Numerical and Experimental Studies on the Micro-Doppler Signatures of Freely Flying Insects at W-Band
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radar Signal Modeling of Insects
Insect Species | L [mm] | W [mm] | A [mm] | Reference |
---|---|---|---|---|
mosquito (culex pipiens) | 3.94 | 0.79 | 6.22 | [26] |
bee (apis mellifera) | 9.19 | 2.87 | 52.7 | [27] |
2.2. Radar System
2.3. Experimental Setup for Bee Measurements
2.4. Experimental Setup for Mosquito Measurements
2.5. Measurements Analyzed in the Experimental Results Section
2.6. Automatic Extraction of the Wingbeat Frequency
3. Results
3.1. Numerical Simulations
3.1.1. Simulation Results of a Mosquito
3.1.2. Simulation Results of a Bee
3.2. Experimental Results
3.2.1. Results of the Mosquito Measurements
3.2.2. Results of the Bee Measurements
3.2.3. Automatic Extraction of the Wing Beat Frequency for Mosquitoes and Bees
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GWE Council. GWEC|Global Wind Report 2021; Global Wind Energy Council: Brussels, Belgium, 2021. [Google Scholar]
- Voigt, C.C.; Lehnert, L.S.; Petersons, G.; Adorf, F.; Bach, L. Wildlife and renewable energy: German politics cross migratory bats. Eur. J. Wildl. Res. 2015, 61, 213–219. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Smith, P. Ecological impacts of wind farms on birds: Questions, hypotheses, and research needs. Renew. Sustain. Energy Rev. 2015, 44, 599–607. [Google Scholar] [CrossRef]
- Bulling, L.; Sudhaus, D.; Schnittker, D.; Schuster, E.; Biehl, J.; Tucci, F. Vermeidungsmaßnahmen bei der Planung und Genehmigung von Windenergieanlagen–Bundesweiter Katalog von Maßnahmen zur Verhinderung des Eintrittes von artenschutzrechtlichen Verbotstatbeständen nach § 44 BNatSchG. In Fachagentur Windenergie an Land; Selbstverlag: Berlin, Germany, 2015. [Google Scholar]
- Moll, J.; Zadeh, A.T.; Mälzer, M.; Simon, J.; Krozer, V.; Kramer, C.; Friedmann, H.; Nuber, A.; Durr, M.; Pozdniakov, D.; et al. Radar-based Detection of Birds at Wind Turbine Installations: Results from a Field Study. In Proceedings of the 2020 23rd International Microwave and Radar Conference (MIKON), Warsaw, Poland, 5–8 October 2020. [Google Scholar]
- Zadeh, A.T.; Mälzer, M.; Nguyen, D.H.; Moll, J.; Krozer, V. Radar-based Detection of Birds at Wind Turbines: Numerical Analysis for Optimum Coverage. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021. [Google Scholar]
- de Jong, J.; Millon, L.; Håstad, O.; Victorsson, J. Activity Pattern and Correlation between Bat and Insect Abundance at Wind Turbines in South Sweden. Animals 2021, 11, 3269. [Google Scholar] [CrossRef] [PubMed]
- Noskov, A.; Bendix, J.; Friess, N. A Review of Insect Monitoring Approaches with Special Reference to Radar Techniques. Sensors 2021, 21, 1474. [Google Scholar] [CrossRef]
- Hu, C.; Kong, S.; Wang, R.; Zhang, F.; Wang, L. Insect Mass Estimation Based on Radar Cross Section Parameters and Support Vector Regression Algorithm. Remote Sens. 2020, 12, 1903. [Google Scholar] [CrossRef]
- Wang, R.; Hu, C.; Liu, C.; Long, T.; Kong, S.; Lang, T.; Gould, P.J.L.; Lim, J.; Wu, K. Migratory Insect Multifrequency Radar Cross Sections for Morphological Parameter Estimation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3450–3461. [Google Scholar] [CrossRef]
- Li, W.; Hu, C.; Wang, R.; Kong, S.; Zhang, F. Comprehensive analysis of polarimetric radar cross-section parameters for insect body width and length estimation. Sci. China Inf. Sci. 2021, 64, 122302. [Google Scholar] [CrossRef]
- Hu, C.; Li, W.; Wang, R.; Liu, C.; Yuan, Q.; Sun, P. Accurate Insect Body Length Extraction Based on the Invariant Target Parameters. In Proceedings of the 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, 26–28 March 2018. [Google Scholar]
- Agnihotri, V.; Sabharwal, M.; Goyal, V. Effect of Frequency on Micro-Doppler Signatures of a Helicopter. In Proceedings of the 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), Winterton, South Africa, 5–6 August 2019. [Google Scholar]
