Investigating the Long-Term Variation Trends of Absorbing Aerosols over Asia by Using Multiple Satellites
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Combination of Strategies and Evaluation Criterion
3. Results and Discussions
3.1. The Frequency Comparison of the Two Periods
3.2. Comparison of Smoke AAOD between Two Periods
3.3. Time-Series Comparison
3.4. Regional Relevance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, J.; Guan, Z.; Ma, F. Possible Combined Influences of Absorbing Aerosols and Anomalous Atmospheric Circulation on Summertime Diurnal Temperature Range Variation over the Middle and Lower Reaches of the Yangtze River. J. Meteorol. Res. 2016, 30, 927–943. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Guo, J.; Wang, Y.; Chen, D.; Chen, H. The Climatology and Trend of Black Carbon in China from 12-Year Ground Observations. Clim. Dyn. 2019, 53, 5881–5892. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Cohen, J.B.; Qin, K. Inferring Polluted Asian Absorbing Aerosol Properties Using Decadal Scale AERONET Measurements and a MIE Model. Geophys. Res. Lett. 2021, 48, e2021GL094300. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Qian, Y.; Zhao, C.; Kang, L.; Yang, B.; Wang, Y.; Liu, Y.; Yuan, T.; Wang, T.; et al. An Overview of Mineral Dust Modeling over East Asia. J. Meteorol. Res. 2017, 31, 633–653. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, J.; Yao, F.; Zhang, D.; Guo, H. Temporal Variation of Dust Emissions in Dust Sources over Central Asia in Recent Decades and the Climate Linkages. Atmos. Environ. 2020, 222, 117176. [Google Scholar] [CrossRef]
- Xue, Y.; He, X.; Xu, H.; Guang, J.; Guo, J.; Mei, L. China Collection 2.0: The Aerosol Optical Depth Dataset from the Synergetic Retrieval of Aerosol Properties Algorithm. Atmos. Environ. 2014, 95, 45–58. [Google Scholar] [CrossRef]
- Zhou, W.; Xu, W.; Kim, H.; Zhang, Q.; Fu, P.; Worsnop, D.R.; Sun, Y. A Review of Aerosol Chemistry in Asia: Insights from Aerosol Mass Spectrometer Measurements. Environ. Sci. Process. Impacts 2020, 22, 1616–1653. [Google Scholar] [CrossRef]
- Levin, Z.; Cotton, W.R. Aerosol Pollution Impact on Precipitation: A Scientific Review; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Chen, Y.; Peng, K.; Huang, J.; Kang, Y.; Zhang, H.; Jiang, X. Seasonal and Regional Variability of Cloud Liquid Water Path in Northwestern China Derived from MODIS/CERES Observations. Int. J. Remote Sens. 2010, 31, 1037–1042. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Guo, J.; Zhao, C.; Cribb, M.C.; Dong, X.; Fan, J.; Gong, D.; Huang, J.; Jiang, M.; et al. East Asian Study of Tropospheric Aerosols and Their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIRCPC). J. Geophys. Res. Atmos. 2019, 124, 13026–13054. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.T.; Shine, K.P.; Forster, P.M. The Semi-Direct Aerosol Effect: Impact of Absorbing Aerosols on Marine Stratocumulus. Q. J. R. Meteorol. Soc. 2004, 130, 1407–1422. [Google Scholar] [CrossRef]
- Bolaño-Ortiz, T.R.; Pascual-Flores, R.M.; López-Noreña, A.I.; Ruggeri, M.F.; Lakkis, S.G.; Fernández, R.P.; Puliafito, S.E. Assessment of Absorbing Aerosols on Austral Spring Snow Albedo Reduction by Several Basins in the Central Andes of Chile from Daily Satellite Observations (2000–2016) and a Case Study with the WRF-Chem Model. SN Appl. Sci. 2019, 1, 1352. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Pant, P.; Pope, F.D. Air Quality during and after Festivals: Aerosol Concentrations, Composition and Health Effects. Atmos. Res. 2019, 227, 220–232. [Google Scholar] [CrossRef]
- Kanaya, Y.; Yamaji, K.; Miyakawa, T.; Taketani, F.; Zhu, C.; Choi, Y.; Komazaki, Y.; Ikeda, K.; Kondo, Y.; Klimont, Z. Rapid Reduction in Black Carbon Emissions from China: Evidence from 2009–2019 Observations on Fukue Island, Japan. Atmos. Chem. Phys. 2020, 20, 6339–6356. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [Green Version]
