Coastal Summer Freshening and Meltwater Input off West Greenland from Satellite Observations
Abstract
:1. Introduction
2. Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bulgakov, N.P. Determination of functional graphs of the time at which water reaches the freezing point and the depth of density mixing. Probl. North 1962, 4, 141–148. [Google Scholar]
- Lukas, R.; Lindstrom, E. The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res. 1991, 96, 3343–3357. [Google Scholar] [CrossRef]
- Talley, L.D. Salinity patterns in the ocean. In Encyclopedia of Global Change. Volume: The Earth System: Physical and Chemical Dimensions of Global Environmental Change; MacCracken, M.C., Perry, J.S., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2002; pp. 629–640. [Google Scholar]
- Carmack, E.C.; Yamamoto-Kawai, M.; Haine, T.W.N.; Bacon, S.; Bluhm, B.A.; Lique, C.; Melling, H.; Polyakov, I.V.; Straneo, F.; Timmermans, M.; et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. Geophys. Res. Biogeosci. 2016, 121, 675–717. [Google Scholar] [CrossRef] [Green Version]
- Fine, R.A.; Willey, D.A.; Millero, F.J. Global variability and changes in ocean total alkalinity from Aquarius satellite data. Geophys. Res. Lett. 2017, 44, 261–267. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Yin, J.; Gregory, J.; Dixon, K.; Spelman, M.J.; Hurlin, W.; Weaver, A.J.; Eby, M.; Flato, G.M.; Hasumi, H.; et al. Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes. J. Clim. 2006, 19, 1365–1387. [Google Scholar] [CrossRef] [Green Version]
- Swingedouw, D.; Rodehacke, C.B.; Behrens, E.; Menary, M.; Olsen, S.M.; Gao, Y.; Mikolajewicz, U.; Mignot, J.; Biastoch, A. Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim. Dyn. 2012, 41, 695–720. [Google Scholar] [CrossRef] [Green Version]
- Rahmstorf, S.; Box, J.; Feulner, G.; Mann, M.; Robinson, A.; Rutherford, S.; Schaffernicht, E. Exceptional twenti-eth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 2015, 5, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Seidov, D.; Antonov, J.; Arzayus, K.; Baranova, O.; Biddle, M.; Boyer, T.; Johnson, D.; Mishonov, A.; Paver, C.; Zweng, M. Oceanography north of 60°N from World Ocean Database. Prog. Oceanogr. 2015, 132, 153–173. [Google Scholar] [CrossRef]
- Behrendt, A.; Sumata, H.; Rabe, B.; Schauer, U. UDASH – Unified Database for Arctic and Subarctic Hydrography. Earth Syst. Sci. Data 2018, 10, 1119–1138. [Google Scholar] [CrossRef] [Green Version]
- Duncan, B.N.; Ott, L.E.; Abshire, J.B.; Brucker, L.; Carroll, M.L.; Carton, J.; Comiso, J.C.; Dinnat, E.P.; Forbes, B.C.; Gonsamo, A.; et al. Space-Based Observations for Understanding Changes in the Arctic-Boreal Zone. Rev. Geophys. 2020, 58, e2019RG000652. [Google Scholar] [CrossRef] [Green Version]
- Fournier, S.; Lee, T.; Wang, X.; Armitage, T.W.K.; Wang, O.; Fukumori, I.; Kwok, R. Sea Surface Salinity as a Proxy for Arctic Ocean Freshwater Changes. J. Geophys. Res. Oceans 2020, 125, e2020JC016110. [Google Scholar] [CrossRef]
- Reul, N.; Grodsky, S.; Arias, M.; Broutin, J.; Catany, R.; Chapron, B.; D’Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observations (2010–2019). Remote Sens. Environ. 2020, 242, 111769. [Google Scholar] [CrossRef]
