Evaluation of the Performance of CLM5.0 in Soil Hydrothermal Dynamics in Permafrost Regions on the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Sites and Measurements
2.2. Methods
2.2.1. The Description of CLM5.0
2.2.2. Model Setup
2.2.3. Experimental Designs
2.2.4. Statistical Metrics
3. Results
3.1. Soil Temperature
3.2. Soil Moisture
3.3. Soil Thermal Conductivity
4. Discussion
4.1. The Effect of Soil Properties on the Results
4.2. The Effect of Snow on the Results
4.3. The Effect of Parameterization Schemes and Other Possible Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, J. The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, T. A comprehensive study of Water-Ecosystem-Human activities reveals unbalancing Asian Water Tower and accompanying potential risks. Chin. Sci. Bull. 2019, 64, 2761–2762. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Mu, C.; Wu, T.; Hu, G.; Zou, D.; Wang, D.; Li, W.; Wu, X. Increasing cryospheric hazards in a warming climate. Earth-Sci. Rev. 2021, 213, 103500. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A New Map of the Permafrost Distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Ni, J.; Wu, T.; Zhu, X.; Hu, G.; Zou, D.; Wu, X.; Li, R.; Xie, C.; Qiao, Y.; Pang, Q.; et al. Simulation of the Present and Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical and Machine Learning Models. J. Geophys. Res. Atmos. 2021, 126, e2020JD033402. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, T.; Zhao, L.; Wu, X.; Li, R.; Xie, C.; Pang, Q.; Hu, G.; Qiao, Y.; Zhao, G.; et al. Numerical Modeling of the Active Layer Thickness and Permafrost Thermal State Across Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 11604–11620. [Google Scholar] [CrossRef]
- Chen, X.; Mu, C.; Jia, L.; Li, Z.; Fan, C.; Mu, M.; Peng, X.; Wu, X. High-resolution dataset of thermokarst lakes on the Qinghai-Tibetan Plateau. Earth Syst. Sci. Data, 2021; preprint. [Google Scholar] [CrossRef]
- Chen, J.; Wu, T.; Zou, D.; Liu, L.; Wu, X.; Gong, W.; Zhu, X.; Li, R.; Hao, J.; Hu, G.; et al. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau. Remote Sens. Environ. 2022, 268, 112778. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, L.; Wang, L.; Xing, Z.; Zou, D.; Hu, G.; Xie, C.; Pang, Q.; Liu, G.; Du, E.; et al. Characteristics of Freeze–Thaw Cycles in an Endorheic Basin on the Qinghai-Tibet Plateau Based on SBAS-InSAR Technology. Remote Sens. 2022, 14, 3168. [Google Scholar] [CrossRef]
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.J.; Koven, C.D.; et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef] [Green Version]
- Schuur, E.A.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhao, L.; Ding, Y.; Wu, T.; Xiao, Y.; Du, E.; Liu, G.; Qiao, Y. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chin. Sci. Bull. 2012, 57, 4609–4616. [Google Scholar] [CrossRef] [Green Version]
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Gruber, S.; Zheng, D.; Li, X. The ERA5-Land soil temperature bias in permafrost regions. Cryosphere 2020, 14, 2581–2595. [Google Scholar] [CrossRef]
