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Abstract: The Segura River Basin (SRB), located in the South East of Spain, has the lowest percentage
of renewable water resources of all the Spanish basins. Therefore, knowledge of the annual rate of
water reservoir sedimentation is an important issue to be resolved in one of the most water-stressed
regions in the western Mediterranean basin. This paper describes the sensors developed in
collaboration with technology-based enterprises (aerial drone, floating drone, and underwater drone),
and the methodology for integration of the different types of data acquired to monitor the reservoirs
of the SRB. The proposed solution was applied to 21 reservoirs of the SRB. The proposed methodology
is based on the use of unmanned aerial vehicles (UAV) for photogrammetry of the reservoir surface
area. For each reservoir, two flights were completed, with 20 cm and 5 cm resolution, respectively.
Then, a triangular irregular network mesh was generated by GIS techniques. Surface water vehicles
(USV) and underwater remote-operated vehicles (ROV) were used to undertake bathymetric surveys.
In addition, water quality measurements were made with an ROV device. The main results consist of
topographic and bathymetric measurements for each reservoir, obtained by using equipment based
on OpenSource technology. According to the results, the annual rate of storage capacity loss of water
resources in the SRB´s reservoirs is 0.33%.

Keywords: Photogrammetry; Bathymetric probe; OpenSource; Ardupilot

1. Introduction

The reservoirs in Spain began to be built in the time of the Romans, although most were of small
size. During 19th century in Spain, relevant hydraulic infrastructures were built and changing of the
water management with new institutions, such as the Isabel II Channel. However, it was in the middle
of the 20th century that the boom in the construction of the Spanish reservoirs began. At present, there
are more than 1200 reservoirs in Spain, with a capacity of 5.6 × 109 m3. Many of them already have
a certain age (more than 400 were built prior to 1960); therefore, important efforts are necessary to
update their bathymetry.

Bathymetry is the measurement of water depth: the distance from bottom to water surface
(sounding). Sounding line consists of taking points with heavy weights and building the isobars; this
methodology was used for over than 2000 years, until the first half of the 20th century. The technological
advances allowed for the development of an echo-sounder or fathometer, an instrument based on the
reflection of sound signals [1]. Sound Navigation and Ranging is a method to improve the precision
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of the echo-sounder. In the second half of the 20th century, many types of acoustic instruments were
developed, including: GLORIA (Geological Long-range Inclined Acoustical instrument), Sea MARC
(Sea Mapping and Remote Characterization), and Multi-beam echo sounder. They were installed
behind ships to provide very detailed bathymetric strip maps [2]. Vertical Beam Echo-sounding (VBES)
is an improved multi-beam echo sounder, because its coverage is better than that of lead-lines [3].
The studies developed in the last decades of the 20th century have allowed for the development of new
technology in the 21st century, where interferometry sonar is used, as well as airborne laser scanning
technology to address both inland and coastal waters in a single approach [4] and multispectral
data [5].

During the second half of the 20th century, the Public Affairs and Experimentation Center (CEDEX,
Centro de Estudios y Experimentación de Obras Públicas), belonging to the Public Affairs Ministry of Spain,
was responsible for updating the information on reservoirs (including the bathymetry). However,
during the last decade of the 20th century, these studies were stopped and the works were not
concluded. More recently, the Spanish water agencies demanded solutions to the absence of these
datasets, through the use of more modern and cheaper methodologies. In recent decades, the use of
remote sensing was not possible because all the reservoirs present a large depletion zone. Nevertheless,
the emergence of cutting-edge technologies, such as sensorized drones, has facilitated their application
for the study and determination of depth in water bodies (e.g., reservoirs).

The sedimentation processes in water reservoirs are a challenging worldwide problem, with
a great impact on their storage capacity and therefore on their flooding lamination ability. Every
reservoir loses storage to sedimentation, although the rate at which this happens varies widely; despite
the decades of research, sedimentation is still probably the most serious technical problem faced by the
water supply industry [6].

