Reconstruction of High-Resolution Sea Surface Salinity over 2003–2020 in the South China Sea Using the Machine Learning Algorithm LightGBM Model
Abstract
:1. Introduction
2. Data
2.1. Observational Salinity Data
2.2. Remote Sensing Data
2.3. Comparison of Datasets
3. Methods
3.1. The LightGBM Algorithm
3.2. Parameter Optimization
3.3. Evaluation Metrics
4. Results of the Reconstruction
5. Discussion
5.1. Validation and Uncertainty
5.1.1. Comparison with the Underway Observational Data OB_A
5.1.2. Comparison with the Station-Based Observational Data
5.1.3. Comparison with the Underway Data from SOCAT and OB_B
5.1.4. Advantages and Disadvantages of Our Method Compared with Existing Methods
5.2. Application of the Reconstructed SSS Field in the SCS
5.2.1. The Pearl River Plume Index
5.2.2. The Sea Surface High Salinity Index
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holliday, N.; Hughes, S.; Shammon, T.; Sherwin, T. Scientific review-ocean salinity. In Marine Climate Change Impacts Annual Report Card 2008; MCCIP: Lowestoft, UK, 2008. [Google Scholar]
- Schmitt, R.W. Salinity and the global water cycle. Oceanography 2008, 21, 12–19. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Shi, J. Relationship between sea surface salinity and ocean circulation and climate change. Sci. China Earth Sci. 2019, 62, 771–782. [Google Scholar] [CrossRef]
- Wang, G.; Xie, S.P.; Qu, T.; Huang, R.X. Deep South China Sea circulation. Geophys. Res. Lett. 2011, 38, L05601. [Google Scholar] [CrossRef] [Green Version]
- Droghei, R.; Nardelli, B.B.; Santoleri, R. Combining in situ and satellite observations to retrieve salinity and density at the ocean surface. J. Atmos. Ocean. Technol. 2016, 33, 1211–1223. [Google Scholar] [CrossRef]
- Li, Q.; Guo, X.; Zhai, W.; Xu, Y.; Dai, M. Partial pressure of CO2 and air-sea CO2 fluxes in the South China Sea: Synthesis of an 18-year dataset. Prog. Oceanogr. 2020, 182, 1022–1043. [Google Scholar] [CrossRef]
- Umbert, M.; Hoareau, N.; Turiel, A.; Ballabrera-Poy, J. New blending algorithm to synergize ocean variables: The case of SMOS sea surface salinity maps. Remote Sens. Environ. 2014, 146, 172–187. [Google Scholar] [CrossRef]
- Zhao, J.; Marouane, T.; Hosni, G. Remotely sensed sea surface salinity in the hyper-saline Arabian Gulf: Application to landsat 8 OLI data. Estuarine. Coast. Shelf Sci. 2017, 187, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Zhao, Y.; Wu, Q.-l.; Yang, Y. Review of salinity measurement technology based on optical fiber sensor. Sens. Actuators B: Chem. 2018, 260, 86–105. [Google Scholar] [CrossRef]
- Vinogradova, N.; Lee, T.; Boutin, J.; Drushka, K.; Fournier, S.; Sabia, R.; Stammer, D.; Bayler, E.; Reul, N.; Gordon, A. Satellite salinity observing system: Recent discoveries and the way forward. Front. Mar. Sci. 2019, 6, 243. [Google Scholar] [CrossRef] [Green Version]
- Klein, L.; Swift, C. An improved model for the dielectric constantof Sea water at microwave frequencies. IEEE Transactions. Antennas Propag. AP 1997, 25, 104–111. [Google Scholar] [CrossRef]
- Le Vine, D.M.; Abraham, S.; Wentz, F.; Lagerloef, G.S. Impact of the Sun on remote sensing of sea surface salinity from space. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 29 July 2005. [Google Scholar]