- An, Z.; Huang, R.J.; Zhang, R.; Tie, X.; Li, G.; Cao, J.; Zhou, W.; Shi, Z.; Han, Y.; Gu, Z.; et al. Severe Haze in Northern China: A Synergy of Anthropogenic Emissions and Atmospheric Processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, Z.; Ma, Y.; Li, L.; Wei, P. Retrieval of Aerosol Chemical Composition from Ground-Based Remote Sensing Data of Sun-Sky Radiometers during Haze Days in Beijing Winter. Yaogan Xuebao J. Remote Sens. 2013, 17, 944–958. [Google Scholar] [CrossRef]
- Guan, X.; Wang, M.; Du, T.; Tian, P.; Zhang, N.; Shi, J.; Chang, Y.; Zhang, L.; Zhang, M.; Song, X.; et al. Wintertime Aerosol Optical Properties in Lanzhou, Northwest China: Emphasis on the Rapid Increase of Aerosol Absorption under High Particulate Pollution. Atmos. Environ. 2021, 246, 118081. [Google Scholar] [CrossRef]
- Liu, H.; Pan, X.; Wu, Y.; Ji, D.; Tian, Y.; Chen, X.; Wang, Z. Size-Resolved Mixing State and Optical Properties of Black Carbon at an Urban Site in Beijing. Sci. Total Environ. 2020, 749, 141523. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Zhou, W.; Xie, C.; Wu, C.; Chen, C.; Han, T.; Wang, Q.; Li, Z.; Li, J.; et al. Measurement Report: Long-Term Changes in Black Carbon and Aerosol Optical Properties from 2012 to 2020 in Beijing, China. Atmos. Chem. Phys. 2022, 22, 561–575. [Google Scholar] [CrossRef]
- Wei, X.; Chang, N.B.; Bai, K.; Gao, W. Satellite Remote Sensing of Aerosol Optical Depth: Advances, Challenges, and Perspectives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1640–1725. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global Evaluation of the Collection 5 MODIS Dark-Target Aerosol Products over Land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Liu, Y.; Coull, B.A.; Schwartz, J.; Koutrakis, P. A Novel Calibration Approach of MODIS AOD Data to Predict PM2.5 Concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Xue, Y.; Guang, J.; Kazemian, H.; Zhang, J.; Li, C. Improved Aerosol Optical Depth and Angstrom Exponent Retrieval over Land from MODIS Based on the Non-Lambertian Forward Model. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1629–1633. [Google Scholar] [CrossRef]
- Li, Y.; Xue, Y.; de Leeuw, G.; Li, C.; Yang, L.; Hou, T.; Marir, F. Retrieval of Aerosol Optical Depth and Surface Reflectance over Land from NOAA AVHRR Data. Remote Sens. Environ. 2013, 133, 1–20. [Google Scholar] [CrossRef]
- Gao, L.; Chen, L.; Li, J.; Heidinger, A.K.; Xu, X.; Qin, S. A Long-Term Historical Aerosol Optical Depth Data Record (1982–2011) Over China From AVHRR. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2467–2480. [Google Scholar] [CrossRef]
- Ge, B.; Yang, L.; Chen, X.; Li, Z.; Mei, X.; Liu, L. Study on Aerosol Optical Depth Retrieval over Land from Himawari-8 Data Based on Dark Target Method. Yaogan Xuebao J. Remote Sens. 2018, 22, 38–50. [Google Scholar] [CrossRef]
- Li, D.; Qin, K.; Wu, L.; Xu, J.; Letu, H.; Zou, B.; He, Q.; Li, Y. Evaluation of JAXA Himawari-8-AHI Level-3 Aerosol Products over Eastern China. Atmosphere 2019, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Mhawish, A.; Sorek-Hamer, M.; Chatfield, R.; Banerjee, T.; Bilal, M.; Kumar, M.; Sarangi, C.; Franklin, M.; Chau, K.; Garay, M.; et al. Aerosol Characteristics from Earth Observation Systems: A Comprehensive Investigation over South Asia (2000–2019). Remote Sens. Environ. 2021, 259, 112410. [Google Scholar] [CrossRef]
- Wang, H.; Zhai, Y.; Zhao, M.; Qin, K. Evaluation of Aerosol Optical Depth Products from Multiangular and Polarized Satellite Measurements Over Mountainous Areas. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Tan, Y.; Li, E.; Zhang, Z.; Lin, X.; Chi, Y.; Zhou, L.; Wu, C.; Wang, Q. Validation of POLDER-3/GRASP Aerosol Products Using AERONET Measurements over China. Atmos. Environ. 2019, 215, 116893.1–116893.14. [Google Scholar] [CrossRef]
- Vaughan, M.A.; Young, S.A.; