Shallow and Deep Electric Structures in the Tolhuaca Geothermal System (S. Chile) Investigated by Magnetotellurics
Abstract
:1. Introduction
2. Geological Setting
3. Magnetotellurics: Data, Processing, and Results
3.1. Data Acquisition
3.2. Processing and Inversion
3.3. The Three-Dimensional Resistivity Model
4. Discussion
4.1. Shallow Crustal Melt Zone
4.2. Near Surface Conductive Anomalies
4.3. Implications from Hydrothermal Alteration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stern, C.R. Active Andean Volcanism: Its Geologic and Tectonic Setting. Rev. Geológica Chile 2004, 31, 161–206. [Google Scholar] [CrossRef]
- Muñoz, J.; Stern, C.R. The Quaternary Volcanic Belt of the Southern Continental Margin of South America: Transverse Structural and Petrochemical Variations across the Segment between 38°S and 39°S. J. S. Am. Earth Sci. 1988, 1, 147–161. [Google Scholar] [CrossRef]
- Cembrano, J.; Lavenu, A.; Yañez, G.; Riquelme, R.; García, M.; González, G.; Hérail, G. Neotectonics. Geol. Chile 2007, 9, 231–261. [Google Scholar]
- Cembrano, J.; Lara, L. The Link between Volcanism and Tectonics in the Southern Volcanic Zone of the Chilean Andes: A Review. Tectonophysics 2009, 471, 96–113. [Google Scholar] [CrossRef]
- Folguera, A.; Rojas Vera, E.; Vélez, L.; Tobal, J.; Orts, D.; Agusto, M.; Caselli, A.; Ramos, V.A. A Review of the Geology, Structural Controls, and Tectonic Setting of Copahue Volcano, Southern Volcanic Zone, Andes, Argentina. In Copahue Volcano; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–22. [Google Scholar]
- Lara, L.E.; Moreno, H.; Naranjo, J.A.; Matthews, S.; Pérez de Arce, C. Magmatic Evolution of the Puyehue-Cordón Caulle Volcanic Complex (40° S), Southern Andean Volcanic Zone: From Shield to Unusual Rhyolitic Fissure Volcanism. J. Volcanol. Geotherm. Res. 2006, 157, 343–366. [Google Scholar] [CrossRef]
- Suárez, M.; Emparán, C. Hoja Curacautín 71, Regiones de La Araucanía y Del Bío Bío: Escala 1: 250,000; Servicio Nacional de Geología y Minería: Santiago, Chile, 1997. [Google Scholar]
- Aravena, D.; Muñoz, M.; Morata, D.; Lahsen, A.; Parada, M.Á.; Dobson, P. Assessment of High Enthalpy Geothermal Resources and Promising Areas of Chile. Geothermics 2016, 59, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lahsen, A.; Muñoz, N.; Parada, M.A. Geothermal Development in Chile. Proc. World Geotherm. Congr. 2010, 25, 25–29. [Google Scholar]
- López-Escobar, L.; Cembrano, J.; Moreno, H. Geochemistry and Tectonics of the Chilean Southern Andes Basaltic Quaternary Volcanism (37–46°S). Andean Geol. 1995, 22, 219–234. [Google Scholar] [CrossRef]
- Sánchez, P.; Pérez-Flores, P.; Arancibia, G.; Cembrano, J.; Reich, M. Crustal Deformation Effects on the Chemical Evolution of Geothermal Systems: The Intra-Arc Liquiñe-Ofqui Fault System, Southern Andes. Int. Geol. Rev. 2013, 55, 1384–1400. [Google Scholar] [CrossRef]
- Pérez-Flores, P.; Veloso, E.; Cembrano, J.; Sánchez-Alfaro, P.; Lizama, M.; Arancibia, G. Fracture Network, Fluid Pathways and Paleostress at the Tolhuaca Geothermal Field. J. Struct. Geol. 2017, 96, 134–148. [Google Scholar] [CrossRef]