- Le Vine, D.M.; Lagerloef, G.S.; Colomb, F.R.; Yueh, S.H.; Pellerano, F.A. Aquarius: An instrument to monitor sea surface salinity from space. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2040–2050. [Google Scholar] [CrossRef]
- Reul, N.; Tenerelli, J.; Chapron, B.; Waldteufel, P. Modeling sun glitter at L-band for sea surface salinity remote sensing with SMOS. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2073–2087. [Google Scholar] [CrossRef]
- Reul, N.; Tenerelli, J.E.; Floury, N.; Chapron, B. Earth-viewing L-band radiometer sensing of sea surface scattered celestial sky radiation—Part II: Application to SMOS. IEEE Trans. Geosci. Remote Sens. 2008, 46, 675–688. [Google Scholar] [CrossRef]
- Qing, S.; Zhang, J.; Cui, T.; Bao, Y. Retrieval of sea surface salinity with MERIS and MODIS data in the Bohai Sea. Remote Sens. Environ. 2013, 136, 117–125. [Google Scholar] [CrossRef]
- Geiger, E.; Grossi, M.; Trembanis, A.; Kohut, J.; Oliver. Satellite-derived coastal ocean and estuarine salinity in the Mid-Atlantic. Cont. Shelf Res. 2013, 63, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Moussa, H.; Benallal, M.A.; Goyet, C.; Lefèvre, N.; Jai, M.E.; Guglielmi, V.; Touratier, F. A comparison of Multiple Non-linear regression and neural network techniques for sea surface salinity estimation in the tropical Atlantic Ocean based on satellite data. ESAIM: Proc. Surv. 2015, 49, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.; Gabarró, C.; Turiel, A.; González-Gambau, V.; Umbert, M.; Hoareau, N.; González-Haro, C.; Olmedo, E.; Arias, M.; Catany, R.; et al. Improved BEC SMOS Arctic Sea Surface Salinity product v3.1. Earth Syst. Sci. Data 2022, 14, 307–323. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C. Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements. Remote Sens. Environ. 2017, 201, 115–132. [Google Scholar] [CrossRef]
- Mu, Z.; Zhang, W.; Wang, P.; Wang, H.; Yang, X. Assimilation of SMOS sea surface salinity in the regional ocean model for South China Sea. Remote Sens. 2019, 11, 919. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Pan, D.; Cai, W.J.; He, X.; Wang, D.; Tao, B.; Zhu, Q. Remote sensing of salinity from satellite-derived CDOM in the Changjiang River dominated East China Sea. J. Geophys. Res. Ocean. 2013, 118, 227–243. [Google Scholar] [CrossRef]
- Du, C.; Gan, J.; Hui, C.R.; Lu, Z.; Zhao, X.; Roberts, E.; Dai, M. Dynamics of dissolved inorganic carbon in the South China Sea: A modeling study. Prog. Oceanogr. 2020, 186, 102367. [Google Scholar] [CrossRef]
- Lu, Z.; Gan, J.; Dai, M.; Zhao, X.; Hui, C.R. Nutrient transport and dynamics in the South China Sea: A modeling study. Prog. Oceanogr. 2020, 183, 102308. [Google Scholar] [CrossRef]
- Han, A.; Gan, J.; Dai, M.; Lu, Z.; Liang, L.; Zhao, X. Intensification of downslope nutrient transport and associated biological responses over the northeastern South China Sea during wind-driven downwelling: A modeling study. Front. Mar. Sci. 2021, 8, 2296–7745. [Google Scholar] [CrossRef]