According to the CEDEX center, the average loss of reservoir capacity in Spain due to
sedimentation is around 0.5% per year. Soil erosion and torrential rainfall favor the transport of
large amounts of sediment in the Mediterranean river basins, especially in the Segura River Basin
(SRB), increasing the clogging of their reservoirs. In addition, Spain is one of the European countries
with higher numbers of environmental problems related to water scarcity and droughts [7]. The SRB,
located in the South East of Spain, has the lowest percentage of renewable water resources of all the
Spanish basins. The water exploitation index (237.2%) of the SRB, estimated from the mean annual
runoff and mean annual total demand, is the highest of all the Spanish basins [8]. Therefore, the SRB
is considered one of the most water-stressed regions in the western Mediterranean basin [9]. These
environmental problems are exacerbated by climate change impacts in the head basins of the SRB.
Climate change has generated an intensification of the hydrological cycle in the last few decades,
through increases in the length and severity of droughts in the head basins of the SRB [10].

New technologies, such as unmanned aerial vehicles (UAV), surface water vehicles (USV), and
underwater remote-operated vehicles (ROV), are being considered as new allies to increase our
knowledge on the characteristics of basins and water bodies. The UAV, USV, and ROV technologies
are becoming increasingly popular for research applications, with drones being developed for
water sampling [11], measurement of the water level in water bodies [12], and water resource
management [13]. The coupling of sonar technology with a USV platform has several advantages
over traditional sludge measurement techniques (e.g., light meters/infrared meters, which include an
emitter and detector at the end of a length of rope [14]), such as: (i) it requires less manual labor; (ii) it
reduces the safety risks; (iii) it reduces the operating costs in bathymetric and photogrammetric work;
(iv) it reduces the subjectivity of measurements; and (v) it increases the measuring efficiency.

Therefore, the main objective of the present work is to produce updated capacity curves for the
reservoirs of the SRB, and from them calculate the volumes of sedimented materials, using cutting-edge
technologies such as sensorized drones based on OpenSource technology. To this end, the Instituto
Murciano de Investigaciones y Desarrollo Agrario y Alimentario (IMIDA) has collaborated with five
technology-based enterprises (Inntelia Soluciones Tecnológicas S.L., Droning, Habitat, Dronica, and
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Nido Robotics S.L.) in the development of three types of unmanned vehicle based on the open source
autopilot ArduPilot [15,16], capable of controlling UAV [17,18], USV [19], and ROV [20]. This type of
technology can also be used to measure the physical and chemical parameters of water bodies—such as
the dissolved oxygen (DO), electrical conductivity (EC), oxidation-reduction potential (ORP), relative
amounts of free hydrogen and hydroxyl ions in logarithmic units (pH), and the temperature of the
water [11,21]—or can be installed in an airborne sensor platform [22,23].

2. Materials and Methods

2.1. Case Study Site

The SRB (Figure 1) has an area of 19,025 km2 and a population of 1,948,453 inhabitants (in 2017).
It is characterized by a strongly negative atmospheric water balance (average precipitation below
300 mm year−1, potential evaporation above 1200 mm year−1), limited groundwater resources,
shallow soils, and recurrent droughts, leading to a highly vulnerable natural water resources system.
The 36 reservoirs of the SRB currently have a regulation capacity of 1.141 × 109 m3 and occupy 7334 ha.
The estimated total water demand in the SRB for 2015 [24] was 1.726 × 109 m3, agricultural activity
accounting for 86.15%, followed by urban demand (10.95%), environmental uses (1.74%), services
(0.64%), and industry (0.52%).
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Figure 1. Location of the studied reservoirs in the Segura River Basin (SRB), southeastern Spain.

The Table 1 presents some characteristics of the reservoirs (primary use, area, first year of
operation, and reservoir volume in 106 m3) of the SRB.

The Table 2 presents some characteristics of the selected basins (area and maximum altitude above
sea level) and reservoirs (coronation height and reservoir surface area) of the SRB. The criteria used
to select the study reservoirs were mainly based on their ages (Alfonso XIII was built in 1916, and
Valdeinfierno in 1806), but also considered the needs of the water agency; for instance, when there is
not a valid bathymetry because the reservoir is very recent (e.g., Cárcabo and Puentes).
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Table 1. Reservoirs in the Segura River Basin [24].

