Editorial for the Special Issue “Remote Sensing of the Polar Oceans”
Abstract
1. Introduction
2. Overview of Contributions
2.1. Sea Ice Cover
2.2. Sea Surface Oceanography
2.3. Icebergs and Glaciers
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marcianesi, F.; Aulicino, G.; Wadhams, P. Arctic sea ice and snow cover albedo variability and trends during the last three decades. Polar Sci. 2021, 28, 100617. [Google Scholar] [CrossRef]
- International Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 11 September 2022).
- Simmonds, I. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol. 2015, 56, 18–28. [Google Scholar] [CrossRef]
- Maksym, T. Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes. Ann. Rev. Mar. Sci. 2019, 11, 187–213. [Google Scholar] [CrossRef]
- Parkinson, C.L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA 2019, 116, 14414–14423. [Google Scholar] [CrossRef]
- Wachter, P.; Reiser, F.; Friedl, P.; Jacobeit, J. A new approach to classification of 40 years of Antarctic sea ice concentration data. Int. J. Climatol. 2021, 41 (Suppl. S1), E2683–E2699. [Google Scholar] [CrossRef]
- Vancoppenolle, M.; Meiners, K.M.; Michel, C.; Bopp, L.; Brabant, F.; Carnat, G.; Delille, B.; Lannuzel, D.; Madec, G.; Moreau, S.; et al. Role of sea ice in global biogeochemical cycles: Emerging views and challenges. Quat. Sci. Rev. 2013, 79, 207–230. [Google Scholar] [CrossRef]
- Wadhams, P.; Aulicino, G.; Parmiggiani, F.; Persson, P.O.G.; Holt, B. Pancake ice thickness mapping in the Beaufort Sea from wave dispersion observed in SAR imagery. J. Geophys. Res. 2018, 123, 2213–2237. [Google Scholar] [CrossRef]
- Massom, R.; Stammerjohn, S. Antarctic sea ice change and variability-physical and ecological implications. Pol. Sci. 2010, 4, 149–186. [Google Scholar] [CrossRef]
- Post, E.; Bhatt, U.S.; Bitz, C.M.; Brodie, J.F.; Fulton, T.L.; Hebblewhite, M.; Kerby, J.; Kutz, S.J.; Stirling, I.; Walker, D.A. Ecological consequences of sea-ice decline. Science 2013, 341, 519–524. [Google Scholar] [CrossRef]
- Wadhams, P. A Farewell to Ice: A Report from the Arctic; Allen Lane, Penguin Books: London, UK, 2016. [Google Scholar]
- Yumashev, D.; van Hussen, K.; Gille, J.; Whiteman, G. Towards a balanced view of Arctic shipping: Estimating economic impacts of emissions from increased traffic on the Northern Sea Route. Clim. Chang. 2017, 143, 143–155. [Google Scholar] [CrossRef]
- Makynen, M.; Haapala, J.; Aulicino, G.; Balan-Sarojini, B.; Balmaseda, M.; Gegiuc, A.; Girard-Ardhuin, F.; Hendricks, S.; Heygster, G.; Istomina, L.; et al. Satellite observations for detecting and forecasting sea-ice conditions: A summary of advances made in the SPICES project by the EU’s Horizon 2020 programme. Rem. Sens. 2020, 12, 1214. [Google Scholar] [CrossRef]
- Meredith, M.; Sommerkorn, M.; Cassotta, S.; Derksen, C.; Ekaykin, A.; Hollowed, A.; Kofinas, G.; Mackintosh, A.; Melbourne-Thomas, J.; Muelbert, M.M.C.; et al. Chapter 3: Polar Regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Tournadre, J.; Bouhier, N.; Girard-Ardhuin, F.; Rémy, F. Antarctic iceberg distributions 1992–2014. J. Geophys. Res. Ocean. 2016, 121, 327–349. [Google Scholar] [CrossRef]
- Qi, M.; Liu, Y.; Liu, J.; Cheng, X.; Lin, Y.; Feng, Q.; Shen, Q.; Yu, Z. A 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observations. Earth Syst. Sci. Data 2021, 13, 4583–4601. [Google Scholar] [CrossRef]
- Aulicino, G.; Wadhams, P.; Parmiggiani, F. SAR pancake ice thickness retrieval in Terra Nova Bay (Antarctica) during the PIPERS Expedition in winter 2017. Remote Sens. 2019, 11, 2510. [Google Scholar] [CrossRef]
- Aulicino, G.; Cotroneo, Y.; de Ruggiero, P.; Buono, A.; Corcione, V.; Nunziata, F.; Fusco, G. Remote Sensing Applications in Satellite Oceanography. In Measurements for the Sea; Daponte, P., Rossi, G.B., Piscopo, V., Eds.; Springer Series in Measurement Science and Technology; Springer: Cham, Switzerland, 2022; pp. 181–209. [Google Scholar]