- Lu, Y.; Wen, Z.; Shi, D.; Lin, W.; Bonnet, S.; Dai, M.; Kao, S.J. Biogeography of N2 fixation influenced by the western boundary current intrusion in the South China Sea. J. Geophys. Res. Ocean. 2019, 124, 6983–6996. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Dai, M.; Cao, Z.; Wu, K.; Zhao, X.; Li, X.; Chen, J.; Gan, J. Seasonal dynamics of dissolved organic carbon under complex circulation schemes on a large continental shelf: The Northern South China Sea. J. Geophys. Res. Ocean. 2017, 122, 9415–9428. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, M.; Fedorov, A.; Pacanowski, R.; Philander, S.G. Abrupt climate changes: How freshening of the northern Atlantic affects the thermohaline and wind-driven oceanic circulations. Annu. Rev. Earth Planet. Sci. 2008, 36, 35–58. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.; Caruso, D.; Lagerloef, G.; Torrusio, S.; Durham, D.; Falcon, C. Aquarius/SAC-D mission, Sensors, Systems, and Next-Generation Satellites XII. Int. Soc. Opt. Eng. 2008, 5. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Crapolicchio, R.; Ferrazzoli, P.; Meloni, M.; Pinori, S.; Rahmoune, R. Soil Moisture and Ocean Salinity (SMOS) mission: System overview and contribution to vicarious calibration monitoring. Riv. Ital. Telerilevamento 2010, 42, 37–50. [Google Scholar] [CrossRef]
- Melnichenko, O.; Hacker, P.; Maximenko, N.; Lagerloef, G.; Potemra, J. Spatial optimal interpolation of Aquarius sea surface salinity: Algorithms and implementation in the North Atlantic. J. Atmos. Ocean. Technol. 2014, 31, 1583–1600. [Google Scholar] [CrossRef]
- Melnichenko, O.; Hacker, P.; Maximenko, N.; Lagerloef, G.; Potemra, J. Optimum interpolation analysis of Aquarius sea surface salinity. J. Geophys. Res. Ocean 2016, 121, 602–616. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Trenberth, K.E.; Gruber, N.; Abraham, J.P.; Fasullo, J.T.; Li, G.; Mann, M.E.; Zhao, X.; Zhu, J. Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Clim. 2020, 33, 10357–10381. [Google Scholar] [CrossRef]
- Gan, M.; Pan, S.; Chen, Y.; Cheng, C.; Pan, H.; Zhu, X. Application of the Machine Learning LightGBM Model to the Prediction of the Water Levels of the Lower Columbia River. J. Mar. Sci. Eng 2021, 9, 496. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. In Encyclopedia of Database Systems; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5, pp. 532–538. [Google Scholar]
- Qi, J.; Liu, C.; Chi, J.; Li, D.; Gao, L.; Yin, B. An Ensemble-Based Machine Learning Model for Estimation of Subsurface Thermal Structure in the South China Sea. Remote Sens. 2022, 14, 3207. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, D.; Chen, J.; Wang, W.; Chen, R. SCSPOD14, A South China Sea physical oceanographic dataset derived from in situ measurements during 1919–2014. Sci. Data 2016, 3, 160029. [Google Scholar] [CrossRef] [Green Version]
- Tarya, A.; Hoitink, A.; Van der Vegt, M.; van Katwijk, M.; Hoeksema, B.; Bouma, T.; Lamers, L.; Christianen, M. Exposure of coastal ecosystems to river plume spreading across a near-equatorial continental shelf. Cont. Shelf Res. 2018, 153, 1–15. [Google Scholar] [CrossRef]