- Ni-Meister, W. Recent Advances On Soil Moisture Data Assimilation. Phys. Geogr. 2013, 29, 19–37. [Google Scholar] [CrossRef] [Green Version]
- He, H.; He, D.; Jin, J.; Smits, K.M.; Dyck, M.; Wu, Q.; Si, B.; Lv, J. Room for improvement: A review and evaluation of 24 soil thermal conductivity parameterization schemes commonly used in land-surface, hydrological, and soil-vegetation-atmosphere transfer models. Earth-Sci. Rev. 2020, 211, 103419. [Google Scholar] [CrossRef]
- Farouki, O.T. The thermal properties of soils in cold regions. Cold RegTons Sci. Technol. 1981, 5, 67–75. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, D.; Hu, G.; Wu, T.; Du, E.; Liu, G.; Xiao, Y.; Li, R.; Pang, Q.; Qiao, Y.; et al. A synthesis dataset of permafrost thermal state for the Qinghai-Xizang (Tibet) Plateau, China. Earth Syst. Sci. Data 2021, 13, 4207–4218. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Nan, Z.; Che, J.; Sheng, Y.; Wu, Q.; Jin, H.; Luo, D.; Tang, Z.; et al. Mapping the permafrost stability on the Tibetan Plateau for 2005–2015. Sci. China Earth Sci. 2020, 64, 62–79. [Google Scholar] [CrossRef]
- Xing, Z.; Fan, L.; Zhao, L.; De Lannoy, G.; Frappart, F.; Peng, J.; Li, X.; Zeng, J.; Al-Yaari, A.; Yang, K.; et al. A first assessment of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet Plateau. Remote Sens. Environ. 2021, 265, 112666. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; Kampenhout, L.; Kennedy, D.; et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef] [Green Version]
- Chadburn, S.; Burke, E.; Essery, R.; Boike, J.; Langer, M.; Heikenfeld, M.; Cox, P.; Friedlingstein, P. An improved representation of physical permafrost dynamics in the JULES land-surface model. Geosci. Model Dev. 2015, 8, 1493–1508. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.-Y.; Yang, Z.-L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 2011, 116, e2010JD015140. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.-Y.; Yang, Z.-L. Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale. J. Hydrometeorol. 2006, 7, 937–952. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Xie, Z.; Wang, A.; Liu, S.; Zeng, Y.; Liu, B.; Li, R.; Jia, B.; Qin, P.; Xie, J. A New Frozen Soil Parameterization Including Frost and Thaw Fronts in the Community Land Model. J. Adv. Model. Earth Syst. 2019, 11, 659–679. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Slater, A.G. Incorporating organic soil into a global climate model. Clim. Dyn. 2008, 30, 145–160. [Google Scholar] [CrossRef]
- Cai, X.; Yang, Z.-L.; Xia, Y.; Huang, M.; Wei, H.; Leung, L.R.; Ek, M.B. Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. J. Geophys. Res. Atmos. 2014, 119, 13751–13770. [Google Scholar] [CrossRef]
- Deng, M.; Meng, X.; Lu, Y.; Li, Z.; Zhao, L.; Hu, Z.; Chen, H.; Shang, L.; Wang, S.; Li, Q. Impact and sensitivity analysis of soil water and heat transfer parameterizations in Community Land Surface Model (CLM5.0) on the Tibetan Plateau. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002670. [Google Scholar] [CrossRef]
