Coastal Summer Freshening and Meltwater Input off West Greenland from Satellite Observations
Abstract
1. Introduction
2. Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bulgakov, N.P. Determination of functional graphs of the time at which water reaches the freezing point and the depth of density mixing. Probl. North 1962, 4, 141–148. [Google Scholar]
- Lukas, R.; Lindstrom, E. The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res. 1991, 96, 3343–3357. [Google Scholar] [CrossRef]
- Talley, L.D. Salinity patterns in the ocean. In Encyclopedia of Global Change. Volume: The Earth System: Physical and Chemical Dimensions of Global Environmental Change; MacCracken, M.C., Perry, J.S., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2002; pp. 629–640. [Google Scholar]
- Carmack, E.C.; Yamamoto-Kawai, M.; Haine, T.W.N.; Bacon, S.; Bluhm, B.A.; Lique, C.; Melling, H.; Polyakov, I.V.; Straneo, F.; Timmermans, M.; et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. Geophys. Res. Biogeosci. 2016, 121, 675–717. [Google Scholar] [CrossRef]
- Fine, R.A.; Willey, D.A.; Millero, F.J. Global variability and changes in ocean total alkalinity from Aquarius satellite data. Geophys. Res. Lett. 2017, 44, 261–267. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Yin, J.; Gregory, J.; Dixon, K.; Spelman, M.J.; Hurlin, W.; Weaver, A.J.; Eby, M.; Flato, G.M.; Hasumi, H.; et al. Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes. J. Clim. 2006, 19, 1365–1387. [Google Scholar] [CrossRef]
- Swingedouw, D.; Rodehacke, C.B.; Behrens, E.; Menary, M.; Olsen, S.M.; Gao, Y.; Mikolajewicz, U.; Mignot, J.; Biastoch, A. Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim. Dyn. 2012, 41, 695–720. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Box, J.; Feulner, G.; Mann, M.; Robinson, A.; Rutherford, S.; Schaffernicht, E. Exceptional twenti-eth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 2015, 5, 475–480. [Google Scholar] [CrossRef]
- Seidov, D.; Antonov, J.; Arzayus, K.; Baranova, O.; Biddle, M.; Boyer, T.; Johnson, D.; Mishonov, A.; Paver, C.; Zweng, M. Oceanography north of 60°N from World Ocean Database. Prog. Oceanogr. 2015, 132, 153–173. [Google Scholar] [CrossRef]
- Behrendt, A.; Sumata, H.; Rabe, B.; Schauer, U. UDASH – Unified Database for Arctic and Subarctic Hydrography. Earth Syst. Sci. Data 2018, 10, 1119–1138. [Google Scholar] [CrossRef]
- Duncan, B.N.; Ott, L.E.; Abshire, J.B.; Brucker, L.; Carroll, M.L.; Carton, J.; Comiso, J.C.; Dinnat, E.P.; Forbes, B.C.; Gonsamo, A.; et al. Space-Based Observations for Understanding Changes in the Arctic-Boreal Zone. Rev. Geophys. 2020, 58, e2019RG000652. [Google Scholar] [CrossRef]
- Fournier, S.; Lee, T.; Wang, X.; Armitage, T.W.K.; Wang, O.; Fukumori, I.; Kwok, R. Sea Surface Salinity as a Proxy for Arctic Ocean Freshwater Changes. J. Geophys. Res. Oceans 2020, 125, e2020JC016110. [Google Scholar] [CrossRef]
- Reul, N.; Grodsky, S.; Arias, M.; Broutin, J.; Catany, R.; Chapron, B.; D’Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observations (2010–2019). Remote Sens. Environ. 2020, 242, 111769. [Google Scholar] [CrossRef]
- Swift, C.T.; Mcintosh, R.E. Considerations for Microwave Remote Sensing of Ocean-Surface Salinity. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 480–491. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Brucker, L. Improved Sea Ice Fraction Characterization for L-Band Observations by the Aquarius Radiometers. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1285–1304. [Google Scholar] [CrossRef]