- Tian, J.; Wang, P.; Cheng, X. Development of the East Asian monsoon and Northern Hemisphere glaciation: Oxygen isotope records from the South China Sea. Quat. Sci. Rev. 2004, 23, 2007–2016. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Q.; Huh, C.A.; Dai, M.; Miao, Y.C. Signature of the Mekong River plume in the western South China Sea revealed by radium isotopes. J. Geophys. Res. Ocean 2010, 115, 1023–1025. [Google Scholar] [CrossRef] [Green Version]
- Gan, J.; Wang, J.; Liang, L.; Li, L.; Guo, X. A modeling study of the formation, maintenance, and relaxation of upwelling circulation on the Northeastern South China Sea shelf. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 117, 41–52. [Google Scholar] [CrossRef]
- Yang, W.; Guo, X.; Cao, Z.; Wang, L.; Guo, L.; Huang, T.; Li, Y.; Xu, Y.; Gan, J.; Dai, M. Seasonal dynamics of the carbonate system under complex circulation schemes on a large continental shelf: The northern South China Sea. Prog. Oceanogr. 2021, 197, 1026–1045. [Google Scholar] [CrossRef]
- Wu, H.; Deng, B.; Yuan, R.; Hu, J.; Gu, J.; Shen, F.; Zhu, J.; Zhang, J. Detiding measurement on transport of the Changjiang-derived buoyant coastal current. J. Phys. Oceanogr. 2013, 43, 2388–2399. [Google Scholar] [CrossRef]
- Kuo, N.; Zheng, Q.; Ho, C. Response of Vietnam coastal upwelling to the 1997–1998 ENSO event observed by multi-sensor data. Remote Sens. Environ. 2004, 89, 106–115. [Google Scholar] [CrossRef]
- Steinke, S.; Chiu, H.-Y.; Yu, P.-S.; Shen, C.-C.; Erlenkeuser, H.; Löwemark, L.; Chen, M.-T. On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22,000 years. Quat. Sci. Rev. 2006, 25, 1475–1488. [Google Scholar] [CrossRef]
- Zeng, X.; Bracco, A.; Tagklis, F. Dynamical impact of the Mekong River plume in the South China Sea. J. Geophys. Res. Ocean. 2022, 127, 1029–1044. [Google Scholar] [CrossRef]
- Lin, P.; Cheng, P.; Gan, J.; Hu, J. Dynamics of wind-driven upwelling off the northeastern coast of Hainan Island. J. Geophys. Res. Ocean 2016, 121, 1160–1173. [Google Scholar] [CrossRef]
- Lin, P.; Hu, J.; Zheng, Q.; Sun, Z.; Zhu, J. Observation of summertime upwelling off the eastern and northeastern coasts of Hainan Island. China. Ocean Dynam 2016, 66, 387–399. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Du, C.; Liu, Z.; Dai, M.; Kao, S.-J.; Cao, Z.; Zhang, Y.; Huang, T.; Wang, L.; Li, Y. Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: Insights from an isopycnal mixing model. Biogeosciences 2013, 10, 6419–6432. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Farmer, D. Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter. J. Geophys. Res. Ocean 2013, 118, 7081–7094. [Google Scholar] [CrossRef]
- Wu, C. Interannual modulation of the pacific decadal oscillation (PDO) on the low-latitude western north pacific. Prog. Oceanogr. 2013, 110, 49–58. [Google Scholar] [CrossRef]
Season | Cruise Time | Data Source | ||
---|---|---|---|---|
Spring | March | April | May | Li et al. (2020) [6] * This study |
2004.03 | 2005.04 | 2004.05 | ||
2008.04 | 2011.05 | |||
2009.04 | 2014.05 | |||
2012.04 | 2020.05 * | |||
2020.04 * | ||||
Summer | June | July | August | |
2006.06 * | 2004.07 | 2007.08 | ||
2016.06 | 2005.07 * | 2008.08 | ||
2017.06 * | 2007.07 | 2019.08 * | ||