- Swift, C.T.; Mcintosh, R.E. Considerations for Microwave Remote Sensing of Ocean-Surface Salinity. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 480–491. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Brucker, L. Improved Sea Ice Fraction Characterization for L-Band Observations by the Aquarius Radiometers. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1285–1304. [Google Scholar] [CrossRef]
- Garcia-Eidell, C.; Comiso, J.C.; Dinnat, E.; Brucker, L. Satellite observed salinity distributions at high latitudes in the N orthern H emisphere: A comparison of four products. J. Geophys. Res. Oceans 2017, 122, 7717–7736. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Yueh, S.; Yang, D.; Fore, A.; Hayashi, A.; Lee, T.; Fournier, S.; Holt, B. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP) Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes. Remote Sens. 2018, 10, 869. [Google Scholar] [CrossRef] [Green Version]
- Fournier, S.; Lee, T.; Tang, W.; Steele, M.; Olmedo, E. Evaluation and Intercomparison of SMOS, Aquarius, and SMAP Sea Surface Salinity Products in the Arctic Ocean. Remote Sens. 2019, 11, 3043. [Google Scholar] [CrossRef] [Green Version]
- Supply, A.; Boutin, J.; Vergely, J.-L.; Kolodziejczyk, N.; Reverdin, G.; Reul, N.; Taresenko, A. New insights into SMOS sea surface salinity rerievals in the Arctic Ocean. Remote Sens. Environm. 2020, 249, 112027. [Google Scholar] [CrossRef]
- Hu, R.; Zhao, J. Sea surface salinity variability in the western subpolar North Atlantic based on satellite observations. Remote Sens. Environ. 2022, 281, 113257. [Google Scholar] [CrossRef]
- Kubryakov, A.; Stanichny, S.; Zatsepin, A. River plume dynamics in the Kara Sea from altimetry-based lagrangian model, satellite salinity and chlorophyll data. Remote Sens. Environ. 2016, 176, 177–187. [Google Scholar] [CrossRef]
- Tang, W.; Yueh, S.H.; Yang, D.; Mcleod, E.; Fore, A.; Hayashi, A.; Olmedo, E.; Martínez, J.; Gabarró, C. The Potential of Space-Based Sea Surface Salinity on Monitoring the Hudson Bay Freshwater Cycle. Remote Sens. 2020, 12, 873. [Google Scholar] [CrossRef]
- Haine, T.W.N.; Curry, B.; Gerdes, R.; Hansen, E.; Karcher, M.; Lee, C.; Rudels, B.; Spreen, G.; de Steur, L.; Stewart, K.D.; et al. Arctic freshwater export: Status, mechanisms, and prospects. Glob. Planet. Chang. 2015, 125, 13–35. [Google Scholar] [CrossRef] [Green Version]
- Jahn, A.; Tremblay, L.B.; Newton, R.; Holland, M.M.; Mysak, L.A.; Dmitrenko, I.A. A tracer study of the Arctic Ocean’s liquid freshwater export variability. J. Geophys. Res. 2010, 115, C07015. [Google Scholar] [CrossRef] [Green Version]
- Wadley, M.R.; Bigg, G.R. Impact of flow through the Canadian Archipelago and Bering Strait on the North Atlantic and Arctic circulation: An ocean modelling study. Q. J. R. Meteorol. Soc. 2002, 128, 2187–2203. [Google Scholar] [CrossRef]
- Tang, C.C.; Ross, C.K.; Yao, T.; Petrie, B.; DeTracey, B.M.; Dunlap, E. The circulation, water masses and sea-ice of Baffin Bay. Prog. Oceanogr. 2004, 63, 183–228. [Google Scholar] [CrossRef]
- Curry, B.B.; Lee, C.M.; Petrie, B. Volume, Freshwater, and Heat Fluxes through Davis Strait, 2004–05. J. Phys. Oceanogr. 2011, 41, 429–436. [Google Scholar] [CrossRef]
- Curry, B.; Lee, C.M.; Petrie, B.; Moritz, R.E.; Kwok, R. Multiyear volume, liquid freshwater, and sea ice transport through Davis Strait, 2004–2010. J. Phys. Oceanogr. 2014, 44, 1245–1266. [Google Scholar] [CrossRef]