Name Primary Use Area (m2) First Year of
Operation Volume (106 m3)

Alfonso XIII irrigation/flood defense 2,736,167 1916 22.0
Algeciras irrigation/flood defense 2,337,181 1995 45.0

Almadenes hydroelectric 16,307 1925 0.2
Anchuricas hydroelectric 542,358 1955 6.0

Argos irrigation/flood defense 929,776 1974 10.0
Bayco flood defense 1,798,916 1997 9.0

Boquerón flood defense 1,091,567 1999 13.0
Boquerón-Bombeo flood defense 17,211 1999 0.1

Camarillas irrigation/flood defense 2,577,069 1960 36.0
Cárcabo flood defense 369,436 1992 3.0
Cenajo irrigation/flood defense 17,283,221 1960 437.0

Charcos (Los) flood defense 501,719 2001 4.0
Cierva (La) irrigation/flood defense 357,991 1929 7.0
Crevillente irrigation 814,261 1985 13.0
Doña Ana flood defense 238,776 1993 3.0
Fuensanta irrigation/flood defense 8,850,706 1933 210.0

José Bautista flood defense 858,819 1999 6.0
Judío (Del) flood defense 848,344 1992 9.0

Mayés irrigation 128,607 1980 2.0
Moratalla flood defense 571,464 2002 5.0

Moro flood defense 395,834 1989 63.0
Morrón (Del) flood defense 15,050 1987 0.1

Novia (La) hydroelectric 60,280 1955 1.0
Ojós irrigation 446,651 1978 1.0

Pareton flood defense 36,186 1713 0.1
Pedrera irrigation 12,268,805 1985 246.0
Pliego flood defense 1,228,837 1993 10.0

Puentes (Nueva) irrigation/flood defense 5,617,707 2000 26.0
Risca (La) flood defense 460,573 2002 2.0

Rodeos (Los) flood defense 1,655,862 2000 14.0
Santomera flood defense 2,829,711 1967 26.0

Taibilla water supply 700,719 1979 9.0
Taibilla- Toma water supply 17,963 1955 1.0

Talave irrigation/flood defense 2,610,571 1918 35.0
Torrecilla (La) flood defense 23,930 - 0.1
Valdeinfierno irrigation/flood defense 2,101,634 1806 13.0

Table 2. The sub-basins and reservoirs selected in the SRB [24].

Watershed
Reservoir

Catchment
Area (km2)

Coronation
Height of the

Reservoir (m) 1

Maximum Altitude
of the Catchment

Area (m) 1

Reservoir Surface
Area (ha)

Valdeinfierno 429 700.40 2045 199
Puentes 1425 474.00 2045 366

Santomera 348 101.50 1372 263
Alfonso XIII 834 302.68 2081 223

Cárcabo 36 259.87 849 8
1 Meters above the sea level in Alicante.

Considering recent morphological characterization of the selected reservoirs, derived from
topographic and bathymetric surveys, the corresponding height–area–volume curves were obtained
for each reservoir [25,26].

2.2. Unmanned Aerial Vehicle (UAV) for Photogrammetry

For the analysis of the surface area, a Sony QX1 photogrammetric camera controlled by an
Autopilot in a Droning D-650 and D-820 multirotor drone (Figure 2) was chosen. It was developed by
Droning (Droning, Seville, Spain). To obtain a high-resolution photogrammetric flight, the camera was
installed on a Cessna 150 aerobat aircraft (flying at 200 m above ground level for a resolution of 20 cm),
then a digital model of the surfaces was developed with high precision. The main components of the
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UAV were a frame, motors, propellers, electronic speed controllers, a flight controller (Pixhawk,
3DR Robotics, Berkeley, CA, USA), a Global Positioning System (GPS) receiver (Ublox, Zurich,
Switzerland), a telemetry radio transmitter (3DR Robotics, Berkeley, CA, USA), and a power supply
(Tattu, Dublin, CA, USA). Mission Planner software was used to specify the flight boundary, waypoints,
and autonomous navigation details, and to configure integrated sensors/actuators. The Sony QX1
camera acquires 20.1-megapixel images (red, R; Green, G; and Blue, B, bands) with 8-bit radiometric
resolution and is equipped with a 16–50 mm zoom lens. Table 3 presents the specifications of the
UAV components.

Water 2018, 10, x FOR PEER REVIEW  6 of 18 

 

Photoscan Pro version 1.1.6 (Agisoft LC, St. Petersburg, Russia) or Drone2Map for ArcGiS version 
1.3.2 (ESRI, Redlands, CA, USA). 

