Remote Monitoring of Mediterranean Hurricanes Using Infrasound
Abstract
:1. Introduction
2. Data, Tools and Medicanes Investigated
2.1. Infrasound Data and Processing Tool
2.2. Meteorological Data
2.3. Satellite Data for Convection
2.4. The World Wide Lightning Location Network
2.5. Acoustic Source Model for Microbaroms: The ARROW Dataset
2.6. Medicanes Investigated
3. Results: Infrasound Detections
3.1. Higher Frequency Range: 2–8 Hz
3.2. Low Frequency Detections: 0.1–0.5 Hz
4. Discussion: Propagation Conditions, Wind Noise Effect, Source Identification
4.1. Middle Atmospheric Waveguide and Noise Effect
4.2. Discussion on the Sources Responsible for the Higher Frequency Infrasound
4.3. Discussion on the Detections in the Microbarom Frequency Range
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavicchia, L.; von Storch, H.; Gualdi, S. A long-term climatology of medicanes. Clim. Dyn. 2013, 43, 1183–1195. [Google Scholar] [CrossRef]
- Nastos, P.; Papadimou, K.K.; Matsangouras, I. Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns. Atmospheric Res. 2018, 208, 156–166. [Google Scholar] [CrossRef]
- Zekkos, D.; Zalachoris, G.; Alvertos, A.E.; Amatya, P.M.; Blunts, P.; Clark, M.; Dafis, S.; Farmakis, I.; Ganas, A.; Hille, M.; et al. The September 18-20 2020 Medicane Iaonos Impact on Greece—Phase I Reconnaissance Report. Geotech. Extrem. Events Re-connaiss. Rep. 2020, GEER-068. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Karagiannidis, A.; Dafis, S.; Kalimeris, A.; Kotroni, V. Ianos—A hurricane in the Mediterranean. Bull. Am. Meteorol. Soc. 2021, 1, E1621–E1636. [Google Scholar] [CrossRef]
- Scicchitano, G.; Scardino, G.; Monaco, C.; Piscitelli, A.; Milella, M.; De Giosa, F.; Mastronuzzi, G. Comparing impact effects of common storms and Medicanes along the coast of south-eastern Sicily. Mar. Geol. 2021, 439, 106556. [Google Scholar] [CrossRef]
- Patlakas, P.; Stathopoulos, C.; Tsalis, C.; Kallos, G. Wind and wave extremes associated with tropical-like cyclones in the Mediterranean basin. Int. J. Clim. 2020, 41, E1623–E1644. [Google Scholar] [CrossRef]
- Chaboureau, J.-P.; Pantillon, F.; Lambert, D.; Richard, E.; Claud, C. Tropical transition of a Mediterranean storm by jet crossing. Q. J. R. Meteorol. Soc. 2011, 138, 596–611. [Google Scholar] [CrossRef]
- Dafis, S.; Claud, C.; Kotroni, V.; Lagouvardos, K.; Rysman, J. Insights into the convective evolution of Mediterranean tropical-like cyclones. Q. J. R. Meteorol. Soc. 2020, 146, 4147–4169. [Google Scholar] [CrossRef]
- Romero, R.; Emanuel, K. Medicane risk in a changing climate. J. Geophys. Res. Atmos. 2013, 118, 5992–6001. [Google Scholar] [CrossRef]
- Koseki, S.; Mooney, P.A.; Cabos, W.; Gaertner, M.; de la Vara, A.; González-Alemán, J.J. Modelling a tropical-like cyclone in the Mediterranean Sea under present and warmer climate. Nat. Hazards Earth Syst. Sci. 2021, 21, 53–71. [Google Scholar] [CrossRef]
- González-Alemán, J.J.; Pascale, S.; Gutierrez-Fernandez, J.; Murakami, H.; Gaertner, M.A.; Vecchi, G.A. Potential Increase in Hazard From Mediterranean Hurricane Activity With Global Warming. Geophys. Res. Lett. 2019, 46, 1754–1764. [Google Scholar] [CrossRef]
