Editorial for the Special Issue “Remote Sensing of the Polar Oceans”
Abstract
:1. Introduction
2. Overview of Contributions
2.1. Sea Ice Cover
2.2. Sea Surface Oceanography
2.3. Icebergs and Glaciers
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marcianesi, F.; Aulicino, G.; Wadhams, P. Arctic sea ice and snow cover albedo variability and trends during the last three decades. Polar Sci. 2021, 28, 100617. [Google Scholar] [CrossRef]
- International Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 11 September 2022).
- Simmonds, I. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol. 2015, 56, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Maksym, T. Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes. Ann. Rev. Mar. Sci. 2019, 11, 187–213. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, C.L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA 2019, 116, 14414–14423. [Google Scholar] [CrossRef] [Green Version]
- Wachter, P.; Reiser, F.; Friedl, P.; Jacobeit, J. A new approach to classification of 40 years of Antarctic sea ice concentration data. Int. J. Climatol. 2021, 41 (Suppl. S1), E2683–E2699. [Google Scholar] [CrossRef]
- Vancoppenolle, M.; Meiners, K.M.; Michel, C.; Bopp, L.; Brabant, F.; Carnat, G.; Delille, B.; Lannuzel, D.; Madec, G.; Moreau, S.; et al. Role of sea ice in global biogeochemical cycles: Emerging views and challenges. Quat. Sci. Rev. 2013, 79, 207–230. [Google Scholar] [CrossRef] [Green Version]
- Wadhams, P.; Aulicino, G.; Parmiggiani, F.; Persson, P.O.G.; Holt, B. Pancake ice thickness mapping in the Beaufort Sea from wave dispersion observed in SAR imagery. J. Geophys. Res. 2018, 123, 2213–2237. [Google Scholar] [CrossRef]
- Massom, R.; Stammerjohn, S. Antarctic sea ice change and variability-physical and ecological implications. Pol. Sci. 2010, 4, 149–186. [Google Scholar] [CrossRef] [Green Version]
- Post, E.; Bhatt, U.S.; Bitz, C.M.; Brodie, J.F.; Fulton, T.L.; Hebblewhite, M.; Kerby, J.; Kutz, S.J.; Stirling, I.; Walker, D.A. Ecological consequences of sea-ice decline. Science 2013, 341, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Wadhams, P. A Farewell to Ice: A Report from the Arctic; Allen Lane, Penguin Books: London, UK, 2016. [Google Scholar]
- Yumashev, D.; van Hussen, K.; Gille, J.; Whiteman, G. Towards a balanced view of Arctic shipping: Estimating economic impacts of emissions from increased traffic on the Northern Sea Route. Clim. Chang. 2017, 143, 143–155. [Google Scholar] [CrossRef]
- Makynen, M.; Haapala, J.; Aulicino, G.; Balan-Sarojini, B.; Balmaseda, M.; Gegiuc, A.; Girard-Ardhuin, F.; Hendricks, S.; Heygster, G.; Istomina, L.; et al. Satellite observations for detecting and forecasting sea-ice conditions: A summary of advances made in the SPICES project by the EU’s Horizon 2020 programme. Rem. Sens. 2020, 12, 1214. [Google Scholar] [CrossRef] [Green Version]
- Meredith, M.; Sommerkorn, M.; Cassotta, S.; Derksen, C.; Ekaykin, A.; Hollowed, A.; Kofinas, G.; Mackintosh, A.; Melbourne-Thomas, J.; Muelbert, M.M.C.; et al. Chapter 3: Polar Regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Tournadre, J.; Bouhier, N.; Girard-Ardhuin, F.; Rémy, F. Antarctic iceberg distributions 1992–2014. J. Geophys. Res. Ocean. 2016, 121, 327–349. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.; Liu, Y.; Liu, J.; Cheng, X.; Lin, Y.; Feng, Q.; Shen, Q.; Yu, Z. A 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observations. Earth Syst. Sci. Data 2021, 13, 4583–4601. [Google Scholar] [CrossRef]
- Aulicino, G.; Wadhams, P.; Parmiggiani, F. SAR pancake ice thickness retrieval in Terra Nova Bay (Antarctica) during the PIPERS Expedition in winter 2017. Remote Sens. 2019, 11, 2510. [Google Scholar] [CrossRef] [Green Version]
- Aulicino, G.; Cotroneo, Y.; de Ruggiero, P.; Buono, A.; Corcione, V.; Nunziata, F.; Fusco, G. Remote Sensing Applications in Satellite Oceanography. In Measurements for the Sea; Daponte, P., Rossi, G.B., Piscopo, V., Eds.; Springer Series in Measurement Science and Technology; Springer: Cham, Switzerland, 2022; pp. 181–209. [Google Scholar]