- Moreno, H.; Naranjo, J.; Polanco, E. Geología Del Complejo Volcánico Lonquimay-Tolhuaca. Regiones de La Araucanía y Del Biobío. In Carta Geológica de Chile, Serie Geología Básica; Servicio Nacional de Geología y Minería: Santiago, Chile, 2012. [Google Scholar]
- Lohmar, S.; Stimac, J.; Colvin, A.; González, A.; Iriarte, S.; Melosh, G.; Wilmarth, M. Tolhuaca Volcano (Southern Chile, 38.3°S): New Learnings from Surface Mapping and Geothermal Exploration Wells. In Proceedings of the 12° Congreso Geológico Chileno, Antofagasta, Chile, 5–9 August 2012; pp. 443–445. [Google Scholar]
- Thiele, R.; Lahsen, A.; Moreno, H.; Varela, J.; Vergara, M.; Munizaga, F. Estudio Geológico Regional a Escala 1:100.000 de La Hoya Superior y Curso Medio Del Río Biobío; ENDESA-Departamento de Geología y Geofísica, Universidad de Chile: Santiago, Chile, 1987; informe inédito. [Google Scholar]
- Sánchez-Alfaro, P.; Reich, M.; Arancibia, G.; Pérez-flores, P.; Driesner, T. Evolution of the Tolhuaca Geothermal System: Insights from Mineralogy, Structural Data and Numerical Simulations. XIV Congr. Geológico Chil. 2012, III, 500–502. [Google Scholar]
- Sanchez-Alfaro, P.; Reich, M.; Arancibia, G.; Pérez-Flores, P.; Cembrano, J.; Driesner, T.; Lizama, M.; Rowland, J.; Morata, D.; Heinrich, C.A.; et al. Physical, Chemical and Mineralogical Evolution of the Tolhuaca Geothermal System, Southern Andes, Chile: Insights into the Interplay between Hydrothermal Alteration and Brittle Deformation. J. Volcanol. Geotherm. Res. 2016, 324, 88–104. [Google Scholar] [CrossRef]
- Collignon, M.; Cardellini, C.; Duprat-Oualid, S.; Hammer, Ø.; Chiodini, G.; Vandemeulebrouck, J.; Gonzalez-Vidal, D.; Espinoza, A.; Tassara, A.; Ruch, J. Carbon Dioxide Diffuse Emission at the Tolhuaca Hydrothermal System (Chile) Controlled by Tectonics and Topography. J. Volcanol. Geotherm. Res. 2021, 417, 107316. [Google Scholar] [CrossRef]
- Pérez-Moreno, R.; Reich, M.; Daniele, L.; Morata, D.; Held, S.; Kleinsasser, J. Stable Isotope and Anthropogenic Tracer Signature of Waters in an Andean Geothermal System. Appl. Geochem. 2021, 128, 104953. [Google Scholar] [CrossRef]
- Melosh, G.; Cumming, W.; Benoit, D.; Wilmarth, M.; Colvin, A.; Winick, J.; Soto-Neira, E.; Sussman, D.; Urzúa-Monsalve, L.; Powell, T.; et al. Exploration Results and Resource Conceptual Model of the Tolhuaca Geothermal Field, Chile. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–29 April 2010. [Google Scholar]
- Melosh, G.; Moore, J.; Stacey, R. Natural Reservoir Evolution in the Tolhuaca Geothermal Field, Southern Chile. In Proceedings of the Thirty-Sixth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 30 January–1 February 2012. [Google Scholar]
- Bertrand, E.A.; Caldwell, T.G.; Hill, G.J.; Wallin, E.L.; Bennie, S.L.; Cozens, N.; Onacha, S.A.; Ryan, G.A.; Walter, C.; Zaino, A.; et al. Magnetotelluric Imaging of Upper-Crustal Convection Plumes beneath the Taupo Volcanic Zone, New Zealand. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Spichak, V.; Manzella, A. Electromagnetic Sounding of Geothermal Zones. J. Appl. Geophys. 2009, 68, 459–478. [Google Scholar] [CrossRef]
- Muñoz, G. Exploring for Geothermal Resources with Electromagnetic Methods. Surv. Geophys. 2014, 35, 101–122. [Google Scholar] [CrossRef]