- Münchow, A.; Falkner, K.K.; Melling, H. Baffin Island and West Greenland Current Systems in northern Baffin Bay. Prog. Oceanogr. 2015, 132, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, J.; Rysgaard, S.; Winding, M.H.S.; Juul-Pedersen, T.; Arendt, K.E.; Lund, H.; Stuart-Lee, A.E.; Meire, L. Multidecadal Water Mass Dynamics on the West Greenland Shelf. J. Geophys. Res. Oceans 2022, 127, e2022JC018724. [Google Scholar] [CrossRef]
- Rignot, E.; Box, J.E.; Burgess, E.; Hanna, E. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett. 2008, 35, L20502. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Bamber, J.; Broeke, M.V.D.; Ettema, J.; Lenaerts, J.; Rignot, E. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 2012, 39, 19501. [Google Scholar] [CrossRef] [Green Version]
- Bamber, J.L.; Tedstone, A.J.; King, M.D.; Howat, I.M.; Enderlin, E.M.; Broeke, M.R.V.D.; Noel, B. Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results. J. Geophys. Res. Oceans 2018, 123, 1827–1837. [Google Scholar] [CrossRef] [PubMed]
- The IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 2020, 579, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Castelao, R.M.; Rennermalm, A.K.; Tedesco, M.; Bracco, A.; Yager, P.; Mote, T. Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nat. Geosci. 2016, 9, 528–532. [Google Scholar] [CrossRef]
- Slater, D.A.; Carroll, D.; Oliver, H.; Hopwood, M.J.; Straneo, F.; Wood, M.; Willis, J.K.; Morlighem, M. Characteristic Depths, Fluxes, and Timescales for Greenland’s Tidewater Glacier Fjords from Subglacial Discharge-Driven Upwelling During Summer. Geophys. Res. Lett. 2022, 49, e2021GL097081. [Google Scholar] [CrossRef]
- Nielsen, J. The waters around Greenland. In Greenland: The Discovery of Greenland, Exploration, and the Nature of the Country; Vahl, M., Rietzel, C.A., Eds.; Humphrey Milford/Oxford University Press: London, UK, 1928; Volume I, pp. 185–230. [Google Scholar]
- Smith, E.H.; Soule, F.M.; Mosby, O. The Marion and General Greene expeditions to Davis Strait and Labrador Sea. Scientific results, Part 2, physical oceanography. Bull. U.S. Coast Guard 1937, 19, 1–259. [Google Scholar]
- Lazier, J.R.N. The renewal of Labrador Sea water. Deep-Sea Res. 1973, 20, 341–353. [Google Scholar] [CrossRef]
- McCartney, M. Recirculating components to the deep boundary current of the northern North Atlantic. Prog. Oceanogr. 1992, 29, 283–383. [Google Scholar] [CrossRef]
- Lozier, M.S.; Li, F.; Bacon, S.; Bahr, F.; Bower, A.S.; Cunningham, S.A.; de Jong, M.F.; de Steur, L.; DeYoung, B.; Fischer, J.; et al. A sea change in our view of overturning in the subpolar North Atlantic. Science 2019, 363, 516–521. [Google Scholar] [CrossRef]
- Dukhovskoy, D.S.; Myers, P.G.; Platov, G.; Timmermans, M.; Curry, B.; Proshutinsky, A.; Bamber, J.L.; Chassignet, E.; Hu, X.; Lee, C.M.; et al. Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers. J. Geophys. Res. Oceans 2016, 121, 877–907. [Google Scholar] [CrossRef] [Green Version]
- Gillard, L.C.; Hu, X.; Myers, P.G.; Bamber, J.L. Meltwater pathways from marine terminating glaciers of the Greenland ice sheet. Geophys. Res. Lett. 2016, 43, 10,873–10,882. [Google Scholar] [CrossRef]
- Castelao, R.M.; Luo, H.; Oliver, H.; Rennermalm, A.K.; Tedesco, M.; Bracco, A.; Yager, P.L.; Mote, T.L.; Medeiros, P.M. Controls on the Transport of Meltwater from the Southern Greenland Ice Sheet in the Labrador Sea. J. Geophys. Res. Oceans 2019, 124, 3551–3560. [Google Scholar] [CrossRef] [Green Version]