- Rahman, S.; Robertson, D.A. Radar micro-Doppler signatures of drones and birds at K-band and W-band. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Hu, C.; Fu, X.; Long, T.; Zeng, T. Micro-Doppler measurement of insect wing-beat frequencies with W-band coherent radar. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, G.; Baker, C. Radar recognition of multiple micro-drones based on their micro-Doppler signatures via dictionary learning. IET Radar Sonar Navig. 2020, 14, 1310–1318. [Google Scholar] [CrossRef]
- Huang, A.; Sévigny, P.; Balaji, B.; Rajan, S. Fundamental frequency estimation of HERM lines of drones. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020. [Google Scholar]
- Hanif, A.; Muaz, M.; Hasan, A.; Adeel, M. Micro-Doppler Based Target Recognition With Radars: A Review. IEEE Sens. J. 2022, 22, 2948–2961. [Google Scholar] [CrossRef]
- Pramudita, A.A.; Arseno, D.; Ali, E. Small displacement detecting method based on multifrequency continuous wave radar system. J. Phys. Conf. Ser. 2019, 1195, 012017. [Google Scholar] [CrossRef]
- Zhao, H.; Hong, H.; Miao, D.; Li, Y.; Zhang, H.; Zhang, Y.; Li, C.; Zhu, X. A noncontact breathing disorder recognition system using 2.4-GHz digital-IF Doppler radar. IEEE J. Biomed. Health Inform. 2018, 23, 208–217. [Google Scholar] [CrossRef]
- Zhao, H.; Hong, H.; Sun, L.; Li, Y.; Li, C.; Zhu, X. Noncontact Physiological Dynamics Detection Using Low-power Digital-IF Doppler Radar. IEEE Trans. Instrum. Meas. 2017, 66, 1780–1788. [Google Scholar] [CrossRef]
- Lipa, B.J.; Barrick, D.E.; Isaacson, J.; Lilleboe, P.M. CODAR wave measurements from a North Sea semisubmersible. IEEE J. Ocean. Eng. 1990, 15, 119–125. [Google Scholar] [CrossRef]
- Deep, Y.; Held, P.; Ram, S.S.; Steinhauser, D.; Gupta, A.; Gruson, F.; Koch, A.; Roy, A. Radar cross-sections of pedestrians at automotive radar frequencies using ray tracing and point scatterer modelling. IET Radar Sonar Navig. 2020, 14, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Lee, J. Sparse Bases and Bayesian Inference of Electromagnetic Scattering. Ph.D. Thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA, December 2020. [Google Scholar]
- Visser, H.J. Antenna Theory and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 15–47. [Google Scholar]
- Townroe, S.; Callaghan, A. Morphological and fecundity traits of Culex mosquitoes caught in gravid traps in urban and rural Berkshire, UK. Bull. Entomol. Res. 2015, 105, 615–620. [Google Scholar] [CrossRef]
- Vance, J.T. Experimental and Natural Variation in Hovering Flight Capacity in Bees, Hymenoptera: Apidae. Ph.D. Thesis, University of Nevada, Las Vegas, NV, USA, August 2009. [Google Scholar]
- Ahmed, I.; Faruque, I.A. High Speed Visual Insect Swarm Tracker (Hi-VISTA) used to identify the effects of confinement on individual insect flight. Bioinspiration Biomimetics 2022, 17, 046012. [Google Scholar] [CrossRef]
- Cheng, X.; Sun, M. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight. Sci. Rep. 2016, 6, 25706. [Google Scholar] [CrossRef] [Green Version]
- Nakata, T.; Liu, H. A fluid–structure interaction model of insect flight with flexible wings. J. Comput. Phys. 2012, 4, 1822–1847. [Google Scholar] [CrossRef]
- Liu, L.; Sun, M. Dynamic flight stability of hovering mosquitoes. J. Theor. Biol. 2019, 464, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; DeBriere, T.J.; Cherukumalli, S.; White, G.S.; Burkett-Cadena, N.D. Infrared light sensors permit rapid recording of wingbeat frequency and bioacoustic species identification of mosquitoes. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vance, J.T.; Altshuler, D.L.; Dickson, W.B.; Dickinson, M.H.; Roberts, S.P. Hovering Flight in the Honeybee Apis mellifera: Kinematic Mechanisms for Varying Aerodynamic Forces. Physiol. Biochem. Zool. 2014, 87, 870–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafanezhad, I.; Boric-Lubecke, O. Benefits of Coherent Low-IF for Vital Signs Monitoring Using Doppler Radar. IEEE Trans. Microw. Theory Tech. 2014, 62, 2481–2487. [Google Scholar] [CrossRef]