- Dafis, S.; Rysman, J.; Claud, C.; Flaounas, E. Remote sensing of deep convection within a tropical-like cyclone over the Mediterranean Sea. Atmospheric Sci. Lett. 2018, 19, e823. [Google Scholar] [CrossRef]
- Fita, L.; Romero, R.; Luque, A.; Emanuel, K.; Ramis, C. Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat. Hazards Earth Syst. Sci. 2007, 7, 41–56. [Google Scholar] [CrossRef]
- Cioni, G.; Malguzzi, P.; Buzzi, A. Thermal structure and dynamical precursor of a Mediterranean tropical-like cyclone. Q. J. R. Meteorol. Soc. 2016, 142, 1757–1766. [Google Scholar] [CrossRef]
- Prat, A.C.; Federico, S.; Torcasio, R.C.; D’Adderio, L.P.; Dietrich, S.; Panegrossi, G. Evaluation of the Sensitivity of Medicane Ianos to Model Microphysics and Initial Conditions Using Satellite Measurements. Remote Sens. 2021, 13, 4984. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Cerrai, D.; Laviola, S.; Cattani, E.; Levizzani, V. Potential vorticity patterns in Mediterranean “hurricanes”. Geophys. Res. Lett. 2017, 44, 2537–2545. [Google Scholar] [CrossRef]
- Fita, L.; Flaounas, E. Medicanes as subtropical cyclones: The December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Q. J. R. Meteorol. Soc. 2018, 144, 1028–1044. [Google Scholar] [CrossRef]
- Flaounas, E.; Davolio, S.; Raveh-Rubin, S.; Pantillon, F.; Miglietta, M.M.; Gaertner, M.A.; Hatzaki, M.; Homar, V.; Khodayar, S.; Korres, G.; et al. Mediterranean cyclones: Current knowledge and open questions on dynamics, prediction, climatology and impacts. Weather Clim. Dynam. 2022, 3, 173–208. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Rotunno, R. Development mechanisms for Mediterranean tropical-like cyclones (medicanes). Q. J. R. Meteorol. Soc. 2019, 145, 1444–1460. [Google Scholar] [CrossRef] [Green Version]
- Noyelle, R.; Ulbrich, U.; Becker, N.; Meredith, E.P. Assessing the impact of sea surface temperatures on a simulated medicane using ensemble simulations. Nat. Hazards Earth Syst. Sci. 2019, 19, 941–955. [Google Scholar] [CrossRef]
- Sutherland, L.C.; Bass, H.E. Atmospheric absorption in the atmosphere up to 160 km. J. Acoust. Soc. Am. 2004, 115, 1012–1032. [Google Scholar] [CrossRef]
- Brachet, N.; Brown, D.D.; Le Bras, R.; Cansi, Y.; Mialle, P.; Coyne, J. Monitoring the Earth’s Atmosphere with the Global IMS Infrasound Network. In Infrasound Monitoring for Atmospheric Studies; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 77–118. [Google Scholar] [CrossRef]
- Marty, J. The IMS Infrasound Network: Current Status and Technological Developments. In Infrasound Monitoring for Atmospheric Studies; Springe: Cham, Switzerland, 2018; pp. 3–62. [Google Scholar] [CrossRef]
- Christie, D.R.; Campus, P. The IMS Infrasound Network: Design and Establishment of Infrasound Stations. In Infrasound Monitoring for Atmospheric Studies; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 29–75. [Google Scholar] [CrossRef]
- Cansi, Y. An automatic seismic event processing for detection and location: The P.M.C.C. Method. Geophys. Res. Lett. 1995, 22, 1021–1024. [Google Scholar] [CrossRef]
- Blom, P.; Waxler, R. Modeling the refraction of microbaroms by the winds of a large maritime storm. J. Acoust. Soc. Am. 2017, 142, 3520–3529. [Google Scholar] [CrossRef] [PubMed]
