Generation Satellites XIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; p. 782615. [Google Scholar]
- Fu, L.-L.; Alsdorf, D.; Morrow, R.; Rodriguez, E.; Mognard, N. SWOT: The Surface Water and Ocean Topography Mission: Wide-Swath Altimetric Elevation on Earth; Jet Propulsion Laboratory, National Aeronautics and Space Administration: Pasadena, CA, USA, 2012. [Google Scholar]
- Yan, J. System Design and Performance Analysis of 3D-Imaging Altimeter. Ph.D. Thesis, Center for Space Science and Applied Research, Chinese Academy of Science, Beijing, China, 2005. [Google Scholar]
- Ren, L.; Yang, J.; Dong, X.; Zhang, Y.; Jia, Y. Preliminary Evaluation and Correction of Sea Surface Height from Chinese Tiangong-2 Interferometric Imaging Radar Altimeter. Remote Sens. 2020, 12, 2496. [Google Scholar] [CrossRef]
- Wan, X.; Jin, S.; Liu, B.; Tian, S.; Kong, W.; Annan, R.F. Effects of Interferometric Radar Altimeter Errors on Marine Gravity Field Inversion. Sensors 2020, 20, 2465. [Google Scholar] [CrossRef]
- Miao, X.; Wang, J.; Mao, P.; Miao, H. Cross-Track Error Correction and Evaluation of the Tiangong-2 Interferometric Imaging Radar Altimeter. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Yu, D.; Hwang, C.; Andersen, O.B.; Chang, E.T.Y.; Gaultier, L. Gravity recovery from SWOT altimetry using geoid height and geoid gradient. Remote Sens. Environ. 2021, 265, 112650. [Google Scholar] [CrossRef]
- Jin, T.; Zhou, M.; Zhang, H.; Li, J.; Jiang, W.; Zhang, S.; Hu, M. Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data. J. Geod. 2022, 96, 30. [Google Scholar] [CrossRef]
- Gaspar, P.; Ogor, F.; Le Traon, P.-Y.; Zanife, O.-Z. Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences. J. Geophys. Res. Oceans 1994, 99, 24981–24994. [Google Scholar] [CrossRef]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The Ionosphere Map Exchange Format Version 1. In Proceedings of the 1998 IGS Analysis Centers Workshop, ESOC, Darmstadt, Germany, 9–11 February 1998. [Google Scholar]
- Fu, L.-L.; Cazenave, A. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, 2nd ed.; Academic Press: New York, NY, USA, 2000; pp. 1–122. [Google Scholar]
- Brown, S. A Novel Near-Land Radiometer Wet Path-Delay Retrieval Algorithm: Application to the Jason-2/OSTM Advanced Microwave Radiometer. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1986–1992. [Google Scholar] [CrossRef]
- Wan, X.; Annan, R.F.; Jin, S.; Gong, X. Vertical Deflections and Gravity Disturbances Derived from HY-2A Data. Remote Sens. 2020, 12, 2287. [Google Scholar] [CrossRef]
- Wan, X.; Hao, R.; Jia, Y.; Wu, X.; Wang, Y.; Feng, L. Global marine gravity anomalies from multi-satellite altimeter data. Earth Planets Space 2022, 74, 165. [Google Scholar] [CrossRef]
- Ubelmann, C.; Fu, L.-L.; Brown, S.; Peral, E.; Esteban-Fernandez, D. The Effect of Atmospheric Water Vapor Content on the Performance of Future Wide-Swath Ocean Altimetry Measurement. J. Atmos. Ocean. Technol. 2014, 31, 1446–1454. [Google Scholar] [CrossRef]
- Zhou, M.; Jin, T.; Jiang, W. The Wet Tropospheric Correction of Wide-Swath Altimeter Using Optimum Interpolation Method. Geomat. Inf. Sci. Wuhan Univ. 2021. [Google Scholar] [CrossRef]
- Esteban-Fernandez, D.; Pollard, B.; Vaze, P.; Abelson, R. SWOT Project Mission Performance and Error Budget; Jet Propulsion Laboratory Document D-79084 Revision A; National Aeronautics and Space Administration: Pasadena, CA, USA, 2017. [Google Scholar]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar] [CrossRef]
- Barthelmes, F. Defnition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models: Theory and Formulas Used by the Calculation Service of the International Centre for Global Earth Models (ICGEM); Deutsches Geo Forschungs Zentrum GFZ: Potsdam, Germany, 2013. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, R.; Jia, Y.; Jin, T.; Kong, X. Performance of HaiYang-2 altimetric data in marine gravity research and a new global marine gravity model NSOAS22. Remote Sens. 2022, 14, 4322. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, J.; Yuan, J.; Li, Z.; Liu, X.; Gao, J. SDUST2021GRA: Global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data. Earth Syst. Sci. Data 2022, 14, 4589–4606. [Google Scholar] [CrossRef]