- Brasse, H.; Soyer, W. A Magnetotelluric Study in the Southern Chilean Andes. Geophys. Res. Lett. 2001, 28, 3757–3760. [Google Scholar] [CrossRef]
- Kapinos, G.; Montahaei, M.; Meqbel, N.; Brasse, H. Three-Dimensional Electrical Resistivity Image of the South-Central Chilean Subduction Zone. Tectonophysics 2016, 666, 76–89. [Google Scholar] [CrossRef]
- Lavenu, A.; Cembrano, J. Compressional- and Transpressional-Stress Pattern for Pliocene and Quaternary Brittle Deformation in Fore Arc and Intra-Arc Zones (Andes of Central and Southern Chile). J. Struct. Geol. 1999, 21, 1669–1691. [Google Scholar] [CrossRef]
- Rosenau, M.; Melnick, D.; Echtler, H. Kinematic Constraints on Intra-Arc Shear and Strain Partitioning in the Southern Andes between 38°S and 42°S Latitude. Tectonics 2006, 25, 1–16. [Google Scholar] [CrossRef]
- Pérez-Flores, P.; Cembrano, J.; Sánchez-Alfaro, P.; Veloso, E.; Arancibia, G.; Roquer, T. Tectonics, Magmatism and Paleo-Fluid Distribution in a Strike-Slip Setting: Insights from the Northern Termination of the Liquiñe-Ofqui Fault System, Chile. Tectonophysics 2016, 680, 192–210. [Google Scholar] [CrossRef]
- Hervé, F.; Thiele, R. Estado de Conocimiento de Las Megafallas En Chile y Su Significado Tectónico. Comun. Univ. Chile 1987, 38, 67–91. [Google Scholar]
- Cembrano, J.; Hervé, F.; Lavenu, A. The Liquiñe Ofqui Fault Zone: A Long-Lived Intra-Arc Fault System in Southern Chile. Tectonophysics 1996, 259, 55–66. [Google Scholar] [CrossRef]
- Moreno, H.; Gardeweg, M.C. La Erupción Reciente En El Complejo Volcánico Lonquimay (Diciembre 1988), Andes Del Sur. Andean Geol. 1989, 16, 93–117. [Google Scholar]
- Lara, L.E.; Lavenu, A.; Cembrano, J.; Rodríguez, C. Structural Controls of Volcanism in Transversal Chains: Resheared Faults and Neotectonics in the Cordón Caulle-Puyehue Area (40.5°S), Southern Andes. J. Volcanol. Geotherm. Res. 2006, 158, 70–86. [Google Scholar] [CrossRef]
- Melnick, D.; Rosenau, M.; Folguera, A.; Echtler, H. Neogene Tectonic Evolution of the Neuquén Andes Western Flank (37–39°S). Spec. Pap. Geol. Soc. Am. 2006, 407, 73–95. [Google Scholar] [CrossRef]
- Radic, J.P. Las Cuencas Cenozoicas y Su Control En El Volcanismo de Los Complejos Nevados de Chillán y Copahue-Callaqui (Andes Del Sur, 36–39°S). Andean Geol. 2010, 37, 220–246. [Google Scholar] [CrossRef] [Green Version]
- Lara, L.E.; Folguera, A. The Pliocene to Quaternary Narrowing of the Southern Andean Volcanic Arc between 37° and 41°s Latitude. Spec. Pap. Geol. Soc. Am. 2006, 407, 299–315. [Google Scholar] [CrossRef]
- Lara, L.E. Villarrica-Lanín Chain: Tectonic Constraints for Volcanism in a Transversal Alignment. Villarrica Volcano (39.5°S). South. Andes Chile 2004, 13–16. [Google Scholar]
- Hauser, A. Catastro y Caracterización de Las Fuentes Minerales y Termales de Chile; Servicio Nacional de Geología y Minería: Santiago, Chile, 1997. [Google Scholar]
- Polanco, E.; Moreno, H.; Naranjo, J.A.; Pérez de Arce, C. Nuevas Edades Ar/Ar Del Complejo Lonquimay-Tolhuaca y Su Contribución a La Comprensión de Su Evolución Geológica. Jorn. Geológicas 2014, 12, 139–142. [Google Scholar]