- Li, X.; Wu, T.; Zhu, X.; Jiang, Y.; Hu, G.; Hao, J.; Ni, J.; Li, R.; Qiao, Y.; Yang, C.; et al. Improving the Noah-MP Model for Simulating Hydrothermal Regime of the Active Layer in the Permafrost Regions of the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2020, 125, e2020JD032588. [Google Scholar] [CrossRef]
- Deng, M.; Meng, X.; Lyv, Y.; Zhao, L.; Li, Z.; Hu, Z.; Jing, H. Comparison of Soil Water and Heat Transfer Modeling Over the Tibetan Plateau Using Two Community Land Surface Model (CLM) Versions. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002189. [Google Scholar] [CrossRef]
- Yang, S.; Li, R.; Wu, T.; Wu, X.; Zhao, L.; Hu, G.; Zhu, X.; Du, Y.; Xiao, Y.; Zhang, Y.; et al. Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau. Geoderma 2021, 401, 115330. [Google Scholar] [CrossRef]
- Peters-Lidard, C.D.; Blackburn, E.; Liang, X.; Wood, E.F. The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes and Temperatures. J. Atmos. Sci. 1998, 55, 1209–1224. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Tang, W.; Qin, J.; Zhao, L. Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Sci. China Earth Sci. 2012, 55, 1001–1011. [Google Scholar] [CrossRef]
- Yang, K.; Koike, T.; Ishikawa, H.; Kim, J.; Li, X.; Wang, J.; Ma, Y.; Liu, S.; Liu, H. Turbulent Flux Transfer over Bare-Soil Surfaces: Characteristics and Parameterization. J. Appl. Meteorol. Climatol. 2008, 47, 276–290. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Wen, J.; Hu, Z.; Lu, Y.; Yang, X. Parameter Sensitivities of the Community Land Model at Two Alpine Sites in the Three-River Source Region. J. Meteorol. Res. 2020, 34, 851–864. [Google Scholar] [CrossRef]
- Li, R.; Zhao, L.; Wu, T.; Wang, Q.; Ding, Y.; Yao, J.; Wu, X.; Hu, G.; Xiao, Y.; Du, Y.; et al. Soil thermal conductivity and its influencing factors at the Tanggula permafrost region on the Qinghai–Tibet Plateau. Agric. For. Meteorol. 2019, 264, 235–246. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Slater, A.G.; Romanovsky, V.E.; Nicolsky, D.J. Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J. Geophys. Res. 2008, 113, e2007JF000883. [Google Scholar] [CrossRef] [Green Version]
- Decker, M.; Zeng, X. Improving the Numerical Solution of Soil Moisture–Based Richards Equation for Land Models with a Deep or Shallow Water Table. J. Hydrometeorol. 2009, 10, 308–319. [Google Scholar]
- Kluzek, E. User’s Guide for CLM4.5. 2013. Available online: https://www2.cesm.ucar.edu/models/cesm1.2/(accessed on 1 June 2022).
- Lawrence, D.; Fisher, R.; Koven, C.; Oleson, K.; Swenson, S.; Vertenstein, M. Technical Description of Version 5.0 of the Community Land Model. 2018. Available online: https://www.cesm.ucar.edu/models/cesm2/land/ (accessed on 1 June 2022).
- Mu, C.; Zhang, T.; Zhang, X.; Cao, B.; Peng, X. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai-Tibet Plateau. Eur. J. Soil Sci. 2016, 67, 773–781. [Google Scholar] [CrossRef]