- Li, C.; Yu, X.; Lee, C.-M.; Li, D.; Ran, L.; Lin, J. High-Sensitivity Software-Configurable 5.8-GHz Radar Sensor Receiver Chip in 0.13-μm CMOS for Noncontact Vital Sign Detection. IEEE Trans. Microw. Theory Tech. 2010, 58, 1410–1419. [Google Scholar]
- Xu, X.; Feng, C.; Wu, H.; Zhu, H. Micro-Doppler Extraction of Cone-Shaped Target Based on STFT-RANSAC. In Proceedings of the 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2022. [Google Scholar]
- Qin, X.; Deng, B.; Wang, H. Micro-Doppler Feature Extraction of Rotating Structures of Aircraft Targets with Terahertz Radar. Remote Sens. 2022, 14, 3856. [Google Scholar] [CrossRef]
- Bae, C.; Lee, S.; Jung, Y. High-speed continuous wavelet transform processor for vital signal measurement using frequency-modulated continuous wave radar. Sensors 2022, 22, 3073. [Google Scholar] [CrossRef]
- Kumawat, H.C.; Raj, A.A.B. SP-WVD with Adaptive-Filter-Bank-Supported RF Sensor for Low RCS Targets’ Nonlinear Micro-Doppler Signature/Pattern Imaging System. Sensors 2022, 22, 1186. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, J.; Zhang, Y.; Huang, Y. Radar Micro-Doppler Signatures Model Simulation and Feature Extraction of Three Typical LSS Targets. In Proceedings of the 2019 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China, 20–22 December 2019. [Google Scholar]
- Jingcheng, Z.; Xinru, F.; Zongkai, Y.; Fengtong, X. UAV detection and identification in the Internet of Things. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019. [Google Scholar]
- Fuhrmann, L.; Biallawons, O.; Klare, J.; Panhuber, R.; Klenke, R.; Ender, J. Micro-Doppler analysis and classification of UAVs at Ka band. In Proceedings of the 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 28–30 June 2017. [Google Scholar]
- Harmanny, R.I.; de Wit, J.J.; Premel-Cabic, G. Radar micro-Doppler mini-UAV classification using spectrograms and cepstrograms. Int. J. Microw. Wirel. Technol. 2015, 7, 469–477. [Google Scholar] [CrossRef]
- Guo, X.; Ng, C.S.; de Jong, E.; Smits, A.B. Micro-Doppler Based Mini-UAV Detection with Low-Cost Distributed Radar in Dense Urban Environment. In Proceedings of the 2019 16th European Radar Conference (EuRAD), Paris, France, 2–4 October 2019. [Google Scholar]
- Villarreal, S.M.; Winokur, O.; Harrington, L. The Impact of Temperature and Body Size on Fundamental Flight Tone Variation in the Mosquito Vector Aedes aegypti (Diptera: Culicidae): Implications for Acoustic Lures. J. Med. Entomol. 2017, 54, 1116–1121. [Google Scholar] [CrossRef] [Green Version]
- Parmezan, A.R.; Souza, V.; Žliobaitė, I.; Batista, G.E. Changes in the wing-beat frequency of bees and wasps depending on environmental conditions: A study with optical sensors. Apidologie 2021, 52, 731–748. [Google Scholar] [CrossRef]
Frequency range | 75–110 GHz |
Optimal frequency | |
Output power | < |
Noise figure | |
Dynamic range | |
Antenna gain |
Insect Species | Simulated Frequency | Extracted Frequency | Relative Error |
---|---|---|---|
mosquito (culex pipiens) | 408 Hz | 416 Hz | 1.96% |
bee (apis mellifera) | 227 Hz | 227.6 Hz | 0.26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diyap, M.; Zadeh, A.T.; Moll, J.; Krozer, V. Numerical and Experimental Studies on the Micro-Doppler Signatures of Freely Flying Insects at W-Band. Remote Sens. 2022, 14, 5917. https://doi.org/10.3390/rs14235917
Diyap M, Zadeh AT, Moll J, Krozer V. Numerical and Experimental Studies on the Micro-Doppler Signatures of Freely Flying Insects at W-Band. Remote Sensing. 2022; 14(23):5917. https://doi.org/10.3390/rs14235917
Chicago/Turabian StyleDiyap, Murat, Ashkan Taremi Zadeh, Jochen Moll, and Viktor Krozer. 2022. "Numerical and Experimental Studies on the Micro-Doppler Signatures of Freely Flying Insects at W-Band" Remote Sensing 14, no. 23: 5917. https://doi.org/10.3390/rs14235917
APA StyleDiyap, M., Zadeh, A. T., Moll, J., & Krozer, V. (2022). Numerical and Experimental Studies on the Micro-Doppler Signatures of Freely Flying Insects at W-Band. Remote Sensing, 14(23), 5917. https://doi.org/10.3390/rs14235917