 
Figure 2. OpenSource equipment developed by Droning to carry out the photogrammetric work: (a) 
and (b) Droning D-820; (c) and (d) initial design based on Droning D-650. 

The photogrammetric process requires all the frames to be georeferenced (i.e., scaled, 
translated, and rotated) into a target Geodetic System (i.e., the World Geodetic System, WGS84), 
using the ground control points (GCPs) coordinates to minimize geometric distortion. The 
co-registration errors in X, Y, and Z were automatically derived by Photoscan Agisoft (Agisoft LC, 
St., Petersburg, Russia) as the difference between the positions of the GCP centroids measured 
through Real Time Kinematic (RTK) GPS and the coordinates derived from the imagery. The 
coordinates of the GCPs were acquired through a traditional technique by means of a 
Leica-Geosystems Station TPS1200 (Leica Geosystems AG, Hauptsitz, Heerbrugg, Switzerland). 

For each reservoir, two flights were made, with 20 and 5 cm resolution, respectively. Figure 3 
presents the methodology used to define the waypoints for Santomera reservoir, considering the 
two different resolutions. 
  

Figure 2. OpenSource equipment developed by Droning to carry out the photogrammetric work:
(a,b) Droning D-820; (c,d) initial design based on Droning D-650.

Table 3. Specifications of unmanned aerial vehicle (UAV) components (Droning D-820).

Part Name Model/Number Specifications Function

Chassis Droning/D-820 Carbon fiber Structure
Motors T-Motor/Air 40A KV700 Main actuator

Propellers T-Motor/16x5.4 Carbon fiber Propulsion
Microcontroller Pixhawk 3.2.1 Open hardware Flight control
Battery (LiPo) Tattu 22.5V 25C 22,000 mAh Power supply
Radio receiver 3DR 433 MHz 100 Mw Radio command

GPS Ublox M8N Magnetometer 3D GPS antenna
Taranis X 9D FR-Sky 2.4 Ghz Control station

Software APM 3.2 Mission planner
Sony QX1 20.1 MP Camera

For inclusion in the photogrammetric process, the collected images were assessed for their quality
and spatial coverage. Blurred and distorted frames were excluded from the generation of the standard
geomatic products (i.e., orthoimage, digital terrain model (DTM), and point cloud) via Photoscan
Pro version 1.1.6 (Agisoft LC, St. Petersburg, Russia) or Drone2Map for ArcGiS version 1.3.2 (ESRI,
Redlands, CA, USA).
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The photogrammetric process requires all the frames to be georeferenced (i.e., scaled, translated,
and rotated) into a target Geodetic System (i.e., the World Geodetic System, WGS84), using the ground
control points (GCPs) coordinates to minimize geometric distortion. The co-registration errors in X,
Y, and Z were automatically derived by Photoscan Agisoft (Agisoft LC, St., Petersburg, Russia) as
the difference between the positions of the GCP centroids measured through Real Time Kinematic
(RTK) GPS and the coordinates derived from the imagery. The coordinates of the GCPs were acquired
through a traditional technique by means of a Leica-Geosystems Station TPS1200 (Leica Geosystems
AG, Hauptsitz, Heerbrugg, Switzerland).

For each reservoir, two flights were made, with 20 and 5 cm resolution, respectively. Figure 3
presents the methodology used to define the waypoints for Santomera reservoir, considering the two
different resolutions.Water 2018, 10, x FOR PEER REVIEW  7 of 18 
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Figure 3. Waypoints definition, using Mission Planner software, in the Valdeinfierno reservoir (a) and
the Santomera reservoir (d), ground control points in the Santomera reservoir (c) and centers ortofo in
the Valdeinfierno reservoir (b).