- Garcia-Eidell, C.; Comiso, J.C.; Dinnat, E.; Brucker, L. Satellite observed salinity distributions at high latitudes in the N orthern H emisphere: A comparison of four products. J. Geophys. Res. Oceans 2017, 122, 7717–7736. [Google Scholar] [CrossRef]
- Tang, W.; Yueh, S.; Yang, D.; Fore, A.; Hayashi, A.; Lee, T.; Fournier, S.; Holt, B. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP) Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes. Remote Sens. 2018, 10, 869. [Google Scholar] [CrossRef]
- Fournier, S.; Lee, T.; Tang, W.; Steele, M.; Olmedo, E. Evaluation and Intercomparison of SMOS, Aquarius, and SMAP Sea Surface Salinity Products in the Arctic Ocean. Remote Sens. 2019, 11, 3043. [Google Scholar] [CrossRef]
- Supply, A.; Boutin, J.; Vergely, J.-L.; Kolodziejczyk, N.; Reverdin, G.; Reul, N.; Taresenko, A. New insights into SMOS sea surface salinity rerievals in the Arctic Ocean. Remote Sens. Environm. 2020, 249, 112027. [Google Scholar] [CrossRef]
- Hu, R.; Zhao, J. Sea surface salinity variability in the western subpolar North Atlantic based on satellite observations. Remote Sens. Environ. 2022, 281, 113257. [Google Scholar] [CrossRef]
- Kubryakov, A.; Stanichny, S.; Zatsepin, A. River plume dynamics in the Kara Sea from altimetry-based lagrangian model, satellite salinity and chlorophyll data. Remote Sens. Environ. 2016, 176, 177–187. [Google Scholar] [CrossRef]
- Tang, W.; Yueh, S.H.; Yang, D.; Mcleod, E.; Fore, A.; Hayashi, A.; Olmedo, E.; Martínez, J.; Gabarró, C. The Potential of Space-Based Sea Surface Salinity on Monitoring the Hudson Bay Freshwater Cycle. Remote Sens. 2020, 12, 873. [Google Scholar] [CrossRef]
- Haine, T.W.N.; Curry, B.; Gerdes, R.; Hansen, E.; Karcher, M.; Lee, C.; Rudels, B.; Spreen, G.; de Steur, L.; Stewart, K.D.; et al. Arctic freshwater export: Status, mechanisms, and prospects. Glob. Planet. Chang. 2015, 125, 13–35. [Google Scholar] [CrossRef]
- Jahn, A.; Tremblay, L.B.; Newton, R.; Holland, M.M.; Mysak, L.A.; Dmitrenko, I.A. A tracer study of the Arctic Ocean’s liquid freshwater export variability. J. Geophys. Res. 2010, 115, C07015. [Google Scholar] [CrossRef]
- Wadley, M.R.; Bigg, G.R. Impact of flow through the Canadian Archipelago and Bering Strait on the North Atlantic and Arctic circulation: An ocean modelling study. Q. J. R. Meteorol. Soc. 2002, 128, 2187–2203. [Google Scholar] [CrossRef]
- Tang, C.C.; Ross, C.K.; Yao, T.; Petrie, B.; DeTracey, B.M.; Dunlap, E. The circulation, water masses and sea-ice of Baffin Bay. Prog. Oceanogr. 2004, 63, 183–228. [Google Scholar] [CrossRef]
- Curry, B.B.; Lee, C.M.; Petrie, B. Volume, Freshwater, and Heat Fluxes through Davis Strait, 2004–05. J. Phys. Oceanogr. 2011, 41, 429–436. [Google Scholar] [CrossRef]
- Curry, B.; Lee, C.M.; Petrie, B.; Moritz, R.E.; Kwok, R. Multiyear volume, liquid freshwater, and sea ice transport through Davis Strait, 2004–2010. J. Phys. Oceanogr. 2014, 44, 1245–1266. [Google Scholar] [CrossRef]
- Münchow, A.; Falkner, K.K.; Melling, H. Baffin Island and West Greenland Current Systems in northern Baffin Bay. Prog. Oceanogr. 2015, 132, 305–317. [Google Scholar] [CrossRef]
