An Integrated Solution of UAV Push-Broom Hyperspectral System Based on Geometric Correction with MSI and Radiation Correction Considering Outdoor Illumination Variation
Abstract
:1. Introduction
- (1)
- Full use of an UAV-borne hyperspectral imaging system that cooperated easily with a ground synchronous test and which included illumination correction to reduce the radiation correction error caused by illumination variation.
- (2)
- Coding of calibration target to recognize the target area quickly and improve automation of radiation correction.
- (3)
- Improvement in total accuracy, especially in low SNR bands, by introducing illumination into our modified three-parameter empirical method.
- (4)
- Addition of a multispectral camera for array imaging under low spatial distortion. If the hyperspectral geometric correction and stitching could not be improved because of accuracy limitations to the position and orientation system (POS), we took an MSI as the base map to achieve accurate hyperspectral geometric correction and stitching over a large area.
2. Materials and Methods
2.1. UAV Imaging System
2.2. Ground Auxiliary Correction System
2.2.1. Downwelling Irradiance Measurement Device
2.2.2. QR Code Target Extraction System
2.3. Data Processing Workflow
2.3.1. Radiance and Surface Reflectance Computation
- (1)
- Illumination correction
- (2)
- Atmospheric correction
2.3.2. Georeferencing and Mosaic
3. Experiments and Analysis
3.1. Data Acquisition
3.2. Radiance and Surface Reflectance Computation
3.3. Image Registration and Mosaic Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Erena, M.; Atenza, J.F.; García-Galiano, S.; Domínguez, J.A.; Bernabé, J.M. Use of drones for the topo-bathymetric monitoring of the reservoirs of the Segura River Basin. Water 2019, 11, 445. [Google Scholar] [CrossRef] [Green Version]
- Holasek, R.; Nakanishi, K.; Ziph-Schatzberg, L.; Santman, J.; Woodman, P.; Zacaroli, R.; Wiggins, R. The selectable hyperspectral airborne remote sensing kit (SHARK) as an enabler for precision agriculture. In Proceedings of the 2017 Society of Photo-Optical Instrumentation Engineers (SPIE), Anaheim, CA, USA, 22–25 May 2017. [Google Scholar]
- Specht, C.; Lewicka, O.; Specht, M.; Dąbrowski, P.; Burdziakowski, P. Methodology for carrying out measurements of the tombolo geomorphic landform using unmanned aerial and surface vehicles near Sopot Pier. Pol. J. Mar. Sci. Eng. 2020, 8, 384. [Google Scholar] [CrossRef]
- Haiwei, L.; Hao, Z.; Bing, Z.; Zhengchao, C.; Minhua, Y.; Yaqiong, Z. A Method Suitable for Vicarious Calibration of a UAV Hyperspectral Remote Sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3209–3223. [Google Scholar]
- Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-Borne Hyperspectral Remote Sensing from Observation and Processing to Applications. IEEE Geosci. Remote Sens. Mag. 2018, 6, 46–62. [Google Scholar] [CrossRef]
- Burdziakowski, P.; Bobkowska, K. UAV Photogrammetry under Poor Lighting Conditions—Accuracy Considerations. Sensors 2021, 21, 3531. [Google Scholar] [CrossRef]
- Rodionov, I.D.; Rodionov, A.I.; Vedeshin, L.A.; Vinogradov, A.N.; Egorov, V.V.; Kalinin, A.P. Airborne hyperspectral systems for solving remote sensing problems. Izv. Atmos. Ocean. Phys. 2014, 50, 989–1003. [Google Scholar] [CrossRef]
- Ma, T.; Schimleck, L.; Dahlen, J.; Yoon, S.C.; Inagaki, T.; Tsuchikawa, S.; Sandak, A.; Sandak, J. Comparative performance of NIR-Hyperspectral imaging systems. Foundations 2022, 2, 523–540. [Google Scholar] [CrossRef]
- Kwon, S.; Seo, I.W.; Noh, H.; Kim, B. Hyperspectral retrievals of suspended sediment using cluster-based machine learning regression in shallow waters. Sci. Total Environ. 2022, 833, 155168. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B.; Wei, Z.; Wang, C.; Huang, Q. Lightweight Integrated Solution for a UAV-Borne Hyperspectral Imaging System. Remote Sens. 2020, 12, 657. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yu, T.; Hu, B.; Hou, X.; Zhang, Z.; Liu, X.; Liu, J.; Wang, X.; Zhong, J.; Tan, Z.; et al. UAV-Borne Hyperspectral Imaging Remote Sensing System Based on Acousto-Optic Tunable Filter for Water Quality Monitoring. Remote Sens. 2021, 13, 4069. [Google Scholar] [CrossRef]
- Yi, X.S.; Lan, A.J.; Wen, X.M.; Zhang, Y.; Li, Y. Monitoring of heavy metals in farmland soils based on ASD and GaiaSky-mini. Chin. J. Ecol. 2018, 37, 1781. [Google Scholar]
- Angelino, C.V.; Baraniello, V.R.; Cicala, L. UAV position and attitude estimation using IMU, GNSS and camera. In Proceedings of the 15th International Conference on Information Fusion, Suntec Convention Hall, Singapore, 9–12 July 2012. [Google Scholar]
- Xiang, B.; Mu, Q. Gimbal control of inertially stabilized platform for airborne remote sensing system based on adaptive RBFNN feedback model. IFAC J. Sys. Control 2021, 16, 100148. [Google Scholar] [CrossRef]
- Kidd, T.; Yu, Z.; Dobbs, S.; Anderson, K.R.; Oetting, G.; Kim, J.; O’Connell, M. UAV Power Management, Generation, and Storage System Principles and Design. In Proceedings of the 2020 IEEE Conference on Technologies for Sustainability (SusTech), Santa Ana, CA, USA, 23–25 April 2020. [Google Scholar]
- Headwall. Available online: https://www.headwallphotonics.com (accessed on 6 February 2021).
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Sheng, H.; Chao, H.; Coopmans, C.; Han, J.; McKee, M.; Chen, Y. Low-cost UAV-based thermal infrared remote sensing: Platform, calibration and applications. In Proceedings of the 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Qingdao, China, 15–17 July 2010. [Google Scholar]
- Jia, J.; Wang, Y.; Chen, J.; Guo, R.; Shu, R.; Wang, J. Status and application of advanced airborne hyperspectral imaging technology: A review. Infra. Phy. Techn. 2019, 104, 103115. [Google Scholar] [CrossRef]
- Burkart, A.; Cogliati, S.; Schickling, A.; Rascher, U. A Novel UAV-Based Ultra-Light Weight Spectrometer for Field Spectroscopy. IEEE Sens. J. 2013, 14, 62–67. [Google Scholar] [CrossRef]
- Mamaghani, B.; Salvaggio, C. Comparative study of panel and panelless-based reflectance conversion techniques for agricultural remote sensing. arXiv 2019, arXiv:1910.03734. [Google Scholar]
- Schneider-Zapp, K.; Cubero-Castan, M.; Shi, D.; Strecha, C. A new method to determine multi-angular reflectance factor from lightweight multispectral cameras with sky sensor in a target-less workflow applicable to UAV. Remote Sens. Environ. 2019, 229, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Yeom, J.M.; Ko, J.; Hwang, J.; Lee, C.S.; Choi, C.U.; Jeong, S. Updating Absolute Radiometric Characteristics for KOMPSAT-3 and KOMPSAT-3A Multispectral Imaging Sensors Using Well-Characterized Pseudo-Invariant Tarps and Microtops II. Remote Sens. 2018, 10, 697. [Google Scholar] [CrossRef] [Green Version]
- Ronin, M.X. Available online: https://store.dji.com/cn/product/ronin-mx (accessed on 6 February 2021).