- Sindelarova, T.; Chum, J.; Skripnikova, K.; Base, J. Atmospheric infrasound observed during intense convective storms on 9–10 July 2011. J. Atmospheric Solar-Terrestrial Phys. 2015, 122, 66–74. [Google Scholar] [CrossRef]
- Chunchuzov, I.; Kulichkov, S.; Popov, O.; Perepelkin, V. Infrasound generation by meteorological fronts and its propagation in the atmosphere. J. Atmospheric Sci. 2021, 78, 1673–1686. [Google Scholar] [CrossRef]
- Kouassi, K.B.; Yoroba, F.; Madu, U.O.; Diawara, A.; Kouadio, K.; Yao, P.A. Understanding the Split Characteristics of the Tropical Mesoscale Convective System (MCS) of April 9, 2018, in Northern Ghana Using Infrasound Data. Atmospheric Clim. Sci. 2021, 11, 1. [Google Scholar] [CrossRef]
- Georges, T.M. Infrasound from convective storms. Part II: A critique of source candidates. NOAA Tech. Rep. 1976, 49, 59. [Google Scholar]
- Bedard, A.J. Low-Frequency Atmospheric Acoustic Energy Associated with Vortices Produced by Thunderstorms. Mon. Weather. Rev. 2005, 133, 241–263. [Google Scholar] [CrossRef]
- Elbing, B.R.; Petrin, C.E.; Broeke, M.S.V.D. Measurement and characterization of infrasound from a tornado producing storm. J. Acoust. Soc. Am. 2019, 146, 1528–1540. [Google Scholar] [CrossRef] [Green Version]
- Petrin, C.E.; Elbing, B.R. Infrasound emissions from tornadoes and severe storms compared to potential tornadic generation mechanisms. Proc. Meet. Acoust. Acoust. Soc. Am. 2019, 36, 045005. [Google Scholar] [CrossRef] [Green Version]
- Fernández-González, S.; Wang, P.; Gascón, E.; Valero, F.; Sánchez, J. Latent cooling and microphysics effects in deep convection. Atmospheric Res. 2016, 180, 189–199. [Google Scholar] [CrossRef]
- Passner, J.E.; Noble, J.M. Acoustic energy measured in severe storms during a field study in June 2003. Army Res. Lab. Tech. Rep. 2006, ARL-TR-3749, 34. [Google Scholar]
- Akhalkatsi, M.; Gogoberidze, G. Spectrum of infrasound radiation from supercell storms. Q. J. R. Meteorol. Soc. 2011, 137, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Schecter, D.A. A Method for Diagnosing the Sources of Infrasound in Convective Storm Simulations. J. Appl. Meteorol. Clim. 2011, 50, 2526–2542. [Google Scholar] [CrossRef] [Green Version]
- Schecter, D.A. In search of discernible infrasound emitted by numerically simulated tornadoes. Dyn. Atmos. Oceans 2012, 57, 27–44. [Google Scholar] [CrossRef]
- Farges, T.; Blanc, E. Characteristics of infrasound from lightning and sprites near thunderstorm areas. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Gallin, L.; Farges, T.; Marchiano, R.; Coulouvrat, F.; Defer, E.; Rison, W.; Schulz, W.; Nuret, M. Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array. J. Geophys. Res. Atmos. 2016, 121, 3929–3953. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, A.; Coulouvrat, F.; Marchiano, R.; Farges, T.; Ripoll, J. Acoustical Energy of Return Strokes: A Comparison Between a Statistical Model and Measurements. Geophys. Res. Lett. 2019, 46, 11479–11489. [Google Scholar] [CrossRef]
- Farges, T.; Hupe, P.; Le Pichon, A.; Ceranna, L.; Listowski, C.; Diawara, A. Infrasound Thunder Detections across 15 Years over Ivory Coast: Localization, Propagation, and Link with the Stratospheric Semi-Annual Oscillation. Atmosphere 2021, 12, 1188. [Google Scholar] [CrossRef]