- Mortensen, J.; Rysgaard, S.; Winding, M.H.S.; Juul-Pedersen, T.; Arendt, K.E.; Lund, H.; Stuart-Lee, A.E.; Meire, L. Multidecadal Water Mass Dynamics on the West Greenland Shelf. J. Geophys. Res. Oceans 2022, 127, e2022JC018724. [Google Scholar] [CrossRef]
- Rignot, E.; Box, J.E.; Burgess, E.; Hanna, E. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett. 2008, 35, L20502. [Google Scholar] [CrossRef]
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Bamber, J.; Broeke, M.V.D.; Ettema, J.; Lenaerts, J.; Rignot, E. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 2012, 39, 19501. [Google Scholar] [CrossRef]
- Bamber, J.L.; Tedstone, A.J.; King, M.D.; Howat, I.M.; Enderlin, E.M.; Broeke, M.R.V.D.; Noel, B. Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results. J. Geophys. Res. Oceans 2018, 123, 1827–1837. [Google Scholar] [CrossRef] [PubMed]
- The IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 2020, 579, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Castelao, R.M.; Rennermalm, A.K.; Tedesco, M.; Bracco, A.; Yager, P.; Mote, T. Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nat. Geosci. 2016, 9, 528–532. [Google Scholar] [CrossRef]
- Slater, D.A.; Carroll, D.; Oliver, H.; Hopwood, M.J.; Straneo, F.; Wood, M.; Willis, J.K.; Morlighem, M. Characteristic Depths, Fluxes, and Timescales for Greenland’s Tidewater Glacier Fjords from Subglacial Discharge-Driven Upwelling During Summer. Geophys. Res. Lett. 2022, 49, e2021GL097081. [Google Scholar] [CrossRef]
- Nielsen, J. The waters around Greenland. In Greenland: The Discovery of Greenland, Exploration, and the Nature of the Country; Vahl, M., Rietzel, C.A., Eds.; Humphrey Milford/Oxford University Press: London, UK, 1928; Volume I, pp. 185–230. [Google Scholar]
- Smith, E.H.; Soule, F.M.; Mosby, O. The Marion and General Greene expeditions to Davis Strait and Labrador Sea. Scientific results, Part 2, physical oceanography. Bull. U.S. Coast Guard 1937, 19, 1–259. [Google Scholar]
- Lazier, J.R.N. The renewal of Labrador Sea water. Deep-Sea Res. 1973, 20, 341–353. [Google Scholar] [CrossRef]
- McCartney, M. Recirculating components to the deep boundary current of the northern North Atlantic. Prog. Oceanogr. 1992, 29, 283–383. [Google Scholar] [CrossRef]
- Lozier, M.S.; Li, F.; Bacon, S.; Bahr, F.; Bower, A.S.; Cunningham, S.A.; de Jong, M.F.; de Steur, L.; DeYoung, B.; Fischer, J.; et al. A sea change in our view of overturning in the subpolar North Atlantic. Science 2019, 363, 516–521. [Google Scholar] [CrossRef]
- Dukhovskoy, D.S.; Myers, P.G.; Platov, G.; Timmermans, M.; Curry, B.; Proshutinsky, A.; Bamber, J.L.; Chassignet, E.; Hu, X.; Lee, C.M.; et al. Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers. J. Geophys. Res. Oceans 2016, 121, 877–907. [Google Scholar] [CrossRef]
- Gillard, L.C.; Hu, X.; Myers, P.G.; Bamber, J.L. Meltwater pathways from marine terminating glaciers of the Greenland ice sheet. Geophys. Res. Lett. 2016, 43, 10,873–10,882. [Google Scholar] [CrossRef]
- Castelao, R.M.; Luo, H.; Oliver, H.; Rennermalm, A.K.; Tedesco, M.; Bracco, A.; Yager, P.L.; Mote, T.L.; Medeiros, P.M. Controls on the Transport of Meltwater from the Southern Greenland Ice Sheet in the Labrador Sea. J. Geophys. Res. Oceans 2019, 124, 3551–3560. [Google Scholar] [CrossRef]