- Lara, L.E.; Bertin, D.; Vergara, C. El Complejo Volcánico Lonquimay: Arquitectura y Control Estructural de La Evolución Magmática. Congr. Geológico Chil. 2012, 13, 522–524. [Google Scholar]
- Hill, G.J.; Bibby, H.M.; Ogawa, Y.; Wallin, E.L.; Bennie, S.L.; Caldwell, T.G.; Keys, H.; Bertrand, E.A.; Heise, W. Structure of the Tongariro Volcanic System: Insights from Magnetotelluric Imaging. Earth Planet. Sci. Lett. 2015, 432, 115–125. [Google Scholar] [CrossRef]
- Comeau, M.J.; Unsworth, M.J.; Ticona, F.; Sunagua, M. Magnetotelluric Images of Magma Distribution beneath Volcán Uturuncu, Bolivia: Implications for Magma Dynamics. Geology 2015, 43, 243–246. [Google Scholar] [CrossRef]
- Aizawa, K.; Koyama, T.; Hase, H.; Uyeshima, M.; Kanda, W.; Utsugi, M.; Ogawa, Y. Three-Dimensional Resistivity Structure and Magma Plumbing System of the Kirishima Volcanoes as Inferred from Broadband Magnetotelluric Data. J. Geophys. Res. Solid Earth 2014, 119, 198–215. [Google Scholar] [CrossRef]
- Di Giuseppe, M.G.; Troiano, A.; Carlino, S. Magnetotelluric Imaging of the Resurgent Caldera on the Island of Ischia (Southern Italy): Inferences for Its Structure and Activity. Bull. Volcanol. 2017, 79, 85. [Google Scholar] [CrossRef]
- Peacock, J.R.; Mangan, M.T.; McPhee, D.; Wannamaker, P.E. Three-Dimensional Electrical Resistivity Model of the Hydrothermal System in Long Valley Caldera, California, from Magnetotellurics. Geophys. Res. Lett. 2016, 43, 7953–7962. [Google Scholar] [CrossRef]
- Heise, W.; Caldwell, T.G.; Bibby, H.M.; Bannister, S.C. Three-Dimensional Modelling of Magnetotelluric Data from the Rotokawa Geothermal Field, Taupo Volcanic Zone, New Zealand. Geophys. J. Int. 2008, 173, 740–750. [Google Scholar] [CrossRef] [Green Version]
- Newman, G.A.; Gasperikova, E.; Hoversten, G.M.; Wannamaker, P.E. Three-Dimensional Magnetotelluric Characterization of the Coso Geothermal Field. Geothermics 2008, 37, 369–399. [Google Scholar] [CrossRef]
- Cordell, D.; Unsworth, M.J.; Díaz, D. Imaging the Laguna Del Maule Volcanic Field, Central Chile Using Magnetotellurics: Evidence for Crustal Melt Regions Laterally-Offset from Surface Vents and Lava Flows. Earth Planet. Sci. Lett. 2018, 488, 168–180. [Google Scholar] [CrossRef]
- Díaz, D.; Zuñiga, F.; Castruccio, A. The Interaction between Active Crustal Faults and Volcanism: A Case Study of the Liquiñe-Ofqui Fault Zone and Osorno Volcano, Southern Andes, Using Magnetotellurics. J. Volcanol. Geotherm. Res. 2020, 393, 106806. [Google Scholar] [CrossRef]
- Cordell, D.; Unsworth, M.J.; Diaz, D.; Reyes-Wagner, V.; Currie, C.A.; Hicks, S.P. Fluid and Melt Pathways in the Central Chilean Subduction Zone Near the 2010 Maule Earthquake (35–36°S) as Inferred From Magnetotelluric Data. Geochem. Geophys. Geosyst. 2019, 20, 1818–1835. [Google Scholar] [CrossRef] [Green Version]
- Pavez, M.; Schill, E.; Held, S.; Díaz, D.; Kohl, T. Visualizing Preferential Magmatic and Geothermal Fluid Pathways via Electric Conductivity at Villarrica Volcano, S-Chile. J. Volcanol. Geotherm. Res. 2020, 400, 106913. [Google Scholar] [CrossRef]
