A Registration-Error-Resistant Swath Reconstruction Method of ZY1-02D Satellite Hyperspectral Data Using SRE-ResNet
Abstract
:1. Introduction
2. Methods
2.1. Basic Structure of SRE-ResNet
2.2. ResNet Architecture
3. Experiments and Discussion
3.1. Datasets
3.2. Experimental Settings
3.3. Discussions
- (1)
- Comparison of using PCA and without PCA
- (2)
- Effects of simulated registration errors on fusion
- (3)
- Comparison with state-of-the-art methods
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification. IEEE Signal Process. Mag. 2014, 31, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Eismann, M.T.; Meola, J.; Hardie, R.C. Hyperspectral Change Detection in the Presenceof Diurnal and Seasonal Variations. IEEE Trans. Geosci. Remote Sens. 2008, 46, 237–249. [Google Scholar] [CrossRef]
- Koponen, S.; Pulliainen, J.; Kallio, K.; Hallikainen, M. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environ. 2002, 79, 51–59. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Ustin, S.L.; Whiting, M.L. Temporal and Spatial Relationships between within-field Yield variability in Cotton and High-Spatial Hyperspectral Remote Sensing Imagery. Agron. J. 2005, 97, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Liu, K.; Ren, G.; Liu, W.; Yang, G.; Meng, X.; Peng, J. A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102572. [Google Scholar] [CrossRef]
- Chang, M.; Meng, X.; Sun, W.; Yang, G.; Peng, J. Collaborative Coupled Hyperspectral Unmixing Based Subpixel Change Detection for Analyzing Coastal Wetlands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8208–8224. [Google Scholar] [CrossRef]
- Yuan, Q.; Wei, Y.; Meng, X.; Shen, H.; Zhang, L. A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 978–989. [Google Scholar] [CrossRef] [Green Version]
- Gross, H.N.; Schott, J.R. Application of Spectral Mixture Analysis and Image Fusion Techniques for Image Sharpening. Remote Sens. Environ. 1998, 63, 85–94. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, X.; Wang, G.; Wang, Z. Application of Several Non-negative Matrix Factorization-Based Methods in Remote Sensing Image Fusion. In Proceedings of the 5th International Conference on Fuzzy Systems & Knowledge Discovery (FSKD), Jinan, China, 18–20 October 2008. [Google Scholar]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 528–537. [Google Scholar] [CrossRef]
- Hardie, R.; Eismann, M.; Wilson, G. MAP Estimation for Hyperspectral Image Resolution Enhancement Using an Auxiliary Sensor. IEEE Trans Image Process. 2004, 13, 1174–1184. [Google Scholar] [CrossRef]
- Eismann, M.T.; Hardie, R. Resolution enhancement of hyperspectral imagery using coincident panchromatic imagery and a stochastic mixing model. In Proceedings of the IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Greenbelt, MD, USA, 27–28 October 2003. [Google Scholar]
- Eismann, M.T.; Hardie, R. Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions. IEEE Trans. Geosci. Remote Sens. 2005, 43, 455–465. [Google Scholar] [CrossRef]
- ZhiRong, G.; Bin, W.; LiMing, Z. Remote sensing image fusion based on Bayesian linear estimation. Sci. China. Ser. F Inf. Sci. 2007, 50, 227–240. [Google Scholar]
- Wei, Q.; Dobigeon, N.; Tourneret, J.-Y. Bayesian fusion of hyperspectral and multispectral images. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 3176–3180. [Google Scholar]
- Wei, Q.; Dobigeon, N.; Tourneret, J.-Y. Bayesian fusion of multispectral and hyperspectral images with unknown sensor spectral response. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 698–702. [Google Scholar]
- Li, S.; Yang, B. A New Pan-Sharpening Method Using a Compressed Sensing Technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 738–746. [Google Scholar] [CrossRef]
- Huang, B.; Song, H.; Cui, H.; Peng, J.; Xu, Z. Spatial and Spectral Image Fusion Using Sparse Matrix Factorization. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1693–1704. [Google Scholar] [CrossRef]
- Han, C.; Zhang, H.; Gao, C.; Jiang, C.; Sang, N.; Zhang, L. A Remote Sensing Image Fusion Method Based on the Analysis Sparse Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 439–453. [Google Scholar] [CrossRef]
- Huang, W.; Xiao, L.; Wei, Z.; Liu, H.; Tang, S. A New Pan-Sharpening Method With Deep Neural Networks. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1037–1041. [Google Scholar] [CrossRef]
- Giuseppe, M.; Davide, C.; Luisa, V.; Giuseppe, S. Pansharpening by Convolutional Neural Networks. Remote Sens. 2016, 8, 594. [Google Scholar]
- Azarang, A.; Ghassemian, H. A new pansharpening method using multi resolution analysis framework and deep neural networks. In Proceedings of the 2017 3rd International Conference on Pattern Recognition & Image Analysis (IPRIA), Shahrekord, Iran, 19–20 April 2017. [Google Scholar]
- Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L. Boosting the Accuracy of Multispectral Image Pansharpening by Learning a Deep Residual Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1795–1799. [Google Scholar] [CrossRef] [Green Version]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 639–643. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zhang, L.; Yang, H.; Wu, T.; Cen, Y.; Guo, Y. Enhancement of Spectral Resolution for Remotely Sensed Multispectral Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2198–2211. [Google Scholar] [CrossRef]
- Gao, L.; Hong, D.; Yao, J.; Zhang, B.; Gamba, P.; Chanussot, J. Spectral Superresolution of Multispectral Imagery with Joint Sparse and Low-Rank Learning. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2269–2280. [Google Scholar] [CrossRef]
- Xiong, Z.; Shi, Z.; Li, H.; Wang, L.; Liu, D.; Wu, F. HSCNN: CNN-Based Hyperspectral Image Recovery from Spectrally Undersampled Projections. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Shi, Z.; Chen, C.; Xiong, Z.; Liu, D.; Wu, F. HSCNN+: Advanced CNN-Based Hyperspectral Recovery from RGB Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Richards, A.J. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Farrell, M.D.; Mersereau, R.M., Jr. On the impact of PCA dimension reduction for hyperspectral detection of difficult targets. IEEE Geosci. Remote Sens. Lett. 2005, 2, 192–195. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 18–20 June 1996; pp. 770–778. [Google Scholar]
- Bishop, C.M. Neural Networks for Pattern Recognition. Adv. Comput. 1993, 37, 119–166. [Google Scholar]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- Zhang, Y.; De Backer, S.; Scheunders, P. Noise-Resistant Wavelet-Based Bayesian Fusion of Multispectral and Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3834–3843. [Google Scholar] [CrossRef]
- Alparone, L.; Wald, L.; Chanussot, J.; Thomas, C.; Gamba, P.; Bruce, L.M. Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data Fusion Contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Fiete, R.D.; Tantalo, T. Comparison of SNR image quality metrics for remote sensing systems. Opt. Eng. 2001, 40, 574–585. [Google Scholar]
Sensor | Parameter | ||
---|---|---|---|
Hyperspectral Camera | Spectral Range | 0.4~2.5 μm | |
Number of Bands | 166 | ||
Ground Pixel Resolution | 30 m | ||
Swath | 60 km | ||
Spectral Resolution | Visible Near-infrared | 10 nm, 76 bands | |
ShortWave infrared | 20 nm, 90 bands | ||
Visible/near-infrared camera | Spectral Range | Panchromatic | B01: 0.452~0.902 μm |
Multispectral | B02: 0.452~0.521 μm | ||
B03: 0.522~0.607 μm | |||
B04: 0.635~0.694 μm | |||
B05: 0.776~0.895 μm | |||
B06: 0.416~0.452 μm | |||
B07: 0.591~0.633 μm | |||
B08: 0.708~0.752 μm | |||
B09: 0.871~1.047 μm | |||
Ground Pixel Resolution | Panchromatic: 2.5 m | ||
Multispectral: 10 m | |||
Swath | 115 km |
SRE-ResNet | ResNet | |
---|---|---|
PSNR | 45.18373 | 39.82037 |
SAM | 0.02381 | 0.04800 |
SSIM | 0.98469 | 0.96893 |
RMSE | 34.91505 | 62.51458 |
SRE-ResNet | ResNet | |
---|---|---|
PSNR | 39.13821 | 36.82027 |
SAM | 0.03656 | 0.05933 |
SSIM | 0.94430 | 0.92723 |
RMSE | 54.92269 | 71.55686 |
SRE-ResNet | HSCNN | CNMF | J-SLoL | |
---|---|---|---|---|
PSNR | 45.18373 | 38.26820 | 37.42987 | 36.28148 |
SAM | 0.03000 | 0.06527 | 0.10819 | 0.12937 |
SSIM | 0.98466 | 0.94734 | 0.94292 | 0.90949 |
RMSE | 34.91505 | 65.09146 | 110.92780 | 169.33570 |
Time(s) | 242 | 415 | 8628 | 7291 |
SRE-ResNet | HSCNN | CNMF | J-SLoL | |
---|---|---|---|---|
PSNR | 42.10580 | 36.14708 | 37.93763 | 35.76092 |
SAM | 0.03656 | 0.07635 | 0.09107 | 0.10593 |
SSIM | 0.96790 | 0.90099 | 0.92941 | 0.89520 |
RMSE | 38.83331 | 90.78757 | 71.98587 | 105.00250 |
Time(s) | 346 | 495 | 13951 | 8327 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, M.; Li, G.; Zhou, X.; Ma, C.; Zhang, L.; Zhang, X.; Shang, K. A Registration-Error-Resistant Swath Reconstruction Method of ZY1-02D Satellite Hyperspectral Data Using SRE-ResNet. Remote Sens. 2022, 14, 5890. https://doi.org/10.3390/rs14225890
Peng M, Li G, Zhou X, Ma C, Zhang L, Zhang X, Shang K. A Registration-Error-Resistant Swath Reconstruction Method of ZY1-02D Satellite Hyperspectral Data Using SRE-ResNet. Remote Sensing. 2022; 14(22):5890. https://doi.org/10.3390/rs14225890
Chicago/Turabian StylePeng, Mingyuan, Guoyuan Li, Xiaoqing Zhou, Chen Ma, Lifu Zhang, Xia Zhang, and Kun Shang. 2022. "A Registration-Error-Resistant Swath Reconstruction Method of ZY1-02D Satellite Hyperspectral Data Using SRE-ResNet" Remote Sensing 14, no. 22: 5890. https://doi.org/10.3390/rs14225890
APA StylePeng, M., Li, G., Zhou, X., Ma, C., Zhang, L., Zhang, X., & Shang, K. (2022). A Registration-Error-Resistant Swath Reconstruction Method of ZY1-02D Satellite Hyperspectral Data Using SRE-ResNet. Remote Sensing, 14(22), 5890. https://doi.org/10.3390/rs14225890