- Marra, A.C.; Federico, S.; Montopoli, M.; Avolio, E.; Baldini, L.; Casella, D.; D’Adderio, L.P.; Dietrich, S.; Sanò, P.; Torcasio, R.C.; et al. The Precipitation Structure of the Mediterranean Tropical-Like Cyclone Numa: Analysis of GPM Observations and Numerical Weather Prediction Model Simulations. Remote Sens. 2019, 11, 1690. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, M.M.; Laviola, S.; Malvaldi, A.; Conte, D.; Levizzani, V.; Price, C. Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modeling and satellite approach. Geophys. Res. Lett. 2013, 40, 2400–2405. [Google Scholar] [CrossRef]
- Orbaek, J.B.; Naustvik, M. Infrasonic signatures of a Polar Low in the Norwegian and Barents Sea on 23-27 March 1992. Tellus A Dyn. Meteorol. Oceanogr. 1995, 47, 921–940. [Google Scholar] [CrossRef]
- Claud, C.; Dalaudier, F.; Kero, J.; Le Pichon, A.; Hauchecorne, A.; Rojo, M.; Blanc, E.; Liszka, L. Exploring the signature of polar lows in infrasound: The 19–20 November 2008 cases. Tellus A: Dyn. Meteorol. Oceanogr. 2017, 69, 1338885. [Google Scholar] [CrossRef] [Green Version]
- Davy, C.; Barruol, G.; Fontaine, F.R.; Sigloch, K.; Stutzmann, E. Tracking major storms from microseismic and hydroacoustic observations on the seafloor. Geophys. Res. Lett. 2014, 41, 8825–8831. [Google Scholar] [CrossRef] [Green Version]
- Vallianatos, F.; Koutalonis, I.; Chatzopoulos, G. Evidence of Tsallis entropy signature on medicane induced ambient seismic signals. Phys. A Stat. Mech. its Appl. 2019, 520, 35–43. [Google Scholar] [CrossRef]
- Mejri, C. Study of the performance of the infrasound Station IS48TN during the period 2011-2017. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2017; p. 9060. [Google Scholar]
- Vanderbecken, P.J.; Mahfouf, J.-F. Bayesian selection of atmospheric profiles from an ensemble data assimilation system using infrasonic observations of May 2016 Mount Etna eruptions. J. Geophys. Res. Atmos. 2020, 125, e2019JD031168. [Google Scholar] [CrossRef]
- Marchetti, E.; Ripepe, M.; Campus, P.; Le Pichon, A.; Vergoz, J.; Lacanna, G.; Mialle, P.; Héreil, P.; Husson, P. Long range infrasound monitoring of Etna volcano. Sci. Rep. 2019, 9, 18015. [Google Scholar] [CrossRef] [Green Version]
- Le Pichon, A.; Pilger, C.; Ceranna, L.; Marchetti, E.; Lacanna, G.; Souty, V.; Vergoz, J.; Listowski, C.; Hernandez, B.; Mazet-Roux, G.; et al. Using dense seismo-acoustic network to provide timely warning of the 2019 paroxysmal Stromboli eruptions. Sci. Rep. 2021, 11, 14464. [Google Scholar] [CrossRef]
- Pilger, C.; Gaebler, P.; Hupe, P.; Kalia, A.C.; Schneider, F.M.; Steinberg, A.; Sudhaus, H.; Ceranna, L. Yield estimation of the 2020 Beirut explosion using open access waveform and remote sensing data. Sci. Rep. 2021, 11, 14144. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Sobrino, J.; Romaguera, M. Land surface temperature retrieval from MSG1-SEVIRI data. Remote Sens. Environ. 2004, 92, 247–254. [Google Scholar] [CrossRef]
- Olander, T.L.; Velden, C.S. Tropical Cyclone Convection and Intensity Analysis Using Differenced Infrared and Water Vapor Imagery. Weather Forecast. 2009, 24, 1558–1572. [Google Scholar] [CrossRef] [Green Version]
- Schmetz, J.; Tjemkes, S.; Gube, M.; van de Berg, L. Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res. 1997, 19, 433–441. [Google Scholar] [CrossRef]