- Held, S.; Schill, E.; Pavez, M.; Díaz, D.; Muñoz, G.; Morata, D.; Kohl, T. Resistivity Distribution from Mid-Crustal Conductor to near-Surface across the 1200 km Long Liquiñe-Ofqui Fault System, Southern Chile. Geophys. J. Int. 2016, 207, 1387–1400. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Wagner, V.; Díaz, D.; Cordell, D.; Unsworth, M. Regional Electrical Structure of the Andean Subduction Zone in Central Chile (35°–36°S) Using Magnetotellurics Studies on Electromagnetic Induction in the Earth: Recent Advances Weerachai Siripunvaraporn; Paul A Bedrosian; Yuguo Li; Prasanta Patro; Klaus. Earth Planets Space 2017, 69, 142. [Google Scholar] [CrossRef] [Green Version]
- Egbert, G.D.; Booker, J.R. Robust Estimation of Geomagnetic Transfer Functions. Geophys. J. R. Astron. Soc. 1986, 87, 173–194. [Google Scholar] [CrossRef] [Green Version]
- Egbert, G.D. Robust Multiple-Station Magnetotelluric Data Processing. Geophys. J. Int. 1997, 130, 475–496. [Google Scholar] [CrossRef] [Green Version]
- Wiese, H. Geomagnetische Tiefentellurik Teil II: Die Streichrichtung Der Untergrundstrukturen Des Elektrischen Widerstandes, Erschlossen Aus Geomagnetischen Variationen. Geofis. Pura Appl. 1962, 52, 83–103. [Google Scholar] [CrossRef]
- Kelbert, A.; Meqbel, N.; Egbert, G.D.; Tandon, K. ModEM: A Modular System for Inversion of Electromagnetic Geophysical Data. Comput. Geosci. 2014, 66, 40–53. [Google Scholar] [CrossRef]
- Tietze, K.; Ritter, O. Three-Dimensional Magnetotelluric Inversion in Practice-the Electrical Conductivity Structure of the San Andreas Fault in Central California. Geophys. J. Int. 2013, 195, 130–147. [Google Scholar] [CrossRef] [Green Version]
- Pace, F.; Martí, A.; Queralt, P.; Santilano, A.; Manzella, A.; Ledo, J.; Godio, A. Three-Dimensional Magnetotelluric Characterization of the Travale Geothermal Field (Italy). Remote Sens. 2022, 14, 542. [Google Scholar] [CrossRef]
- Bonafede, M.; Dragoni, M.; Boschi, E. Heat Diffusion and Size Reduction of a Spherical Magma Chamber. Bull. Volcanol. 1984, 47, 343–347. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Blake, S.; Evans, P.; Hughes, R.; Macdonald, R.; Thomas, L.E.; Turner, S.P.; Zellmer, G. Time Scales of Crystal Fractionation in Magma Chambers-Integrating Physical, Isotopic and Geochemical Perspectives. J. Petrol. 2000, 41, 991–1006. [Google Scholar] [CrossRef]
- Spera, F.J. Physical Properties of Magma. In Encyclopedia on Volcanoes; Sigurdsson, H., Ed.; Academic Press: New York, NY, USA, 2000; pp. 171–190. [Google Scholar]
- Cooper, K.M.; Kent, A.J.R. Rapid Remobilization of Magmatic Crystals Kept in Cold Storage. Nature 2014, 506, 480–483. [Google Scholar] [CrossRef]
- Barboni, M.; Boehnke, P.; Schmitt, A.K.; Mark Harrison, T.; Shane, P.; Bouvier, A.S.; Baumgartner, L. Warm Storage for Arc Magmas. Proc. Natl. Acad. Sci. USA 2016, 113, 13959–13964. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhang, L.; Behrens, H.; Ni, H. Probing the Status of Felsic Magma Reservoirs: Constraints from the P-T-H2O Dependences of Electrical Conductivity of Rhyolitic Melt. Earth Planet. Sci. Lett. 2016, 433, 54–62. [Google Scholar] [CrossRef]
- Guo, X.; Li, B.; Ni, H.; Mao, Z. Electrical Conductivity of Hydrous Andesitic Melts Pertinent to Subduction Zones. J. Geophys. Res. Solid Earth 2017, 122, 1777–1788. [Google Scholar] [CrossRef] [Green Version]