- Ubelmann, C.; Dibarboure, G.; Dubois, P. A Cross-Spectral Approach to Measure the Error Budget of the SWOT Altimetry Mission over the Ocean. J. Atmos. Ocean. Technol. 2018, 35, 845–857. [Google Scholar] [CrossRef]
- Pail, R.; Goiginger, H.; Schuh, W.D.; Höck, E.; Brockmann, J.M.; Fecher, T.; Gruber, T.; Mayer-Gürr, T.; Kusche, J.; Jäggi, A.; et al. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett. 2010, 37, L20314. [Google Scholar] [CrossRef]
- Wan, X.; Yu, J. Derivation of the radial gradient of the gravity based on non-full tensor satellite gravity gradients. J. Geodyn. 2013, 66, 59–64. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L019779. [Google Scholar] [CrossRef] [Green Version]
- Gaultier, L.; Ubelmann, C.; Fu, L.-L. The Challenge of Using Future SWOT Data for Oceanic Field Reconstruction. J. Atmos. Ocean. Technol. 2016, 33, 119–126. [Google Scholar] [CrossRef]
Term | Mean | STD | Max | Min | MAE | RMS | RE |
---|---|---|---|---|---|---|---|
(arcsec) | 0.0059 | 0.0062 | 0.0313 | −0.0133 | 0.0070 | 0.0086 | 0.13% |
(arcsec) | 0.0096 | 0.0052 | 0.0274 | −0.0147 | 0.0099 | 0.0110 | 0.12% |
(mGal) | −0.2047 | 0.0922 | 0.4619 | −0.0644 | 0.2049 | 0.2245 | 3.48% |
Type | Mean | STD | Max | Min | MAE | RMS | |
---|---|---|---|---|---|---|---|
Absolute height error | Wet | −0.0152 | 0.3406 | 0.8685 | −1.2763 | 0.2551 | 0.3410 |
Dry | −0.0159 | 0.0263 | 0.0306 | −0.0867 | 0.0225 | 0.0308 | |
Iono | −0.0088 | 0.0021 | −0.0033 | −0.0134 | 0.0088 | 0.0091 | |
SSB | 0.4120 | 0.1385 | 0.6393 | −0.0468 | 0.4124 | 0.4347 | |
Relative height error | Wet | 0.0310 | 0.0233 | 0.1588 | 1.2E-05 | 0.0310 | 0.0388 |
Dry | 0.0003 | 0.0002 | 0.0018 | 2.8E-07 | 0.0003 | 0.0004 | |
Iono | 0.0002 | 0.0001 | 0.0009 | 2.6E-08 | 0.0002 | 0.0002 | |
SSB | 0.0008 | 0.0009 | 0.0129 | 2.9E-07 | 0.0008 | 0.0012 |
Type | STD | Max | Min | MAE | RMS | RE(%) | |
---|---|---|---|---|---|---|---|
Wet | 0.0592 | 0.2166 | −0.2626 | 0.0474 | 0.0592 | 0.90% | |
Dry | 0.0063 | 0.0136 | −0.0294 | 0.0066 | 0.0082 | 0.12% | |
Iono | 0.0063 | 0.0315 | −0.0133 | 0.0070 | 0.0086 | 0.13% | |
SSB | 0.0100 | 0.0439 | −0.0181 | 0.0115 | 0.0141 | 0.22% | |
Wet | 0.0610 | 0.2149 | −0.2267 | 0.0506 | 0.0633 | 0.61% | |
Dry | 0.0054 | 0.0151 | −0.0285 | 0.0105 | 0.0115 | 0.13% | |
Iono | 0.0052 | 0.0274 | −0.0148 | 0.0098 | 0.0109 | 0.12% | |
SSB | 0.0089 | 0.0444 | −0.0178 | 0.0136 | 0.0157 | 0.16% |
Term | Std | Max | Min | MAE | RMS | RE(%) |
---|---|---|---|---|---|---|
Calculation error | 0.0922 | 0.4619 | −0.0644 | 0.2049 | 0.2245 | 3.48% |
Ionosphere | 0.0894 | 0.4555 | −0.0595 | 0.2046 | 0.2232 | 3.50% |
Dry troposphere | 0.0899 | 0.4554 | −0.0528 | 0.2056 | 0.2243 | 3.52% |
Wet troposphere | 0.4219 | 1.9947 | −1.2941 | 0.3750 | 0.4730 | 6.42% |
SSB | 0.1193 | 0.5044 | −0.3402 | 0.1392 | 0.1654 | 2.38% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, X.; Wang, F.; Guo, H.; Liu, B. Impact of Errors in Environmental Correction on Gravity Field Recovery Using Interferometric Radar Altimeter Observations. Remote Sens. 2022, 14, 6299. https://doi.org/10.3390/rs14246299
Wan X, Wang F, Guo H, Liu B. Impact of Errors in Environmental Correction on Gravity Field Recovery Using Interferometric Radar Altimeter Observations. Remote Sensing. 2022; 14(24):6299. https://doi.org/10.3390/rs14246299
Chicago/Turabian StyleWan, Xiaoyun, Fei Wang, Hengyang Guo, and Bo Liu. 2022. "Impact of Errors in Environmental Correction on Gravity Field Recovery Using Interferometric Radar Altimeter Observations" Remote Sensing 14, no. 24: 6299. https://doi.org/10.3390/rs14246299
APA StyleWan, X., Wang, F., Guo, H., & Liu, B. (2022). Impact of Errors in Environmental Correction on Gravity Field Recovery Using Interferometric Radar Altimeter Observations. Remote Sensing, 14(24), 6299. https://doi.org/10.3390/rs14246299