2019.06 * | 2008.07 | |||
2020.06 * | 2009.07 | |||
2012.07 | ||||
2015.07 * | ||||
2019.07 * | ||||
Fall | September | October | November | |
2004.09 | 2003.10 | 2006.11 | ||
2007.09 | 2006.10 | 2010.11 | ||
2008.09 | ||||
2020.09 * | ||||
Winter | December | January | February | |
2006.12 | 2009.01 | 2004.02 | ||
2010.01 | 2006.02 | |||
2018.01 |
Season | RMSE_Train | RMSE_Test | R2_Train | R2_Test | MAPE_Train (%) | MAPE_Test (%) |
---|---|---|---|---|---|---|
Spring | 0.20 | 0.21 | 0.89 | 0.82 | 0.49 | 0.51 |
Summer | 0.45 | 0.69 | 0.94 | 0.87 | 0.93 | 1.13 |
Fall | 0.23 | 0.26 | 0.90 | 0.75 | 0.59 | 0.66 |
Winter | 0.18 | 0.58 | 0.97 | 0.81 | 0.42 | 1.06 |
This Reconstruction | OISSS | IAPOS | MUL | |||
---|---|---|---|---|---|---|
Spring | Underway OB_A data | MAE | 0.20 | 0.21 | 0.24 | 0.34 |
RMSE | 0.36 | 0.24 | 0.32 | 0.41 | ||
Station-based Data in 2011.05 | MAE | 0.20 | NAN | 1.85 | 0.37 | |
RMSE | 0.27 | NAN | 1.89 | 0.42 | ||
Summer | Underway OB_A data | MAE | 0.34 | 0.72 | 0.91 | 0.94 |
RMSE | 0.66 | 0.75 | 0.95 | 1.06 | ||
Station-based Data in 2009.07 | MAE | 0.62 | NAN | 2.77 | 0.94 | |
RMSE | 0.80 | NAN | 2.89 | 1.26 | ||
Station-based Data in 2012.07 | MAE | 0.59 | 1.15 | 3.39 | 1.25 | |
RMSE | 0.78 | 1.54 | 3.57 | 1.76 | ||
Station-based Data in 2015.07 | MAE | 0.84 | 1.35 | 3.61 | 1.67 | |
RMSE | 0.91 | 1.68 | 3.78 | 1.91 | ||
Fall | Underway OB_A data | MAE | 0.20 | NAN | 0.46 | 0.38 |
RMSE | 0.23 | NAN | 0.52 | 0.44 | ||
Station-based Data in 2010.11 | MAE | 0.34 | NAN | 2.52 | 0.65 | |
RMSE | 0.51 | NAN | 2.58 | 0.85 | ||
Winter | Underway OB_A data | MAE | 0.15 | 0.21 | 0.44 | 0.43 |
RMSE | 0.25 | 0.33 | 0.53 | 0.48 | ||
Station-based Data in 2009.01 | MAE | 0.57 | NAN | 2.92 | 1.21 | |
RMSE | 0.75 | NAN | 3.86 | 2.36 | ||
Station-based Data in 2012.01 | MAE | 0.31 | 0.86 | NAN | 0.85 | |
RMSE | 0.39 | 1.31 | NAN | 1.18 | ||
Underway OB_B data | MAE | 0.40 | 0.52 | NAN | 0.58 | |
RMSE | 0.64 | 1.13 | NAN | 1.46 | ||
SOCAT data | MAE | 0.30 | 0.82 | 0.76 | 0.86 | |
RMSE | 0.35 | 0.96 | 0.77 | 1.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, G.; Guo, X.; Hu, J.; Dai, M. Reconstruction of High-Resolution Sea Surface Salinity over 2003–2020 in the South China Sea Using the Machine Learning Algorithm LightGBM Model. Remote Sens. 2022, 14, 6147. https://doi.org/10.3390/rs14236147
Wang Z, Wang G, Guo X, Hu J, Dai M. Reconstruction of High-Resolution Sea Surface Salinity over 2003–2020 in the South China Sea Using the Machine Learning Algorithm LightGBM Model. Remote Sensing. 2022; 14(23):6147. https://doi.org/10.3390/rs14236147
Chicago/Turabian StyleWang, Zhixuan, Guizhi Wang, Xianghui Guo, Jianyu Hu, and Minhan Dai. 2022. "Reconstruction of High-Resolution Sea Surface Salinity over 2003–2020 in the South China Sea Using the Machine Learning Algorithm LightGBM Model" Remote Sensing 14, no. 23: 6147. https://doi.org/10.3390/rs14236147
APA StyleWang, Z., Wang, G., Guo, X., Hu, J., & Dai, M. (2022). Reconstruction of High-Resolution Sea Surface Salinity over 2003–2020 in the South China Sea Using the Machine Learning Algorithm LightGBM Model. Remote Sensing, 14(23), 6147. https://doi.org/10.3390/rs14236147