- Glover, P.W.J.; Hole, M.J.; Pous, J. A Modified Archie’s Law for Two Conducting Phases. Earth Planet. Sci. Lett. 2000, 180, 369–383. [Google Scholar] [CrossRef]
- Piquer, J.; Yáñez, G.; Rivera, O.; Cooke, D.R. Long-Lived Crustal Damage Zones Associated with Fault Intersections in the High Andes of Central Chile. Andean Geol. 2019, 46, 223–239. [Google Scholar] [CrossRef]
- Morgado, E.; Parada, M.A.; Morgan, D.J.; Gutiérrez, F.; Castruccio, A.; Contreras, C. Transient Shallow Reservoirs beneath Small Eruptive Centres: Constraints from Mg-Fe Interdiffusion in Olivine. J. Volcanol. Geotherm. Res. 2017, 347, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Morgado, E.; Parada, M.A.; Contreras, C.; Castruccio, A.; Gutiérrez, F.; McGee, L.E. Contrasting Records from Mantle to Surface of Holocene Lavas of Two Nearby Arc Volcanic Complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile. J. Volcanol. Geotherm. Res. 2015, 306, 1–16. [Google Scholar] [CrossRef]
- Barrientos, S.E.; Acevedo-Aránguiz, P.S. Seismological Aspects of the 1988–1989 Lonquimay (Chile) Volcanic Eruption. J. Volcanol. Geotherm. Res. 1992, 53, 73–87. [Google Scholar] [CrossRef]
- Anderson, E.; Crosby, D.; Ussher, G.; Zealand, N. Bulls-Eye!—Simple Resistivity Imaging To Reliably Locate the Geothermal Reservoir. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000; pp. 909–914. [Google Scholar]
- Ussher, G.; Harvey, C.; Johnstone, R.; Anderson, E.; Zealand, N. Understanding the Resistivities Observed in Geothermal Systems. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000; pp. 1915–1920. [Google Scholar]
- Pérez-Flores, P.; Wang, G.; Mitchell, T.M.; Meredith, P.G.; Nara, Y.; Sarkar, V.; Cembrano, J. The Effect of Offset on Fracture Permeability of Rocks from the Southern Andes Volcanic Zone, Chile. J. Struct. Geol. 2017, 104, 142–158. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavez, M.; Diaz, D.; Brasse, H.; Kapinos, G.; Budach, I.; Goldberg, V.; Morata, D.; Schill, E. Shallow and Deep Electric Structures in the Tolhuaca Geothermal System (S. Chile) Investigated by Magnetotellurics. Remote Sens. 2022, 14, 6144. https://doi.org/10.3390/rs14236144
Pavez M, Diaz D, Brasse H, Kapinos G, Budach I, Goldberg V, Morata D, Schill E. Shallow and Deep Electric Structures in the Tolhuaca Geothermal System (S. Chile) Investigated by Magnetotellurics. Remote Sensing. 2022; 14(23):6144. https://doi.org/10.3390/rs14236144
Chicago/Turabian StylePavez, Maximiliano, Daniel Diaz, Heinrich Brasse, Gerhard Kapinos, Ingmar Budach, Valentin Goldberg, Diego Morata, and Eva Schill. 2022. "Shallow and Deep Electric Structures in the Tolhuaca Geothermal System (S. Chile) Investigated by Magnetotellurics" Remote Sensing 14, no. 23: 6144. https://doi.org/10.3390/rs14236144
APA StylePavez, M., Diaz, D., Brasse, H., Kapinos, G., Budach, I., Goldberg, V., Morata, D., & Schill, E. (2022). Shallow and Deep Electric Structures in the Tolhuaca Geothermal System (S. Chile) Investigated by Magnetotellurics. Remote Sensing, 14(23), 6144. https://doi.org/10.3390/rs14236144