- Böning, C.W.; Behrens, E.; Biastoch, A.; Getzlaff, K.; Bamber, J.L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 2016, 9, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Dixon, T.H.; Myers, P.G.; Bonin, J.; Chambers, D.; Broeke, M.R.V.D.; Ribergaard, M.H.; Mortensen, J. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun. 2016, 7, 10525. [Google Scholar] [CrossRef] [Green Version]
- Arrigo, K.R.; van Dijken, G.L.; Castelao, R.M.; Luo, H.; Rennermalm, Å.K.; Tedesco, M.; Mote, T.L.; Oliver, H.; Yager, P.L. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett. 2017, 44, 6278–6285. [Google Scholar] [CrossRef] [Green Version]
- Oliver, H.; Luo, H.; Castelao, R.M.; van Dijken, G.L.; Mattingly, K.S.; Rosen, J.J.; Mote, T.L.; Arrigo, K.R.; Rennermalm, Å.K.; Tedesco, M.; et al. Exploring the Potential Impact of Greenland Meltwater on Stratification, Photosynthetically Active Radiation, and Primary Production in the Labrador Sea. J. Geophys. Res. Oceans 2018, 123, 2570–2591. [Google Scholar] [CrossRef]
- Fenty, I.; Heimbach, P. Coupled Sea Ice–Ocean-State Estimation in the Labrador Sea and Baffin Bay. J. Phys. Oceanogr. 2013, 43, 884–904. [Google Scholar] [CrossRef]
- Boutin, J.; Vergely, J.L.; Khvorostyanov, D. SMOS SSS L3 Maps Generated by CATDS CEC LOCEAN; debias V7.0; SEANOE, 2022. [Google Scholar] [CrossRef]
- Martínez, J.; Gabarró, C.; Turiel, A.; González-Gambau, V.; Umbert, M.; Hoareau, N.; González-Haro, C.; Olmedo, E.; Arias, M.; Catany, R.; et al. Improved BEC SMOS Arctic Sea Surface Salinity product v3.1. Earth Syst. Sci. Data 2022, 14, 307–323. [Google Scholar] [CrossRef]
- Fore, A.; Yueh, S.; Tang, W.; Hayashi, A. SMAP Salinity and Wind Speed Data User’s Guide Version 5.0. 2018. Available online: https://podaac-tools.jpl.nasa.gov/drive/files/allData/smap/docs/%20JPL-CAP_V5/SMAP-SSS_JPL_V5.0_Documentation.pdf (accessed on 18 June 2022).
- Meissner, T.; Wentz, F.J.; Manaster, A.; Lindsley, R.; Brewer, M.; Densberger, M. Remote Sensing Systems SMAP Ocean Surface Salinities, Level 3 Running 8-Day, version 5.0; Remote Sensing Systems: Santa Rosa, CA, USA, 2022. [Google Scholar] [CrossRef]
- Lee, T.; Lagerloef, G.; Gierach, M.M.; Kao, H.-Y.; Yueh, S.; Dohan, K. Aquarius reveals salinity structure of tropical instability waves. Geophys. Res. Lett. 2012, 39, L12610. [Google Scholar] [CrossRef]
- Castelao, R.M.; Dinniman, M.S.; Amos, C.M.; Klinck, J.M.; Medeiros, P.M. Eddy-Driven Transport of Particulate Organic Carbon-Rich Coastal Water Off the West Antarctic Peninsula. J. Geophys. Res. Oceans 2021, 126, e2020JC016791. [Google Scholar] [CrossRef]
- Boyer, T.P.; Baranova, O.K.; Coleman, C.; Garcia, H.E.; Grodsky, A.; Locarnini, R.A.; Mishonov, A.V.; Paver, C.R.; Reagan, J.R.; Seidov, D.; et al. World Ocean Database 2018; Atlas NESDIS 87; Mishonov, A.V., Ed.; NOAA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Lentz, S.J. A climatology of salty intrusions over the continental shelf from Georges Bank to Cape Hatteras. J. Geophys. Res. 2003, 108, 3326. [Google Scholar] [CrossRef]
- Castelao, R. Intrusions of Gulf Stream waters onto the South Atlantic Bight shelf. J. Geophys. Res. Earth Surf. 2011, 116, C10011. [Google Scholar] [CrossRef] [Green Version]
- Castelao, R.M. Mesoscale eddies in the South Atlantic Bight and the Gulf Stream Recirculation region: Vertical structure. J. Geophys. Res. Oceans 2014, 119, 2048–2065. [Google Scholar] [CrossRef]