- Bendig, J.; Gautam, D.; Malenovský, Z.; Lucieer, A. Influence of Cosine Corrector and Uas Platform Dynamics on Airborne Spectral Irradiance Measurements. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Stark, A.J. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Proces. 2000, 9, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Canty, M.J.; Nielsen, A.A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sens. Environ. 2008, 112, 1025–1036. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, S.; Li, X.; Cunha, M.; Jayavelu, S. Machine Learning-Based Approaches for Predicting SPAD Values of Maize Using Multi-Spectral Images. Remote Sens. 2022, 14, 1337. [Google Scholar] [CrossRef]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- De Oca, A.M.; Flores, G. The AgriQ: A low-cost unmanned aerial system for precision agriculture. Expert Syst. App. 2021, 182, 115163. [Google Scholar] [CrossRef]
Parameter | RedEdge-MX | MicroHSI 410 SHARK |
---|---|---|
Spectrometer | narrowband filter | solid block offner relay |
Focal plane array detector | cmOS | cmOS |
Spatial pixels | 1280 × 960 pixels | 1364 pixels |
Focal Length | 5.4 mm | 16 mm |
Full FOV | 47.2 degrees horizontal, 35.4 degrees vertical | 28.6 degrees |
Wavelength(nm) | Blue (475 nm center, 20 nm bandwidth), Green (560 nm center, 20 nm bandwidth), Red (668 nm center, 10 nm bandwidth) RedEdge (717 nm center, 10 nm bandwidth), Near IR (840 nm center, 40 nm bandwidth) | 400–1000 nm |
Full width at half maximum (FWHM) (nm) | - | 2 |
Band number | 5 | 150 |
Bit depth | 12 bit | 12 bit |
Frame rate | 1 fps | >300 Hz |
Pixel size | 3.75 um | 11.7 um |
Ground Sample Distance (GSD) | 8 cm/pixel @ 120 m, 4 cm/pixel @ 60 m | 9 cm/pixel @ 120 m, 4.5 cm/pixel @ 60 m |
Weight | 232 g | 700 g |
Dimensions | 8.7 cm × 5.9 cm × 4.54 cm | 13.6 cm × 8.7 cm × 7.0 cm |
Power Consumption (complete system) | <8.5 [email protected] V DC–15.8 V DC | <19 W@12 V DC |
Target Reflectance | 5% | 10% | 20% | 40% | 60% |
---|---|---|---|---|---|
Three Para | 0.0068 | 0.0050 | 0.0054 | 0.0078 | 0.0050 |
Three Para improve | 0.0059 | 0.0029 | 0.0025 | 0.0065 | 0.0011 |
ELM | 0.0242 | 0.0522 | 0.0223 | 0.0266 | 0.0351 |
ELM improve | 0.0220 | 0.0129 | 0.0169 | 0.0250 | 0.0147 |
Method | RMSE_X | RMSE_Y | RMSE | CC |
---|---|---|---|---|
IGM geometric correction | 216.4294 | 192.4716 | 288.9947 | 0.6674 |
GPS+IMU geometric correction | 54.2273 | 180.7783 | 190.4835 | 0.7258 |
GPS+IMU geometric correction with registration | 0.9227 | 0.0547 | 0.9293 | 0.9215 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Li, H.; Chen, T.; Chen, J.; Liu, S.; Fan, J.; Wang, Q. An Integrated Solution of UAV Push-Broom Hyperspectral System Based on Geometric Correction with MSI and Radiation Correction Considering Outdoor Illumination Variation. Remote Sens. 2022, 14, 6267. https://doi.org/10.3390/rs14246267
Song L, Li H, Chen T, Chen J, Liu S, Fan J, Wang Q. An Integrated Solution of UAV Push-Broom Hyperspectral System Based on Geometric Correction with MSI and Radiation Correction Considering Outdoor Illumination Variation. Remote Sensing. 2022; 14(24):6267. https://doi.org/10.3390/rs14246267
Chicago/Turabian StyleSong, Liyao, Haiwei Li, Tieqiao Chen, Junyu Chen, Song Liu, Jiancun Fan, and Quan Wang. 2022. "An Integrated Solution of UAV Push-Broom Hyperspectral System Based on Geometric Correction with MSI and Radiation Correction Considering Outdoor Illumination Variation" Remote Sensing 14, no. 24: 6267. https://doi.org/10.3390/rs14246267
APA StyleSong, L., Li, H., Chen, T., Chen, J., Liu, S., Fan, J., & Wang, Q. (2022). An Integrated Solution of UAV Push-Broom Hyperspectral System Based on Geometric Correction with MSI and Radiation Correction Considering Outdoor Illumination Variation. Remote Sensing, 14(24), 6267. https://doi.org/10.3390/rs14246267