- Böning, C.W.; Behrens, E.; Biastoch, A.; Getzlaff, K.; Bamber, J.L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 2016, 9, 523–527. [Google Scholar] [CrossRef]
- Yang, Q.; Dixon, T.H.; Myers, P.G.; Bonin, J.; Chambers, D.; Broeke, M.R.V.D.; Ribergaard, M.H.; Mortensen, J. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun. 2016, 7, 10525. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G.L.; Castelao, R.M.; Luo, H.; Rennermalm, Å.K.; Tedesco, M.; Mote, T.L.; Oliver, H.; Yager, P.L. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett. 2017, 44, 6278–6285. [Google Scholar] [CrossRef]
- Oliver, H.; Luo, H.; Castelao, R.M.; van Dijken, G.L.; Mattingly, K.S.; Rosen, J.J.; Mote, T.L.; Arrigo, K.R.; Rennermalm, Å.K.; Tedesco, M.; et al. Exploring the Potential Impact of Greenland Meltwater on Stratification, Photosynthetically Active Radiation, and Primary Production in the Labrador Sea. J. Geophys. Res. Oceans 2018, 123, 2570–2591. [Google Scholar] [CrossRef]
- Fenty, I.; Heimbach, P. Coupled Sea Ice–Ocean-State Estimation in the Labrador Sea and Baffin Bay. J. Phys. Oceanogr. 2013, 43, 884–904. [Google Scholar] [CrossRef]
- Boutin, J.; Vergely, J.L.; Khvorostyanov, D. SMOS SSS L3 Maps Generated by CATDS CEC LOCEAN; debias V7.0; SEANOE, 2022. [Google Scholar] [CrossRef]
- Martínez, J.; Gabarró, C.; Turiel, A.; González-Gambau, V.; Umbert, M.; Hoareau, N.; González-Haro, C.; Olmedo, E.; Arias, M.; Catany, R.; et al. Improved BEC SMOS Arctic Sea Surface Salinity product v3.1. Earth Syst. Sci. Data 2022, 14, 307–323. [Google Scholar] [CrossRef]
- Fore, A.; Yueh, S.; Tang, W.; Hayashi, A. SMAP Salinity and Wind Speed Data User’s Guide Version 5.0. 2018. Available online: https://podaac-tools.jpl.nasa.gov/drive/files/allData/smap/docs/%20JPL-CAP_V5/SMAP-SSS_JPL_V5.0_Documentation.pdf (accessed on 18 June 2022).
- Meissner, T.; Wentz, F.J.; Manaster, A.; Lindsley, R.; Brewer, M.; Densberger, M. Remote Sensing Systems SMAP Ocean Surface Salinities, Level 3 Running 8-Day, version 5.0; Remote Sensing Systems: Santa Rosa, CA, USA, 2022. [Google Scholar] [CrossRef]
- Lee, T.; Lagerloef, G.; Gierach, M.M.; Kao, H.-Y.; Yueh, S.; Dohan, K. Aquarius reveals salinity structure of tropical instability waves. Geophys. Res. Lett. 2012, 39, L12610. [Google Scholar] [CrossRef]
- Castelao, R.M.; Dinniman, M.S.; Amos, C.M.; Klinck, J.M.; Medeiros, P.M. Eddy-Driven Transport of Particulate Organic Carbon-Rich Coastal Water Off the West Antarctic Peninsula. J. Geophys. Res. Oceans 2021, 126, e2020JC016791. [Google Scholar] [CrossRef]
- Boyer, T.P.; Baranova, O.K.; Coleman, C.; Garcia, H.E.; Grodsky, A.; Locarnini, R.A.; Mishonov, A.V.; Paver, C.R.; Reagan, J.R.; Seidov, D.; et al. World Ocean Database 2018; Atlas NESDIS 87; Mishonov, A.V., Ed.; NOAA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Lentz, S.J. A climatology of salty intrusions over the continental shelf from Georges Bank to Cape Hatteras. J. Geophys. Res. 2003, 108, 3326. [Google Scholar] [CrossRef]
- Castelao, R. Intrusions of Gulf Stream waters onto the South Atlantic Bight shelf. J. Geophys. Res. Earth Surf. 2011, 116, C10011. [Google Scholar] [CrossRef]
- Castelao, R.M. Mesoscale eddies in the South Atlantic Bight and the Gulf Stream Recirculation region: Vertical structure. J. Geophys. Res. Oceans 2014, 119, 2048–2065. [Google Scholar] [CrossRef]