- Alory, G.; Delcroix, T.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; et al. The French contribution to the voluntary observing ships network of sea surface salinity. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2015, 105, 1–18. [Google Scholar] [CrossRef]
- Fichot, C.G.; Kaiser, K.; Hooker, S.B.; Amon, R.M.W.; Babin, M.; Bélanger, S.; Walker, S.A.; Benner, R. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci. Rep. 2013, 3, 1053. [Google Scholar] [CrossRef] [Green Version]
- Fichot, C.G.; Benner, R. The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol. Oceanogr. 2012, 57, 1453–1466. [Google Scholar] [CrossRef] [Green Version]
- Fichot, C.G.; Lohrenz, S.E.; Benner, R. Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico. J. Geophys. Res. Oceans 2014, 119, 1176–1194. [Google Scholar] [CrossRef]
- Medeiros, P.M.; Babcock-Adams, L.; Seidel, M.; Castelao, R.M.; Di Iorio, D.; Hollibaugh, J.T.; Dittmar, T. Export of terrigenous dissolved organic matter in a broad continental shelf. Limnol. Oceanogr. 2017, 62, 1718–1731. [Google Scholar] [CrossRef]
- Letourneau, M.; Medeiros, P.M. Dissolved Organic Matter Composition in a Marsh-Dominated Estuary: Response to Seasonal Forcing and to the Passage of a Hurricane. J. Geophys. Res. Biogeosci. 2019, 124, 1545–1559. [Google Scholar] [CrossRef]
- Medeiros, P.M. The Effects of Hurricanes and Storms on the Composition of Dissolved Organic Matter in a Southeastern U.S. Estuary. Front. Mar. Sci. 2022, 9, 855720. [Google Scholar] [CrossRef]
- Da Silva, C.E.; Castelao, R.M. Mississippi River Plume Variability in the Gulf of Mexico From SMAP and MODIS-Aqua Observations. J. Geophys. Res. Oceans 2018, 123, 6620–6638. [Google Scholar] [CrossRef]
- Benner, R.; Louchouarn, P.; Amon, R.M.W. Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic. Glob. Biogeochem. Cycles 2005, 19, GB2025. [Google Scholar] [CrossRef] [Green Version]
- Hernes, P.J.; Benner, R. Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans. Mar. Chem. 2006, 100, 66–79. [Google Scholar] [CrossRef]
- Medeiros, P.M.; Seidel, M.; Niggemann, J.; Spencer, R.G.M.; Hernes, P.J.; Yager, P.L.; Miller, W.L.; Dittmar, T.; Hansell, D.A. A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean. Glob. Biogeochem. Cycles 2016, 30, 689–699. [Google Scholar] [CrossRef]
- Bhatia, M.P.; Das, S.B.; Longnecker, K.; Charette, M.A.; Kujawinski, E.B. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim. Cosmochim. Acta 2010, 74, 3768–3784. [Google Scholar] [CrossRef] [Green Version]
- Sharp, M.; Parkes, J.; Cragg, B.; Fairchild, I.J.; Lamb, H.; Tranter, M. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 1999, 27, 107–110. [Google Scholar] [CrossRef]
- Grannas, A.M.; Shepson, P.B.; Filley, T.R. Photochemistry and nature of organic matter in Arctic and Antarctic snow. Glob. Biogeochem. Cycles 2004, 18, GB1006. [Google Scholar] [CrossRef]
- Rennermalm, A.K.; Smith, L.C.; Chu, V.W.; Box, J.E.; Forster, R.R.; Van den Broeke, M.R.; van As, D.; Moustafa, S.E. Evidence of meltwater retention within the Greenland ice sheet. Cryosphere 2013, 7, 1433–1445. [Google Scholar] [CrossRef] [Green Version]
- Rudels, B. Volume and freshwater transports through the Canadian Arctic Archipelago–Baffin Bay system. J. Geophys. Res. 2011, 116, C00D10. [Google Scholar] [CrossRef]