- Bonan, G.B.; Levis, S.; Kergoat, L.; Oleson, K.W. Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Glob. Biogeochem. Cycles 2002, 16, 5-1–5-23. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Li, Z.; Li, Y.; Zhang, Q.; Zan, M. Driving Forces of the Changes in Vegetation Phenology in the Qinghai–Tibet Plateau. Remote Sens. 2021, 13, 4952. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations. Agric. For. Meteorol. 2019, 265, 280–294. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C.; Li, S. Improved Simulation of Frozen-Thawing Process in Land Surface Model (CLM4.5). J. Geophys. Res. Atmos. 2018, 123, 13238–13258. [Google Scholar] [CrossRef]
- Bi, H.; Ma, J.; Zheng, W.; Zeng, J. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 2658–2678. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; He, Y.; Guo, X.; Chen, J.; Wu, Q.; Qin, Y.; Ding, Y. The physical properties of coarse-fragment soils and their effects on permafrost dynamics: A case study on the central Qinghai–Tibetan Plateau. Cryosphere 2018, 12, 3067–3083. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; van der Velde, R.; Su, Z.; Wang, X.; Wen, J.; Booij, M.J.; Hoekstra, A.Y.; Chen, Y. Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part II: Turbulent Heat Fluxes and Soil Heat Transport. J. Hydrometeorol. 2015, 16, 2677–2694. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, J.; Qi, J.; Sun, L.; Yang, K.; Tian, L.; Lin, Y.; Liu, W.; Shrestha, M.; Xue, Y.; et al. Development of a land surface model with coupled snow and frozen soil physics. Water Resour. Res. 2017, 53, 5085–5103. [Google Scholar] [CrossRef]
- Swenson, S.C.; Lawrence, D.M. A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance. J. Geophys. Res. Atmos. 2012, 117, e2012JD018178. [Google Scholar] [CrossRef]
- Xie, Z.; Hu, Z.; Gu, L.; Sun, G.; Du, Y.; Yan, X. Meteorological Forcing Datasets for Blowing Snow Modeling on the Tibetan Plateau: Evaluation and Intercomparison. J. Hydrometeorol. 2017, 18, 2761–2780. [Google Scholar] [CrossRef]
- Xie, Z.; Hu, Z.; Ma, Y.; Sun, G.; Gu, L.; Liu, S.; Wang, Y.; Zheng, H.; Ma, W. Modeling Blowing Snow Over the Tibetan Plateau With the Community Land Model: Method and Preliminary Evaluation. J. Geophys. Res. Atmos. 2019, 124, 9332–9355. [Google Scholar] [CrossRef]
- Du, Y.; Li, R.; Zhao, L.; Yang, C.; Wu, T.; Hu, G.; Xiao, Y.; Zhu, X.; Yang, S.; Ni, J.; et al. Evaluation of 11 soil thermal conductivity schemes for the permafrost region of the central Qinghai-Tibet Plateau. Catena 2020, 193, 104608. [Google Scholar] [CrossRef]
- Dai, Y.; Wei, N.; Yuan, H.; Zhang, S.; Shangguan, W.; Liu, S.; Lu, X.; Xin, Y. Evaluation of Soil Thermal Conductivity Schemes for Use in Land Surface Modeling. J. Adv. Model. Earth Syst. 2019, 11, 3454–3473. [Google Scholar] [CrossRef]
- He, H.; Flerchinger, G.N.; Kojima, Y.; Dyck, M.; Lv, J. A review and evaluation of 39 thermal conductivity models for frozen soils. Geoderma 2021, 382, 114694. [Google Scholar] [CrossRef]
- Johansen, Ø. Thermal Conductivity of Soils. Ph.D. Thesis, University of Trondheim, Trondheim, Norway, 1975. [Google Scholar]