The digital terrain model (DTM) was derived by triangulation from the spatial resolutions of
20 cm and 5 cm (Figure 4). Considering the closest vertex of the National Geodetic Network to each
reservoir, supporting points were taken with bi-frequency GPS. The images were obtained with an
overlap of over 70% [27] and were processed with Agisoft PhotoScan photogrammetric software.
Subsequently, the point cloud with known X, Y, Z coordinates was calculated in the official terrestrial
space reference system (ETRS89) and in the official vertical spatial reference system in Spain (EVRS89)
based on the Earth Gravitational Model (EGM2008) by the National Geospatial-Intelligence Agency
(NGA) EGM Development Team [28]. Subsequently, a Triangular Irregular Network (TIN) mesh was
generated using ArcGiS 10.5 (ESRI, Redlands, CA, USA) and this was used to calculate the volume of
the reservoir [29].
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2.3. Surface Water Vehicles (USV) for Bathymetric Surveys

Figure 5 shows the USV used in the field experiment; a depthometer and a Global Navigation
Satellite System (GNSS) receiver are mounted and synchronously collect water depth and position
data with high accuracy. The depthometer is an Airmar 50/200 kHz (Airmar Technology Corporation,
Milford, Connecticut, USA). The measuring range is 0.5 m to 100 m and the accuracy is ±10 mm.
The GNSS receiver is an Emlid Reach RS (Emlid Ltd, Hong Kong, China), the horizontal positioning
accuracy (in the Real Time Kinematic, RTK model) is about 10 mm, and the vertical positioning
accuracy is about 20 mm. It was developed by Inntelia (IPH Ltd, Huelva, Spain). The specifications are
shown in Table 4.Water 2018, 10, x FOR PEER REVIEW  9 of 18 
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Table 4. Specifications of unmanned surface vehicle (USV) components (Mambo-IMIDA).

Part Name Model/Number Specifications Function

Boat hull Inntelia Fiberglass Navigation
Motors BlueRobotics Thruster-R1 Main actuator

Propellers T-200 350 W Propulsion
Microcontroller Pixhawk 3.2.1 Open hardware Navigation control
Battery (LiPo) Tattu 22.2V 15C 4500 mAh Power supply
Radio receiver UHF 1 watt (−30 dB) Radio command

GNSS EMLID NMEA 0183 GPS antenna
Graupner 12 ch. PCM 2.4 Ghz Control station
Software APM 3.2 Mission planner

Echo sounder Airmar/DST 700 50/200 kHz Echo sounder

The bathymetric survey consisted of obtaining the coordinates (x, y, z) of a large number of
elevation points of the floor of the reservoir (depth), by using an echo sounder or sonar installed
in a floating drone, in a submerged drone, or on a semi-rigid boat [13]. The absolute position was
simultaneously obtained with the GNSS RTK receiver. The drone carries a GNSS receiver and antenna,
an autopilot based on ArduPilot, a microcomputer (based on a Raspberry Pi) to store the recorded
data, and a Radio Modem UHF system. In this way, all the data can be integrated and a depth value
can be calculated with respect to the mean sea level in Alicante according to INSPIRE Infrastructure
for Spatial Information in Europe; for this, a geodetic vertex was used as support. The maximum
speed of navigation of the drone or the boat was 2 m/s to obtain a precise synchronization of the echo
sounder data with the GNSS receiver, thus permitting the transformation of the heights into depths
with respect to the reference geodetic vertex.

2.4. Remote Operated Vehicle (ROV) for Bathymetric Surveys and Water Quality Measurements

Figure 6 shows the remote operated vehicle-ROV used in the field experiment; a depthometer and
a GNSS receiver (Emlid Ltd, Hong Kong, China) are mounted and synchronously collect water depth
and position data of high accuracy. The depthometer is an Airmar DST 700 (Technology Corporation,
Milford, Connecticut, USA). The measuring range is 0.5 m to 100 m. The GNSS receiver is a 3DR model.
The specifications are shown in Table 5.

The bathymetric survey consisted of obtaining the coordinates (x, y, z) of a large number of
elevation points of the submerged surface of the reservoir, by using an echo sounder or sonar installed
in the ROV [13].

Table 5. Specifications of remote operated vehicle components (SIBIU-IMIDA).

Part Name Model/Number Specifications Function

Chassis Nido Robotic/Sibiu HDPE Navigation
Motors BlueRobotics Thruster-R1 Main actuator

Propellers T-200/8 350 W Propulsion
Microcontroller Pixhawk 3.2.1 Open hardware Navigation control
Battery (LiPo) Tattu 16 V 4S 10,000 mAh Power supply

Interface Blue Robotics Fathom-S Control command
Microcomputer Raspberry Pi/3 64 bit quad core Processing

GPS 3DR NMEA GPS antenna
Joystick/cable Polyethylene/kevlar 100 m Control station

Software QGroundControl 3.2.4 Mission planner
Echo sounder Airmar/DST 700 50/200 kHz Bathymetry

Camera 700 TVL 5 MP Inspection
AtlasScientific ENV-SDS DO, EC, pH, ORP and Tª Water quality
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Figure 6. OpenSource equipment developed by Nido Robotics S.L. for the topo-bathymetric work:
(a,b) SIBIU-IMIDA; and (c,d) initial design based on BlueRov2 (Blue Robotics In., Torrance, CA, USA).