- Majumder, S.; Castelao, R.M.; Amos, C.M. Freshwater Variability and Transport in the Labrador Sea from In Situ and Satellite Observations. J. Geophys. Res. Oceans 2021, 126, e2020JC016751. [Google Scholar] [CrossRef]
- Granskog, M.A.; Stedmon, C.; Dodd, P.A.; Amon, R.M.W.; Pavlov, A.; de Steur, L.; Hansen, E. Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean. J. Geophys. Res. 2012, 117, C12021. [Google Scholar] [CrossRef]
- Davis, R.E. Predictability of Sea Surface Temperature and Sea Level Pressure Anomalies over the North Pacific Ocean. J. Phys. Oceanogr. 1976, 6, 249–266. [Google Scholar] [CrossRef]
- Moyer, A.N.; Sutherland, D.A.; Nienow, P.W.; Sole, A.J. Seasonal Variations in Iceberg Freshwater Flux in Sermilik Fjord, Southeast Greenland From Sentinel-2 Imagery. Geophys. Res. Lett. 2019, 46, 8903–8912. [Google Scholar] [CrossRef] [Green Version]
- Slater, D.A.; Straneo, F.; Felikson, D.; Little, C.M.; Goelzer, H.; Fettweis, X.; Holte, J. Estimating Greenland tidewater glacier retreat driven by submarine melting. Cryosphere 2019, 13, 2489–2509. [Google Scholar] [CrossRef] [Green Version]
- Straneo, F.; Cenedese, C. The Dynamics of Greenland’s Glacial Fjords and Their Role in Climate. Annu. Rev. Mar. Sci. 2015, 7, 89–112. [Google Scholar] [CrossRef] [PubMed]
- Fenty, I.; Willis, J.K.; Khazendar, A.; Dinardo, S.; Forsberg, R.; Fukumori, I.; Holland, D.; Jakobsson, M.; Moller, D.; Morison, J.; et al. Oceans Melting Greenland: Early Results from NASA’s Ocean-Ice Mission in Greenland. Oceanography 2016, 29, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Beaird, N.; Straneo, F.; Jenkins, W. Spreading of Greenland meltwaters in the ocean revealed by noble gases. Geophys. Res. Lett. 2015, 42, 7705–7713. [Google Scholar] [CrossRef] [Green Version]
- Beaird, N.; Straneo, F.; Jenkins, W. Characteristics of meltwater export from Jakobshavn Isbræ and Ilulissat Icefjord. Ann. Glaciol. 2017, 58, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.H.; Straneo, F. Heat, Salt, and Freshwater Budgets for a Glacial Fjord in Greenland. J. Phys. Oceanogr. 2016, 46, 2735–2768. [Google Scholar] [CrossRef]
- Myers, P.G. Impact of freshwater from the Canadian Arctic Archipelago on Labrador Sea Water formation. Geophys. Res. Lett. 2005, 32, L06605. [Google Scholar] [CrossRef]
- Myers, P.G.; Donnelly, C.; Ribergaard, M.H. Structure and variability of the West Greenland Current in Summer derived from 6 repeat standard sections. Prog. Oceanogr. 2009, 80, 93–112. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Hall, D.K.; Mote, T.L.; Tedesco, M.; Albert, M.R.; Keegan, K.; Shuman, C.A.; DiGirolamo, N.E.; Neumann, G. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 2012, 39, L20502. [Google Scholar] [CrossRef]
- McPhee, M.G.; Proshutinsky, A.; Morison, J.H.; Steele, M.; Alkire, M.B. Rapid change in freshwater content of the Arctic Ocean. Geophys. Res. Lett. 2009, 36, L10602. [Google Scholar] [CrossRef] [Green Version]
- Broecker, W.S. Unpleasant surprises in the greenhouse? Nature 1987, 328, 123–126. [Google Scholar] [CrossRef]
- Vinogradova, N.T.; Ponte, R.M. Small-Scale Variability in Sea Surface Salinity and Implications for Satellite-Derived Measurements. J. Atmos. Ocean. Technol. 2013, 30, 2689–2694. [Google Scholar] [CrossRef]