- Setvák, M.; Rabin, R.M.; Wang, P.K. Contribution of the MODIS instrument to observations of deep convective storms and stratospheric moisture detection in GOES and MSG imagery. Atmos. Res. 2007, 83, 505–518. [Google Scholar] [CrossRef]
- Bedka, K.; Brunner, J.; Dworak, R.; Feltz, W.; Otkin, J.; Greenwald, T. Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients. J. Appl. Meteorol. Clim. 2010, 49, 181–202. [Google Scholar] [CrossRef]
- Dowden, R.L.; Brundell, J.B.; Rodger, C.J. VLF lightning location by time of group arrival (TOGA) at multiple sites. J. Atmospheric Solar-Terrestrial Phys. 2002, 64, 817–830. [Google Scholar] [CrossRef]
- Stevenson, S.N.; Corbosiero, K.L.; Abarca, S.F. Lightning in Eastern North Pacific Tropical Cyclones: A Comparison to the North Atlantic. Mon. Weather Rev. 2015, 144, 225–239. [Google Scholar] [CrossRef]
- Stevenson, S.N.; Corbosiero, K.L.; DeMaria, M.; Vigh, J. A 10-Year Survey of Tropical Cyclone Inner-Core Lightning Bursts and Their Relationship to Intensity Change. Weather Forecast. 2017, 33, 23–36. [Google Scholar] [CrossRef]
- Lin, S.-J.; Chou, K.-H. The Lightning Distribution of Tropical Cyclones over the Western North Pacific. Mon. Weather Rev. 2020, 148, 4415–4434. [Google Scholar] [CrossRef]
- Rudlosky, S.D.; Shea, D.T. Evaluating WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett. 2013, 40, 2344–2348. [Google Scholar] [CrossRef]
- Bürgesser, R.E. Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS). Q. J. R. Meteorol. Soc. 2017, 143, 2809–2817. [Google Scholar] [CrossRef]
- De Carlo, M.; Ardhuin, F.; Le Pichon, A. Atmospheric infrasound generation by ocean waves in finite depth: Unified theory and application to radiation patterns. Geophys. J. Int. 2020, 221, 569–585. [Google Scholar] [CrossRef]
- De Carlo, M.; Hupe, P.; Le Pichon, A.; Ceranna, L.; Ardhuin, F. Global Microbarom Patterns: A First Confirmation of the Theory for Source and Propagation. Geophys. Res. Lett. 2021, 48, e2020GL090163. [Google Scholar] [CrossRef]
- Waxler, R.; Gilbert, K.; Talmadge, C.; Hetzer, C. The effect of the finite depth of the ocean on microbarom signals. In Proceedings of the 8th International Conference on Theoretical and Computational Acoustics (ICTCA), Crete, Greece, 2–6 July 2007. [Google Scholar]
- Vorobeva, E.; De Carlo, M.; Le Pichon, A.; Espy, P.J.; Näsholm, S.P. Benchmarking microbarom radiation and propagation model against infrasound recordings: A vespagram-based approach. Ann. Geophys. 2021, 39, 515–531. [Google Scholar] [CrossRef]
- Šindelářová, T.; De Carlo, M.; Czanik, C.; Ghica, D.; Kozubek, M.; Podolská, K.; Baše, J.; Chum, J.; Mitterbauer, U. Infrasound signature of the post-tropical storm Ophelia at the Central and Eastern European Infrasound Network. J. Atmospheric Solar-Terrestrial Phys. 2021, 217, 105603. [Google Scholar] [CrossRef]
- De Carlo, M.; Accensi, M.; Ardhuin, F.; Le Pichon, A. ARROW (AtmospheRic InfRasound by Ocean Waves): A new real-time product for global ambient noise monitoring. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- Mickael, A. GLOBMULTI_ERA5_GLOBCUR_01. Available online: https://doi.org/10.12770/857a3337-f59a-481a-bf98-5561e8b61e7b (accessed on 28 November 2022).