The echo sounder device is an Airmar DST 700 (Airmar Technology Corporation, Milford,
CA, USA), the drone carries a GNSS receiver and antenna, an autopilot based on ArduPilot, and
a microcomputer (based on a Raspberry Pi) to store the recorded data, and the control is carried out
by means of a joystick connected with a polyethylene cable covered with kevlar. The measurement
process consists of recording the depth with the echo sounder and, simultaneously, the absolute
position with the GNSS receiver. In this work, the ROV was equipped with an open-source electronic
sensors platform to measure the temperature, electrical conductivity (EC), dissolved oxygen (DO),
oxidation reduction potential (ORP), temperature (Tª) and pH of the water (Atlas Scientific, New
York, NY, USA). The open-source electronic sensors platform (Arduino Mega 2560, Ivrea, Italy) was
developed by Nido Robotics SL. (Nido Robotics SL, Murcia, Spain), based on the model BlueRov2
(Blue Robotics In., Torrance, CA, USA).

2.5. LiDAR Data

The airborne laser imaging detection and ranging data (LiDAR) correspond to the National Plan
of Aerial Orthophotography—Plan Nacional de Ortofotografía Aérea (PNOA)—of 2009, for the Spanish
National Geographic Institute (IGN) model ALS50 (Leica Geosystems AG, Heerbrugg, Switzerland),
with a low point density of 0.5 points/m2 but with total coverage throughout the SRB. Even considering
its low resolution, a digital surface model (DSM) was obtained by triangulation at a spatial resolution
of 1 meter. The LiDAR data were processed with LAStools (Rapidlasso GmbH, Gilching, Germany)
and ArcGiS 10.5 software (ESRI, Redlands, CA, USA) (Figure 7).
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Figure 7. LiDAR data (a), orthophotography (b), bathymetric and LiDAR data (c), and 3D model (d) of
the Puentes reservoir. The height is referred to the sea level in Alicante.

2.6. Methodology for the Integration of Altimetry Data

The photogrammetric and bathymetric data were integrated in an ArcGiS 10.5 geodatabase
containing the LiDAR data of each reservoir. Using all the data, a digital elevation model was
generated with a spatial resolution of 1 m, to perform the cubing for each isobath (m) and thus to
compute the volume (m3) for each reservoir. The volume between each isobath was calculated, starting
at the deepest level and finishing at the isobath corresponding to the maximum level of the reservoir.
The final result corresponds to the height–volume relationship that is the current capacity curve.
The applied methodology is represented in the flowchart of Figure 8.
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Figure 8. Flowchart showing the integration of photogrammetric and bathymetric data.

The surface area enclosed by the curve of each level was estimated to obtain the storage capacity
of the reservoir. To obtain the updated capacity of the reservoir, the volume between the curves of
consecutive levels was calculated by applying Equation (1). Once all the points had been numbered,
the network was adjusted planimetrically to the National Geodesic Network and altimetrically to the
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data of the reservoir. Therefore, the capacity curves of the reservoir were obtained, and the volumes of
sedimentary materials were estimated.

Filtered data were entered into ArcGIS 10.5, to create a triangulated irregular network (TIN) which
is a representation of a continuous surface consisting entirely of triangular facets for the visualization
and calculation of volume using a Python script developed with the ArcGiS 10.5 model builder.
An example of a height–volume curve in the Santomera reservoir is shown in Figure 9.
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Figure 9. Height–volume curves in the Santomera reservoir. The height is referred to the sea level
in Alicante.

The following Equation (1) relates depth with volume [25]. If this equation is applied considering
two different bathymetries (old and recent), the loss of storage capacity of the reservoirs can
be estimated.