- Du, Y.; Li, R.; Wu, T.; Yang, C.; Zhao, L.; Hu, G.; Xiao, Y.; Yang, S.; Ni, J.; Ma, J.; et al. A new model for predicting soil thermal conductivity for dry soils. Int. J. Therm. Sci. 2022, 176, 107487. [Google Scholar] [CrossRef]
- Swenson, S.C.; Lawrence, D.M. Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data. J. Geophys. Res. Atmos. 2014, 119, 10299–10312. [Google Scholar] [CrossRef]
- Yuan, L.; Zhao, L.; Li, R.; Hu, G.; Du, E.; Qiao, Y.; Ma, L. Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai-Tibet plateau. Sci. Total Environ. 2020, 712, 136392. [Google Scholar] [CrossRef]
- Chen, J.; Wen, J.; Tian, H.; Zhang, T.; Yang, X.; Jia, D.; Lai, X. A Study of Soil Thermal and Hydraulic Properties and Parameterizations for CLM in the SRYR. J. Geophys. Res. Atmos. 2018, 123, 8487–8499. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Xin, Q.; Wei, N.; Zhang, Y.; Shangguan, W.; Yuan, H.; Zhang, S.; Liu, S.; Lu, X. A Global High-Resolution Data Set of Soil Hydraulic and Thermal Properties for Land Surface Modeling. J. Adv. Model. Earth Syst. 2019, 11, 2996–3023. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Hu, G.; Wu, X.; Wu, T.; Li, R.; Pang, Q.; Zou, D.; Du, E.; Zhu, X. Dynamics and characteristics of soil temperature and moisture of active layer in the central Tibetan Plateau. Geoderma 2021, 400, 115083. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, L.; Zhu, X.; Wu, X.; Wu, T.; Li, R.; Xie, C.; Hao, J. Review of algorithms and parameterizations to determine unfrozen water content in frozen soil. Geoderma 2020, 368, 114277. [Google Scholar] [CrossRef]
- Lu, J.; Pei, W.; Zhang, X.; Bi, J.; Zhao, T. Evaluation of calculation models for the unfrozen water content of freezing soils. J. Hydrol. 2019, 575, 976–985. [Google Scholar] [CrossRef]
- Zhang, M.; Pei, W.; Li, S.; Lu, J.; Jin, L. Experimental and numerical analyses of the thermo-mechanical stability of an embankment with shady and sunny slopes in a permafrost region. Appl. Therm. Eng. 2017, 127, 1478–1487. [Google Scholar] [CrossRef]
- Alexeev, V.A.; Nicolsky, D.J.; Romanovsky, V.E.; Lawrence, D.M. An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost. Geophys. Res. Lett. 2007, 34, e2007GL029536. [Google Scholar] [CrossRef] [Green Version]
- Hermoso de Mendoza, I.; Beltrami, H.; MacDougall, A.H.; Mareschal, J.-C. Lower boundary conditions in land surface models—Effects on the permafrost and the carbon pools: A case study with CLM4.5. Geosci. Model Dev. 2020, 13, 1663–1683. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhao, L.; Hu, G.; Qiao, Y.; Du, E.; Zou, D.; Xie, C. Influence of lower boundary conditions on the numerical simulation of permafrost temperature field change. J. Glaciol. Geocryol. 2021, 43, 357–369, (In Chinese with English abstract). [Google Scholar]
- Yang, S.; Li, R.; Wu, T.; Hu, G.; Xiao, Y.; Du, Y.; Zhu, X.; Ni, J.; Ma, J.; Zhang, Y.; et al. Evaluation of reanalysis soil temperature and soil moisture products in permafrost regions on the Qinghai-Tibetan Plateau. Geoderma 2020, 377, 114583. [Google Scholar] [CrossRef]