- Alory, G.; Delcroix, T.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; et al. The French contribution to the voluntary observing ships network of sea surface salinity. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2015, 105, 1–18. [Google Scholar] [CrossRef]
- Fichot, C.G.; Kaiser, K.; Hooker, S.B.; Amon, R.M.W.; Babin, M.; Bélanger, S.; Walker, S.A.; Benner, R. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci. Rep. 2013, 3, 1053. [Google Scholar] [CrossRef]
- Fichot, C.G.; Benner, R. The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol. Oceanogr. 2012, 57, 1453–1466. [Google Scholar] [CrossRef]
- Fichot, C.G.; Lohrenz, S.E.; Benner, R. Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico. J. Geophys. Res. Oceans 2014, 119, 1176–1194. [Google Scholar] [CrossRef]
- Medeiros, P.M.; Babcock-Adams, L.; Seidel, M.; Castelao, R.M.; Di Iorio, D.; Hollibaugh, J.T.; Dittmar, T. Export of terrigenous dissolved organic matter in a broad continental shelf. Limnol. Oceanogr. 2017, 62, 1718–1731. [Google Scholar] [CrossRef]
- Letourneau, M.; Medeiros, P.M. Dissolved Organic Matter Composition in a Marsh-Dominated Estuary: Response to Seasonal Forcing and to the Passage of a Hurricane. J. Geophys. Res. Biogeosci. 2019, 124, 1545–1559. [Google Scholar] [CrossRef]
- Medeiros, P.M. The Effects of Hurricanes and Storms on the Composition of Dissolved Organic Matter in a Southeastern U.S. Estuary. Front. Mar. Sci. 2022, 9, 855720. [Google Scholar] [CrossRef]
- Da Silva, C.E.; Castelao, R.M. Mississippi River Plume Variability in the Gulf of Mexico From SMAP and MODIS-Aqua Observations. J. Geophys. Res. Oceans 2018, 123, 6620–6638. [Google Scholar] [CrossRef]
- Benner, R.; Louchouarn, P.; Amon, R.M.W. Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic. Glob. Biogeochem. Cycles 2005, 19, GB2025. [Google Scholar] [CrossRef]
- Hernes, P.J.; Benner, R. Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans. Mar. Chem. 2006, 100, 66–79. [Google Scholar] [CrossRef]
- Medeiros, P.M.; Seidel, M.; Niggemann, J.; Spencer, R.G.M.; Hernes, P.J.; Yager, P.L.; Miller, W.L.; Dittmar, T.; Hansell, D.A. A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean. Glob. Biogeochem. Cycles 2016, 30, 689–699. [Google Scholar] [CrossRef]
- Bhatia, M.P.; Das, S.B.; Longnecker, K.; Charette, M.A.; Kujawinski, E.B. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim. Cosmochim. Acta 2010, 74, 3768–3784. [Google Scholar] [CrossRef]
- Sharp, M.; Parkes, J.; Cragg, B.; Fairchild, I.J.; Lamb, H.; Tranter, M. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 1999, 27, 107–110. [Google Scholar] [CrossRef]
- Grannas, A.M.; Shepson, P.B.; Filley, T.R. Photochemistry and nature of organic matter in Arctic and Antarctic snow. Glob. Biogeochem. Cycles 2004, 18, GB1006. [Google Scholar] [CrossRef]
- Rennermalm, A.K.; Smith, L.C.; Chu, V.W.; Box, J.E.; Forster, R.R.; Van den Broeke, M.R.; van As, D.; Moustafa, S.E. Evidence of meltwater retention within the Greenland ice sheet. Cryosphere 2013, 7, 1433–1445. [Google Scholar] [CrossRef]
- Rudels, B. Volume and freshwater transports through the Canadian Arctic Archipelago–Baffin Bay system. J. Geophys. Res. 2011, 116, C00D10. [Google Scholar] [CrossRef]
- Majumder, S.; Castelao, R.M.; Amos, C.M. Freshwater Variability and Transport in the Labrador Sea from In Situ and Satellite Observations. J. Geophys. Res. Oceans 2021, 126, e2020JC016751. [Google Scholar] [CrossRef]