- Alday, M.; Accensi, M.; Ardhuin, F.; Dodet, G. A global wave parameter database for geophysical applications. Part 3: Improved forcing and spectral resolution. Ocean Model. 2021, 166, 101848. [Google Scholar] [CrossRef]
- Loli, M.; Kefalas, G.; Dafis, S.; Mitoulis, S.A.; Schmidt, F. Bridge-specific flood risk assessment of transport networks using GIS and remotely sensed data. Sci. Total Environ. 2022, 850, 157976. [Google Scholar] [CrossRef]
- Global Volcanism Program. 2020. Report on Etna (Italy). Available online: https://volcano.si.edu/showreport.cfm?wvar=GVP.WVAR20200916-211060 (accessed on 28 November 2022).
- Ceranna, L.; Le Pichon, A.; Green, D.N.; Mialle, P. The Buncefield explosion: A benchmark for infrasound analysis across Central Europe. Geophys. J. Int. 2009, 177, 491–508. [Google Scholar] [CrossRef]
- Drob, D.P.; Garcés, M.; Hedlin, M.; Brachet, N. The Temporal Morphology of Infrasound Propagation. Pure Appl. Geophys. 2010, 167, 437–453. [Google Scholar] [CrossRef]
- Lacroix, A.; Farges, T.; Marchiano, R.; Coulouvrat, F. Acoustical Measurement of Natural Lightning Flashes: Reconstructions and Statistical Analysis of Energy Spectra. J. Geophys. Res. Atmos. 2018, 123, 12040–12065. [Google Scholar] [CrossRef]
- Pasko, V.P. Mechanism of lightning-associated infrasonic pulses from thunderclouds. J. Geophys. Res. Earth Surf. 2009, 114, D08205. [Google Scholar] [CrossRef] [Green Version]
- Le Pichon, A.; Assink, J.D.; Heinrich, P.; Blanc, E.; Charlton-Perez, A.; Lee, C.F.; Keckhut, P.; Hauchecorne, A.; Rüfenacht, R.; Kämpfer, N.; et al. Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. J. Geophys. Res. Atmos. 2015, 120, 8318–8331. [Google Scholar] [CrossRef] [Green Version]
- Vallage, A.; Bollinger, L.; Champenois, J.; Duverger, C.; Trilla, A.G.; Hernandez, B.; Le Pichon, A.; Listowski, C.; Mazet-Roux, G.; Menager, M.; et al. Multitechnology characterization of an unusual surface rupturing intraplate earthquake: The ML 5.4 2019 Le Teil event in France. Geophys. J. Int. 2021, 226, 803–813. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Bansemer, A.; Heymsfield, G.; Fierro, A.O. Microphysics of Maritime Tropical Convective Updrafts at Temperatures from −20° to −60°. J. Atmos. Sci. 2009, 66, 3530–3562. Available online: https://journals.ametsoc.org/view/journals/atsc/66/12/2009jas3107.1 (accessed on 1 September 2022). [CrossRef] [Green Version]
- Ribaud, J.-F.; Bousquet, O.; Coquillat, S. Relationships between total lightning activity, microphysics andkinematics during the 24 September 2012 HyMeX bow-echo system. Q. J. R. Meteorol. Soc. 2016, 142 (Suppl. 1), 298–309. [Google Scholar] [CrossRef] [Green Version]
- Ulivieri, G.; Ripepe, M.; Marchetti, E. Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning. Geophys. Res. Lett. 2013, 40, 3008–3013. [Google Scholar] [CrossRef]
- Ripepe, M.; Marchetti, E.; Delle Donne, D.; Genco, R.; Innocenti, L.; Lacanna, G.; Valade, S. Infrasonic Early Warning System for Explosive Eruptions. J. Geophys. Res. Solid Earth 2018, 123, 9570–9585. [Google Scholar] [CrossRef]