- Meier, W.N.; Hovelsrud, G.K.; van Oort, B.E.H.; Key, J.R.; Kovacs, K.M.; Michel, C.; Haas, C.; Granskog, M.A.; Gerland, S.; Perovich, D.K.; et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 2014, 51, 185–217. [Google Scholar] [CrossRef]
- Comiso, J.C.; Meier, W.N.; Gersten, R.A. Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res. Ocean. 2017, 122, 6883–6900. [Google Scholar] [CrossRef] [Green Version]
- Kern, S. Spatial Correlation length scales of sea-ice concentration errors for high-concentration pack ice. Remote Sens. 2021, 13, 4421. [Google Scholar] [CrossRef]
- Han, H.; Lee, S.; Kim, H.-C.; Kim, M. Retrieval of summer sea ice concentration in the Pacific Arctic Ocean from AMSR2 observations and numerical weather data using Random Forest Regression. Remote Sens. 2021, 13, 2283. [Google Scholar] [CrossRef]
- Meier, W.N.; Stewart, J.S.; Windnagel, A.; Fetterer, F.M. Comparison of hemispheric and regional sea ice extent and area trends from NOAA and NASA passive microwave-derived climate records. Remote Sens. 2022, 14, 619. [Google Scholar] [CrossRef]
- Mohamed, B.; Nilsen, F.; Skogseth, R. Interannual and decadal variability of sea surface temperature and sea ice concentration in the Barents Sea. Remote Sens. 2022, 14, 4413. [Google Scholar] [CrossRef]
- Qin, Y.; Su, J.; Wang, M. Melt pond retrieval based on the Linear Polar Algorithm Using Landsat data. Remote Sens. 2021, 13, 4674. [Google Scholar] [CrossRef]
- Dinnat, E.; Yin, X. Editorial for the Special Issue “Sea Surface Salinity Remote Sensing”. Remote Sens. 2019, 11, 1300. [Google Scholar] [CrossRef] [Green Version]
- Aulicino, G.; Cotroneo, Y.; Ansorge, I.; van den Berg, M.; Cesarano, C.; Belmonte Rivas, M.; Olmedo, E. Sea surface salinity and temperature in the Southern Atlantic Ocean from South African icebreakers, 2010–2017. Earth Syst. Sci. Data 2018, 10, 1227–1236. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Cuervo, J.; Gentemann, C.; Tang, W.; Carroll, D.; Zhang, H.; Menemenlis, D.; Gomez-Valdes, J.; Bouali, M.; Steele, M. Using Saildrones to validate Arctic sea-surface salinity from the SMAP Satellite and from ocean models. Remote Sens. 2021, 13, 831. [Google Scholar] [CrossRef]
- Umbert, M.; Gabarro, C.; Olmedo, E.; Gonçalves-Araujo, R.; Guimbard, S.; Martinez, J. Using remotely sensed sea surface salinity and coloured detrital matter to characterize freshened surface layers in the Kara and Laptev Seas during the ice-free season. Remote Sens. 2021, 13, 3828. [Google Scholar] [CrossRef]
- Ferreira, A.; Brito, A.C.; Mendes, C.R.B.; Brotas, V.; Costa, R.R.; Guerreiro, C.V.; Sá, C.; Jackson, T. OC4-SO: A new chlorophyll-a algorithm for the Western Antarctic Peninsula using multi-sensor satellite data. Remote Sens. 2022, 14, 1052. [Google Scholar] [CrossRef]
- Lopez-Lopez, L.; Parmiggiani, F.; Moctezuma-Flores, M.; Guerrieri, L. On the detection and long-term path visualisation of A-68 iceberg. Remote Sens. 2021, 13, 460. [Google Scholar] [CrossRef]
- Zahriban Hesari, M.; Buono, A.; Nunziata, F.; Aulicino, G.; Migliaccio, M. Multi-polarisation C-band SAR imagery to estimate recent dynamics of the d’Iberville glacier. Remote Sens. 2022, 14, 5758. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aulicino, G.; Wadhams, P. Editorial for the Special Issue “Remote Sensing of the Polar Oceans”. Remote Sens. 2022, 14, 6195. https://doi.org/10.3390/rs14246195
Aulicino G, Wadhams P. Editorial for the Special Issue “Remote Sensing of the Polar Oceans”. Remote Sensing. 2022; 14(24):6195. https://doi.org/10.3390/rs14246195
Chicago/Turabian StyleAulicino, Giuseppe, and Peter Wadhams. 2022. "Editorial for the Special Issue “Remote Sensing of the Polar Oceans”" Remote Sensing 14, no. 24: 6195. https://doi.org/10.3390/rs14246195
APA StyleAulicino, G., & Wadhams, P. (2022). Editorial for the Special Issue “Remote Sensing of the Polar Oceans”. Remote Sensing, 14(24), 6195. https://doi.org/10.3390/rs14246195