Site Name | Longitude/°E | Latitude/°N | Altitude/m | Vegetation Type | Coverage /% | Temporal Coverage | Soil Temperature Depth/cm | Soil Moisture Depth/cm |
---|---|---|---|---|---|---|---|---|
Beiluhe * | 92.92 | 34.82 | 4656 | Alpine swamp | 82 | 20 August 2009–20 August 2010 | 5, 30, 50, 60, 90, 120, 150, 180, 220 | 5, 10, 20, 50 |
Tanggula | 91.93 | 33.07 | 5100 | Alpine meadow | 51 | 20 August 2005–20 August 2007 | 5, 10, 20, 50, 70, 90, 105, 140, 175, 210 | 5, 10, 20, 35 |
Depths (cm) | Tanggula Site | Beiluhe Site | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand (%) | Clay (%) | Organic (kg·m−3) | Sand (%) | Clay (%) | Organic (kg·m−3) | |||||||
Default | OBS | Default | OBS | Default | OBS | Default | OBS | Default | OBS | Default | OBS | |
1 | 60 | 85.0 | 19 | 5.0 | 24.8 | 14.4 | 60 | 40.2 | 19 | 5.8 | 65.2 | 38.8 |
4 | 60 | 85.0 | 19 | 5.0 | 16.9 | 14.4 | 60 | 40.2 | 19 | 5.8 | 59.4 | 38.8 |
9 | 60 | 75.0 | 19 | 7.0 | 10.9 | 14.4 | 60 | 40.2 | 19 | 5.8 | 46.7 | 38.8 |
16 | 60 | 70.0 | 19 | 12.0 | 7.0 | 19.3 | 60 | 44.2 | 19 | 5.7 | 43.4 | 20.0 |
26 | 59 | 65.0 | 20 | 13.0 | 4.5 | 16.0 | 59 | 44.2 | 20 | 5.7 | 36.4 | 22.5 |
40 | 58 | 85.0 | 21 | 5.0 | 2.9 | 12.6 | 58 | 44.2 | 21 | 5.7 | 29.3 | 25.2 |
58 | 58 | 85.0 | 21 | 5.0 | 1.9 | 3.3 | 58 | 73.1 | 21 | 7.5 | 23.2 | – |
80 | 58 | 85.0 | 20 | 5.0 | 1.2 | 2.9 | 58 | 73.1 | 20 | 7.5 | 18.2 | – |
105 | 61 | 95.0 | 18 | 2.0 | 0.0 | 2.9 | 61 | 73.1 | 18 | 7.5 | 0.0 | – |
>136 | 53 | 95.0 | 24 | 2.0 | 0.0 | 2.9 | 53 | 73.1 | 24 | 7.5 | 0.0 | – |
Experiments | Soil Properties | Thermal Roughness Length | Freeze–Thaw Process |
---|---|---|---|
CTL | Default | Default | Default |
EXP1 | Observation | Default | Default |
EXP2 | Observation | Y08 | Default |
EXP3 | Observation | Y08 | Y18 |
Depth/cm | Experiments | Tanggula | Beiluhe | ||||
---|---|---|---|---|---|---|---|
RMSE/°C | R | MBE/°C | RMSE/°C | R | MBE/°C | ||
5 | CTL | 1.91 | 0.99 | 0.40 | 1.35 | 0.99 | 0.72 |
EXP1 | 1.76 | 0.99 | 0.12 | 1.41 | 0.99 | 0.75 | |
EXP2 | 1.64 | 0.99 | −0.14 | 1.30 | 0.99 | 0.60 | |
EXP3 | 1.72 | 0.99 | −0.36 | 1.35 | 0.99 | 0.59 | |
10 | CTL | 1.85 | 0.99 | 0.41 | 1.15 | 0.99 | 0.65 |
EXP1 | 1.67 | 0.99 | 0.13 | 1.23 | 0.99 | 0.70 | |
EXP2 | 1.55 | 0.99 | −0.13 | 1.12 | 0.99 | 0.54 | |
EXP3 | 1.63 | 0.99 | −0.34 | 1.18 | 0.99 | 0.54 | |
20 | CTL | 1.86 | 0.99 | 0.14 | 1.05 | 0.99 | 0.70 |
EXP1 | 1.68 | 0.99 | −0.16 | 1.13 | 0.99 | 0.75 | |
EXP2 | 1.61 | 0.99 | −0.40 | 1.01 | 0.99 | 0.61 | |
EXP3 | 1.72 | 0.99 | −0.60 | 1.06 | 0.99 | 0.61 | |
40 | CTL | 2.01 | 0.99 | −0.08 | 1.15 | 0.99 | 0.86 |
EXP1 | 1.83 | 0.99 | −0.37 | 1.24 | 0.99 | 0.90 | |
EXP2 | 1.79 | 0.99 | −0.59 | 1.06 | 0.99 | 0.76 | |
EXP3 | 1.91 | 0.99 | −0.79 | 1.14 | 0.99 | 0.76 | |
80 | CTL | 1.65 | 0.98 | −0.39 | 1.52 | 0.99 | 1.11 |
EXP1 | 1.66 | 0.98 | −0.63 | 1.61 | 0.99 | 1.15 | |
EXP2 | 1.68 | 0.98 | −0.84 | 1.43 | 0.99 | 1.04 | |
EXP3 | 1.80 | 0.98 | −1.03 | 1.55 | 0.99 | 1.03 | |
210 | CTL | 2.74 | 0.90 | −1.15 | 1.98 | 0.93 | 1.25 |
EXP1 | 2.82 | 0.88 | −1.33 | 2.07 | 0.92 | 1.24 | |
EXP2 | 2.84 | 0.89 | −1.49 | 1.96 | 0.92 | 1.17 | |