Vi =
h
3

(
Si + Si+1 +

√
Si × Si+1

)
(1)

where Vi = volume between elevations i and i + 1; h = distance between consecutive elevation curves
(m); Si = area delimited by the elevation curve i; and Si+1 = area delimited by the elevation curve i + 1.

The total volume will be (Figure 9):

V =
i=m

∑
i=a

Vi (2)

where V = current volume in the reservoir (m3); Vi = volume in the elevation i; a = height of the deepest
curve (m); and m = height of the maximum level of the reservoir (m).

3. Results and Discussion

The 36 reservoirs of the SRB currently have a regulation capacity of 1.141 × 109 m3 and occupy
7334 ha (Table 6). Considering these reservoirs, the bathymetries of 21 of them have been updated,
which represents an updated topo-bathymetric surface of 2432 ha and a modeled storage volume
of 1.6068 × 108 m3, accounting for 33% of the total water surface area of the reservoirs in the SRB.
The results show that there is a very close relationship between the age of the constructions and the
accumulated loss of capacity. As an example, the digital models of the elevations obtained in six
reservoirs, updated using USV, are shown in Figure 10.
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Table 6. Reservoirs of the SRB with their updated volumes.

Reservoir Name Height of the
Coronation 1 (m)

Updated Volumen
(106 m3) Date of Updating Updating Method

Alfonso XIII 303 15.24 10/22/16 LiDAR + USV + UAV
Argos 415 7.21 10/22/16 LiDAR + USV + UAV
Bayco 697 12.55 11/16/09 LiDAR

Boquerón 606 14.24 11/16/09 LiDAR
Boquerón-Bombeo 538 0.02 11/16/09 LiDAR

Cárcabo 260 2.65 10/22/16 LiDAR + USV + UAV
Del Morrón 596 0.05 11/18/09 LiDAR
Doña Ana 379 1.64 10/25/09 LiDAR

Embalse de Pliego 362 8.13 10/23/09 LiDAR
José Bautista Martín 139 5.79 11/18/09 LiDAR

Judío 246 8.17 10/22/16 LiDAR + USV + UAV
La Risca 1080 2.31 12/04/09 LiDAR

La Torrecilla 369 0.10 10/25/09 LiDAR
Los Charcos 746 1.21 11/16/09 LiDAR
Los Rodeos 135 14.01 10/25/09 LiDAR
Moratalla 350 5.35 11/22/09 LiDAR

Presa del Paretón 216 0.01 11/10/09 LiDAR
Puentes 474 27.19 09/06/16 LiDAR + USV + UAV

Rambla del Moro 235 4.43 11/22/09 LiDAR
Santomera 102 22.69 10/22/16 LiDAR + USV + UAV

Valdeinfierno 700 7.70 09/06/16 LiDAR + UAV
1 Updated reservoirs bathymetries of the Segura River Basin. The height is referred to the sea level in Alicante.
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During this work, three new types of low-cost equipment (based on open hardware technology)
were developed in collaboration with three Spanish technology-based companies.

Five water reservoirs of different ages were selected, and the determination coefficient between
the age and the annual loss rate was assessed (Figure 11). The main results from this research are:
(a) reservoir silting has a relevant impact on water availability in the SRB; and (b) field surveys of



Water 2019, 11, 445 13 of 16

five basins showed an average annual reservoir storage capacity reduction of 0.33%, equivalent to the
average annual rate obtained for the most representative reservoirs in this area (Figure 11), although in
some reservoirs surrounded by marly soils, these values were higher, exceeding 1%.
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Figure 11. Relationship between the age of the reservoir in years (x axis) and the percentage of capacity
lost since the year of construction (y axis), for the five representative reservoirs.

The accumulated storage capacity loss data of the most representative reservoirs of the basin as a
whole are summarized in Table 7. Cárcabo had the highest annual rate of storage capacity loss (0.49%),
although it is not the oldest reservoir. Valdeinfierno reservoir (119 years old) exhibited the highest
accumulated storage capacity loss (40.77%), with an annual loss rate of 0.34%. Figure 11 presents the
relationship between the accumulated loss and the age of the five representative reservoirs (included
in Table 7).

Table 7. Accumulated storage capacity loss of five representative reservoirs of the SRB.