- Granskog, M.A.; Stedmon, C.; Dodd, P.A.; Amon, R.M.W.; Pavlov, A.; de Steur, L.; Hansen, E. Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean. J. Geophys. Res. 2012, 117, C12021. [Google Scholar] [CrossRef]
- Davis, R.E. Predictability of Sea Surface Temperature and Sea Level Pressure Anomalies over the North Pacific Ocean. J. Phys. Oceanogr. 1976, 6, 249–266. [Google Scholar] [CrossRef]
- Moyer, A.N.; Sutherland, D.A.; Nienow, P.W.; Sole, A.J. Seasonal Variations in Iceberg Freshwater Flux in Sermilik Fjord, Southeast Greenland From Sentinel-2 Imagery. Geophys. Res. Lett. 2019, 46, 8903–8912. [Google Scholar] [CrossRef]
- Slater, D.A.; Straneo, F.; Felikson, D.; Little, C.M.; Goelzer, H.; Fettweis, X.; Holte, J. Estimating Greenland tidewater glacier retreat driven by submarine melting. Cryosphere 2019, 13, 2489–2509. [Google Scholar] [CrossRef]
- Straneo, F.; Cenedese, C. The Dynamics of Greenland’s Glacial Fjords and Their Role in Climate. Annu. Rev. Mar. Sci. 2015, 7, 89–112. [Google Scholar] [CrossRef] [PubMed]
- Fenty, I.; Willis, J.K.; Khazendar, A.; Dinardo, S.; Forsberg, R.; Fukumori, I.; Holland, D.; Jakobsson, M.; Moller, D.; Morison, J.; et al. Oceans Melting Greenland: Early Results from NASA’s Ocean-Ice Mission in Greenland. Oceanography 2016, 29, 72–83. [Google Scholar] [CrossRef]
- Beaird, N.; Straneo, F.; Jenkins, W. Spreading of Greenland meltwaters in the ocean revealed by noble gases. Geophys. Res. Lett. 2015, 42, 7705–7713. [Google Scholar] [CrossRef]
- Beaird, N.; Straneo, F.; Jenkins, W. Characteristics of meltwater export from Jakobshavn Isbræ and Ilulissat Icefjord. Ann. Glaciol. 2017, 58, 107–117. [Google Scholar] [CrossRef]
- Jackson, R.H.; Straneo, F. Heat, Salt, and Freshwater Budgets for a Glacial Fjord in Greenland. J. Phys. Oceanogr. 2016, 46, 2735–2768. [Google Scholar] [CrossRef]
- Myers, P.G. Impact of freshwater from the Canadian Arctic Archipelago on Labrador Sea Water formation. Geophys. Res. Lett. 2005, 32, L06605. [Google Scholar] [CrossRef]
- Myers, P.G.; Donnelly, C.; Ribergaard, M.H. Structure and variability of the West Greenland Current in Summer derived from 6 repeat standard sections. Prog. Oceanogr. 2009, 80, 93–112. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Hall, D.K.; Mote, T.L.; Tedesco, M.; Albert, M.R.; Keegan, K.; Shuman, C.A.; DiGirolamo, N.E.; Neumann, G. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 2012, 39, L20502. [Google Scholar] [CrossRef]
- McPhee, M.G.; Proshutinsky, A.; Morison, J.H.; Steele, M.; Alkire, M.B. Rapid change in freshwater content of the Arctic Ocean. Geophys. Res. Lett. 2009, 36, L10602. [Google Scholar] [CrossRef]
- Broecker, W.S. Unpleasant surprises in the greenhouse? Nature 1987, 328, 123–126. [Google Scholar] [CrossRef]
- Vinogradova, N.T.; Ponte, R.M. Small-Scale Variability in Sea Surface Salinity and Implications for Satellite-Derived Measurements. J. Atmos. Ocean. Technol. 2013, 30, 2689–2694. [Google Scholar] [CrossRef]
- Boutin, J.; Chao, Y.; Asher, W.E.; Delcroix, T.; Drucker, R.; Drushka, K.; Kolodziejczyk, N.; Lee, T.; Reul, N.; Reverdin, G.; et al. Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Subfootprint Variability. Bull. Am. Meteorol. Soc. 2016, 97, 1391–1407. [Google Scholar] [CrossRef]