EXP3 | 3.00 | 0.89 | −1.65 | 2.01 | 0.92 | 1.13 |
Depth/cm | Experiments | Tanggula | Beiluhe | ||||
---|---|---|---|---|---|---|---|
RMSE/m3·m−3 | R | MBE/m3·m−3 | RMSE/m3·m−3 | R | MBE/m3·m−3 | ||
5 | CTL | 0.107 | 0.89 | 0.08 | 0.087 | 0.92 | 0.07 |
EXP1 | 0.070 | 0.88 | 0.02 | 0.076 | 0.93 | 0.05 | |
EXP2 | 0.070 | 0.88 | 0.02 | 0.079 | 0.91 | 0.05 | |
EXP3 | 0.070 | 0.87 | 0.02 | 0.081 | 0.92 | 0.06 | |
10 | CTL | 0.036 | 0.91 | −0.01 | 0.069 | 0.92 | −0.01 |
EXP1 | 0.051 | 0.89 | −0.03 | 0.077 | 0.92 | −0.04 | |
EXP2 | 0.050 | 0.89 | −0.02 | 0.076 | 0.92 | −0.04 | |
EXP3 | 0.044 | 0.90 | −0.02 | 0.076 | 0.92 | −0.04 | |
20 | CTL | 0.075 | 0.89 | −0.07 | 0.114 | 0.94 | −0.06 |
EXP1 | 0.093 | 0.87 | −0.09 | 0.118 | 0.95 | −0.08 | |
EXP2 | 0.093 | 0.87 | −0.09 | 0.117 | 0.95 | −0.08 | |
EXP3 | 0.089 | 0.90 | −0.08 | 0.118 | 0.95 | −0.07 | |
40 | CTL | 0.058 | 0.89 | −0.04 | 0.137 | 0.90 | −0.07 |
EXP1 | 0.075 | 0.90 | −0.06 | 0.135 | 0.91 | −0.08 | |
EXP2 | 0.075 | 0.90 | −0.06 | 0.134 | 0.92 | −0.08 | |
EXP3 | 0.073 | 0.91 | −0.06 | 0.134 | 0.91 | −0.08 |
Period | Experiment | Tanggula Site | Beiluhe Site | ||||
---|---|---|---|---|---|---|---|
RMSE /W·m−1·K−1 | R | MBE /W·m−1·K−1 | RMSE /W·m−1·K−1 | R | MBE /W·m−1·K−1 | ||
Freezing | CTL | 1.21 | −0.33 | 1.17 | 1.49 | −0.51 | 1.40 |
EXP1 | 1.48 | −0.40 | 1.46 | 1.92 | −0.53 | 1.85 | |
EXP2 | 1.87 | −0.44 | 1.85 | 2.01 | −0.49 | 1.95 | |
EXP3 | 1.43 | −0.50 | 1.39 | 1.83 | −0.65 | 1.75 | |
Thawing | CTL | 0.49 | 0.05 | 0.43 | 0.45 | 0.28 | −0.32 |
EXP1 | 0.62 | −0.44 | 0.46 | 0.37 | 0.28 | −0.19 | |
EXP2 | 0.70 | −0.46 | 0.50 | 0.37 | 0.29 | −0.18 | |
EXP3 | 0.56 | −0.42 | 0.40 | 0.39 | 0.04 | −0.20 | |
ALL | CTL | 0.93 | −0.35 | 0.81 | 1.06 | −0.41 | 0.47 |
EXP1 | 1.15 | −0.44 | 0.97 | 1.33 | −0.40 | 0.75 | |
EXP2 | 1.43 | −0.45 | 1.2 | 1.39 | −0.40 | 0.8 | |
EXP3 | 1.10 | −0.48 | 0.91 | 1.27 | −0.43 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Li, R.; Zhao, L.; Wu, T.; Wu, X.; Zhang, Y.; Shi, J.; Qiao, Y. Evaluation of the Performance of CLM5.0 in Soil Hydrothermal Dynamics in Permafrost Regions on the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 6228. https://doi.org/10.3390/rs14246228
Yang S, Li R, Zhao L, Wu T, Wu X, Zhang Y, Shi J, Qiao Y. Evaluation of the Performance of CLM5.0 in Soil Hydrothermal Dynamics in Permafrost Regions on the Qinghai–Tibet Plateau. Remote Sensing. 2022; 14(24):6228. https://doi.org/10.3390/rs14246228
Chicago/Turabian StyleYang, Shuhua, Ren Li, Lin Zhao, Tonghua Wu, Xiaodong Wu, Yuxin Zhang, Jianzong Shi, and Yongping Qiao. 2022. "Evaluation of the Performance of CLM5.0 in Soil Hydrothermal Dynamics in Permafrost Regions on the Qinghai–Tibet Plateau" Remote Sensing 14, no. 24: 6228. https://doi.org/10.3390/rs14246228
APA StyleYang, S., Li, R., Zhao, L., Wu, T., Wu, X., Zhang, Y., Shi, J., & Qiao, Y. (2022). Evaluation of the Performance of CLM5.0 in Soil Hydrothermal Dynamics in Permafrost Regions on the Qinghai–Tibet Plateau. Remote Sensing, 14(24), 6228. https://doi.org/10.3390/rs14246228