- Meier, W.N.; Hovelsrud, G.K.; van Oort, B.E.H.; Key, J.R.; Kovacs, K.M.; Michel, C.; Haas, C.; Granskog, M.A.; Gerland, S.; Perovich, D.K.; et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 2014, 51, 185–217. [Google Scholar] [CrossRef]
- Comiso, J.C.; Meier, W.N.; Gersten, R.A. Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res. Ocean. 2017, 122, 6883–6900. [Google Scholar] [CrossRef]
- Kern, S. Spatial Correlation length scales of sea-ice concentration errors for high-concentration pack ice. Remote Sens. 2021, 13, 4421. [Google Scholar] [CrossRef]
- Han, H.; Lee, S.; Kim, H.-C.; Kim, M. Retrieval of summer sea ice concentration in the Pacific Arctic Ocean from AMSR2 observations and numerical weather data using Random Forest Regression. Remote Sens. 2021, 13, 2283. [Google Scholar] [CrossRef]
- Meier, W.N.; Stewart, J.S.; Windnagel, A.; Fetterer, F.M. Comparison of hemispheric and regional sea ice extent and area trends from NOAA and NASA passive microwave-derived climate records. Remote Sens. 2022, 14, 619. [Google Scholar] [CrossRef]
- Mohamed, B.; Nilsen, F.; Skogseth, R. Interannual and decadal variability of sea surface temperature and sea ice concentration in the Barents Sea. Remote Sens. 2022, 14, 4413. [Google Scholar] [CrossRef]
- Qin, Y.; Su, J.; Wang, M. Melt pond retrieval based on the Linear Polar Algorithm Using Landsat data. Remote Sens. 2021, 13, 4674. [Google Scholar] [CrossRef]
- Dinnat, E.; Yin, X. Editorial for the Special Issue “Sea Surface Salinity Remote Sensing”. Remote Sens. 2019, 11, 1300. [Google Scholar] [CrossRef]
- Aulicino, G.; Cotroneo, Y.; Ansorge, I.; van den Berg, M.; Cesarano, C.; Belmonte Rivas, M.; Olmedo, E. Sea surface salinity and temperature in the Southern Atlantic Ocean from South African icebreakers, 2010–2017. Earth Syst. Sci. Data 2018, 10, 1227–1236. [Google Scholar] [CrossRef]
- Vazquez-Cuervo, J.; Gentemann, C.; Tang, W.; Carroll, D.; Zhang, H.; Menemenlis, D.; Gomez-Valdes, J.; Bouali, M.; Steele, M. Using Saildrones to validate Arctic sea-surface salinity from the SMAP Satellite and from ocean models. Remote Sens. 2021, 13, 831. [Google Scholar] [CrossRef]
- Umbert, M.; Gabarro, C.; Olmedo, E.; Gonçalves-Araujo, R.; Guimbard, S.; Martinez, J. Using remotely sensed sea surface salinity and coloured detrital matter to characterize freshened surface layers in the Kara and Laptev Seas during the ice-free season. Remote Sens. 2021, 13, 3828. [Google Scholar] [CrossRef]
- Ferreira, A.; Brito, A.C.; Mendes, C.R.B.; Brotas, V.; Costa, R.R.; Guerreiro, C.V.; Sá, C.; Jackson, T. OC4-SO: A new chlorophyll-a algorithm for the Western Antarctic Peninsula using multi-sensor satellite data. Remote Sens. 2022, 14, 1052. [Google Scholar] [CrossRef]
- Lopez-Lopez, L.; Parmiggiani, F.; Moctezuma-Flores, M.; Guerrieri, L. On the detection and long-term path visualisation of A-68 iceberg. Remote Sens. 2021, 13, 460. [Google Scholar] [CrossRef]
- Zahriban Hesari, M.; Buono, A.; Nunziata, F.; Aulicino, G.; Migliaccio, M. Multi-polarisation C-band SAR imagery to estimate recent dynamics of the d’Iberville glacier. Remote Sens. 2022, 14, 5758. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aulicino, G.; Wadhams, P. Editorial for the Special Issue “Remote Sensing of the Polar Oceans”. Remote Sens. 2022, 14, 6195. https://doi.org/10.3390/rs14246195
Aulicino G, Wadhams P. Editorial for the Special Issue “Remote Sensing of the Polar Oceans”. Remote Sensing. 2022; 14(24):6195. https://doi.org/10.3390/rs14246195
Chicago/Turabian StyleAulicino, Giuseppe, and Peter Wadhams. 2022. "Editorial for the Special Issue “Remote Sensing of the Polar Oceans”" Remote Sensing 14, no. 24: 6195. https://doi.org/10.3390/rs14246195
APA StyleAulicino, G., & Wadhams, P. (2022). Editorial for the Special Issue “Remote Sensing of the Polar Oceans”. Remote Sensing, 14(24), 6195. https://doi.org/10.3390/rs14246195