- Chu, V.W. Greenland ice sheet hydrology. Prog. Phys. Geogr. Earth Environ. 2013, 38, 19–54. [Google Scholar] [CrossRef]
- Meire, L.; Mortensen, J.; Meire, P.; Juul-Pedersen, T.; Sejr, M.K.; Rysgaard, S.; Nygaard, R.; Huybrechts, P.; Meysman, F.J.R. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 2017, 23, 5344–5357. [Google Scholar] [CrossRef]
- Hopwood, M.J.; Carroll, D.; Browning, T.J.; Meire, L.; Mortensen, J.; Krisch, S.; Achterberg, E.P. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 2018, 9, 3256. [Google Scholar] [CrossRef]
- Cape, M.R.; Straneo, F.; Beaird, N.; Bundy, R.M.; Charette, M.A. Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers. Nat. Geosci. 2019, 12, 34–39. [Google Scholar] [CrossRef]
- Oliver, H.; Castelao, R.M.; Wang, C.; Yager, P.L. Meltwater-Enhanced Nutrient Export from Greenland’s Glacial Fjords: A Sensitivity Analysis. J. Geophys. Res. Oceans 2020, 125, e2020JC016185. [Google Scholar] [CrossRef]
- Carroll, D.; Sutherland, D.A.; Hudson, B.; Moon, T.; Catania, G.A.; Shroyer, E.L.; Nash, J.D.; Bartholomaus, T.C.; Felikson, D.; Stearns, L.A.; et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett. 2016, 43, 9739–9748. [Google Scholar] [CrossRef]
- Carroll, D.; Sutherland, D.; Shroyer, E.L.; Nash, J.; Catania, G.; Stearns, L.A. Modeling Turbulent Subglacial Meltwater Plumes: Implications for Fjord-Scale Buoyancy-Driven Circulation. J. Phys. Oceanogr. 2015, 45, 2169–2185. [Google Scholar] [CrossRef]
- De Andrés, E.; Slater, D.A.; Straneo, F.; Otero, J.; Das, S.; Navarro, F. Surface emergence of glacial plumes determined by fjord stratification. Cryosphere 2020, 14, 1951–1969. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Asprey, K.W.; Clattenburg, D.A.; Hodge, G.D. The prodelta environment of a fjord: Suspended particle dynamics. Sedimentology 1985, 32, 83–107. [Google Scholar] [CrossRef]
- Chu, V.W.; Smith, L.C.; Rennermalm, A.K.; Forster, R.R.; Box, J.E.; Reeh, N. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet. J. Glaciol. 2009, 55, 1072–1082. [Google Scholar] [CrossRef]
- Chu, V.W.; Smith, L.C.; Rennermalm, A.K.; Forster, R.R.; Box, J.E. Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet. Cryosphere 2012, 6, 1–19. [Google Scholar] [CrossRef]
- McGrath, D.; Steffen, K.; Overeem, I.; Mernild, S.H.; Hasholt, B.; Van Den Broeke, M. Sediment plumes as a proxy for local ice-sheet runoff in Kangerlussuaq Fjord, West Greenland. J. Glaciol. 2010, 56, 813–821. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castelao, R.M.; Medeiros, P.M. Coastal Summer Freshening and Meltwater Input off West Greenland from Satellite Observations. Remote Sens. 2022, 14, 6069. https://doi.org/10.3390/rs14236069
Castelao RM, Medeiros PM. Coastal Summer Freshening and Meltwater Input off West Greenland from Satellite Observations. Remote Sensing. 2022; 14(23):6069. https://doi.org/10.3390/rs14236069
Chicago/Turabian StyleCastelao, Renato M., and Patricia M. Medeiros. 2022. "Coastal Summer Freshening and Meltwater Input off West Greenland from Satellite Observations" Remote Sensing 14, no. 23: 6069. https://doi.org/10.3390/rs14236069
APA StyleCastelao, R. M., & Medeiros, P. M. (2022). Coastal Summer Freshening and Meltwater Input off West Greenland from Satellite Observations. Remote Sensing, 14(23), 6069. https://doi.org/10.3390/rs14236069