- Christian, H.J.; Blakeslee, R.; Boccippio, D.J.; Boeck, W.L.; Buechler, D.E.; Driscoll, K.T.; Goodman, S.J.; Hall, J.M.; Koshak, W.J.; Mach, D.M.; et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos. 2003, 108, ACL 4-1–ACL 4-15. [Google Scholar] [CrossRef]
- DeMaria, M.; DeMaria, R.T.; Knaff, J.; Molenar, D. Tropical Cyclone Lightning and Rapid Intensity Change. Mon. Weather Rev. 2012, 140, 1828–1842. [Google Scholar] [CrossRef]
- Blom, P.S.; Marcillo, O.; Arrowsmith, S.J. Improved Bayesian Infrasonic Source Localization for regional infrasound. Geophys. J. Int. 2015, 203, 1682–1693. [Google Scholar] [CrossRef] [Green Version]
- Assink, J.D.; Le Pichon, A.; Blanc, E.; Kallel, M.; Khemiri, L. Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound. J. Geophys. Res. Atmos. 2014, 119, 8659–8683. [Google Scholar] [CrossRef]
- Le Pichon, A.; Ceranna, L.; Vergoz, J. Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- Bedard, A.J.; Jones, R.M. Infrasonic ray tracing applied to mesoscale atmospheric structures: Refraction by hurricanes. J. Acoust. Soc. Am. 2013, 134, 3446–3451. [Google Scholar] [CrossRef] [PubMed]
- Hetzer, C.H.; Waxler, R.; Gilbert, K.E.; Talmadge, C.L.; Bass, H.E. Infrasound from hurricanes: Dependence on the ambient ocean surface wave field. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Stopa, J.E.; Cheung, K.F.; Garcés, M.A.; Badger, N. Atmospheric infrasound from nonlinear wave interactions during Hurricanes Felicia and Neki of 2009. J. Geophys. Res. Earth Surf. 2012, 117, 12017. [Google Scholar] [CrossRef]
- 94. Poste, B.; Charbit, M.; le Pichon, A.; Listowski, C.; Roueff, F.; Vergoz, J. The multichannel maximum-likelihood (MCML) method: A new approach for infrasound detection and wave parameter estimation. Geophys. J. Int. 2023, 232, 1099–1112. [Google Scholar] [CrossRef]
- Ouden, O.F.C.D.; Assink, J.; Smets, P.S.M.; Shani-Kadmiel, S.; Averbuch, G.; Evers, L.G. CLEAN beamforming for the enhanced detection of multiple infrasonic sources. Geophys. J. Int. 2020, 221, 305–317. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Listowski, C.; Forestier, E.; Dafis, S.; Farges, T.; De Carlo, M.; Grimaldi, F.; Le Pichon, A.; Vergoz, J.; Heinrich, P.; Claud, C. Remote Monitoring of Mediterranean Hurricanes Using Infrasound. Remote Sens. 2022, 14, 6162. https://doi.org/10.3390/rs14236162
Listowski C, Forestier E, Dafis S, Farges T, De Carlo M, Grimaldi F, Le Pichon A, Vergoz J, Heinrich P, Claud C. Remote Monitoring of Mediterranean Hurricanes Using Infrasound. Remote Sensing. 2022; 14(23):6162. https://doi.org/10.3390/rs14236162
Chicago/Turabian StyleListowski, Constantino, Edouard Forestier, Stavros Dafis, Thomas Farges, Marine De Carlo, Florian Grimaldi, Alexis Le Pichon, Julien Vergoz, Philippe Heinrich, and Chantal Claud. 2022. "Remote Monitoring of Mediterranean Hurricanes Using Infrasound" Remote Sensing 14, no. 23: 6162. https://doi.org/10.3390/rs14236162