Reservoir
Name

Year of
Construction

Age (years
to 2016)

Design Volume
(106 m3)

Current Volumen
(106 m3)

Accumulated
Los (%)

Annual Loss
Rate (%)

Valdeinfierno 1897 119 13.00 7.70 40.77 0.34
Puentes 2000 16 29.30 27.19 7.20 0.45

Santomera 1967 49 26.62 22.69 14.76 0.30
Alfonso XIII 1916 100 22.00 15.24 30.72 0.31

Cárcabo 1992 24 3.00 2.65 11.67 0.49

4. Conclusions

The sensorized drones based on OpenSource technology are a very valuable tool that can provide
digital models of reservoir surfaces with a high spatial and altimetric resolution. The LiDAR data
provided by the National Plan of Aerial Orthophotography of the Spanish National Geographic
Institute are a good improvement for digital terrain model analysis. The proposed methodology
represents a novel approach in comparison with topographical techniques (a manned vessel with GPS
and a depth gauge). Therefore, with lower costs and less human effort, updated digital models of
reservoir surfaces are obtained with high precision.

The development of systems based on Ardupilot has proven to be very versatile, with low costs
of development and operation, high-quality performance, and high effectiveness in the performance
of topo-bathymetric work in reservoirs and coastal areas.

The cost of the design and manufacture of the Sony QX1 camera and its integration in the UAV
designed by Droning (D-820) was 14,500 euros. The cost of the design and manufacture of the Airmar
bathymetric probe and its integration in the USV designed by Intelia (Mambo) was 12,500 euros.



Water 2019, 11, 445 14 of 16

The design and manufacture of the Airmar bathymetric probe and its integration in the ROV designed
by Nido Robotics (Sibiu) cost 9500 euros. The amounted to of obtaining the photogrammetric products
(orthoimage and digital terrain model) with a resolution of 5 cm for each reservoir, using a UAV
at a height of 120 m, was 60 euros/ha and the throwput was 50 ha/day; the time needed for the
whole process was five days. The cost of obtaining the photogrammetric products (orthoimage and
digital terrain model) with a resolution of 20 cm, using a plane with APM software at a height of
200 m, was 20 euros/ha and the yield was 500 ha/day for the reservoir vessel; the time needed for the
process was 10 days. The cost of obtaining the bathymetric products (digital terrain model) with a
resolution of 1 m, using a USV, was 40 euros/ha and the yield was 50 ha/day; the time needed for the
process was five days. The costs of these bathymetric techniques using drones are 75% lower than for
traditional bathymetry.

The results obtained show that the sedimentation processes occurring in reservoirs have produced
a considerable reduction in their storage capacity. The erosion rate in the SRB has been estimated
according to the volume of the reservoirs and has been compared with data obtained using other
methods [26]; the measurement of a 137Cs profile for the sediment in the Puentes reservoir made it
possible to establish that, in the last 40 years, about 3 m of sediment have been deposited therein.
The sediment accumulation rate during the period 1954–1994 was determined using sedimentological
criteria [30]. Table 8 presents the accumulated storage capacity loss estimated from the bathymetries of
three reservoirs, performed in 1976.

Table 8. Accumulated capacity loss in three reservoirs (1976) [26].

Reservoir
Name

Year of
Construction

Age
(years)

Design
Volume
(106 m3)

Volume in
1976

(106 m3)

Accumulated
Loss 1 (%)

Annual
Loss Rate

(%)

Erosion in
Basin

Mg/ha/year

Valdeinfierno 1897 79 25.00 14.19 43.24 0.14 11.0
Puentes 1884 92 31.56 13.88 56.02 0.33 6.0

Alfonso XIII 1916 60 42.00 21.65 48.45 0.34 10.2

These technologies can be complemented by other emerging technologies, although they have
lower altimetric precision, such as those based on high-resolution optical remote sensing satellite
images and USV sounding data [31–33].

In conclusion, a novel methodology has been presented that improves on the traditional methods
used to update the characterization of water reservoirs (bathymetry and surface area). Improvements
in the understanding and monitoring of the processes that produce an important storage capacity loss
in the water reservoirs of semiarid basins, such as the SRB, will allow the implementation of correction
measures. Measures such as hydrological forest restoration dams could be beneficial for semiarid
basins of the southern Mediterranean region with high rates of erosion. The present work provides the
methodology to reach this challenging aim.
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