- Boutin, J.; Chao, Y.; Asher, W.E.; Delcroix, T.; Drucker, R.; Drushka, K.; Kolodziejczyk, N.; Lee, T.; Reul, N.; Reverdin, G.; et al. Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Subfootprint Variability. Bull. Am. Meteorol. Soc. 2016, 97, 1391–1407. [Google Scholar] [CrossRef] [Green Version]
- Chu, V.W. Greenland ice sheet hydrology. Prog. Phys. Geogr. Earth Environ. 2013, 38, 19–54. [Google Scholar] [CrossRef]
- Meire, L.; Mortensen, J.; Meire, P.; Juul-Pedersen, T.; Sejr, M.K.; Rysgaard, S.; Nygaard, R.; Huybrechts, P.; Meysman, F.J.R. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 2017, 23, 5344–5357. [Google Scholar] [CrossRef] [Green Version]
- Hopwood, M.J.; Carroll, D.; Browning, T.J.; Meire, L.; Mortensen, J.; Krisch, S.; Achterberg, E.P. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 2018, 9, 3256. [Google Scholar] [CrossRef]
- Cape, M.R.; Straneo, F.; Beaird, N.; Bundy, R.M.; Charette, M.A. Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers. Nat. Geosci. 2019, 12, 34–39. [Google Scholar] [CrossRef]
- Oliver, H.; Castelao, R.M.; Wang, C.; Yager, P.L. Meltwater-Enhanced Nutrient Export from Greenland’s Glacial Fjords: A Sensitivity Analysis. J. Geophys. Res. Oceans 2020, 125, e2020JC016185. [Google Scholar] [CrossRef]
- Carroll, D.; Sutherland, D.A.; Hudson, B.; Moon, T.; Catania, G.A.; Shroyer, E.L.; Nash, J.D.; Bartholomaus, T.C.; Felikson, D.; Stearns, L.A.; et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett. 2016, 43, 9739–9748. [Google Scholar] [CrossRef] [Green Version]
- Carroll, D.; Sutherland, D.; Shroyer, E.L.; Nash, J.; Catania, G.; Stearns, L.A. Modeling Turbulent Subglacial Meltwater Plumes: Implications for Fjord-Scale Buoyancy-Driven Circulation. J. Phys. Oceanogr. 2015, 45, 2169–2185. [Google Scholar] [CrossRef] [Green Version]
- De Andrés, E.; Slater, D.A.; Straneo, F.; Otero, J.; Das, S.; Navarro, F. Surface emergence of glacial plumes determined by fjord stratification. Cryosphere 2020, 14, 1951–1969. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Asprey, K.W.; Clattenburg, D.A.; Hodge, G.D. The prodelta environment of a fjord: Suspended particle dynamics. Sedimentology 1985, 32, 83–107. [Google Scholar] [CrossRef]
- Chu, V.W.; Smith, L.C.; Rennermalm, A.K.; Forster, R.R.; Box, J.E.; Reeh, N. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet. J. Glaciol. 2009, 55, 1072–1082. [Google Scholar] [CrossRef] [Green Version]
- Chu, V.W.; Smith, L.C.; Rennermalm, A.K.; Forster, R.R.; Box, J.E. Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet. Cryosphere 2012, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- McGrath, D.; Steffen, K.; Overeem, I.; Mernild, S.H.; Hasholt, B.; Van Den Broeke, M. Sediment plumes as a proxy for local ice-sheet runoff in Kangerlussuaq Fjord, West Greenland. J. Glaciol. 2010, 56, 813–821. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castelao, R.M.; Medeiros, P.M. Coastal Summer Freshening and Meltwater Input off West Greenland from Satellite Observations. Remote Sens. 2022, 14, 6069. https://doi.org/10.3390/rs14236069
Castelao RM, Medeiros PM. Coastal Summer Freshening and Meltwater Input off West Greenland from Satellite Observations. Remote Sensing. 2022; 14(23):6069. https://doi.org/10.3390/rs14236069
Chicago/Turabian StyleCastelao, Renato M., and Patricia M. Medeiros. 2022. "Coastal Summer Freshening and Meltwater Input off West Greenland from Satellite Observations" Remote Sensing 14, no. 23: 6069. https://doi.org/10.3390/rs14236069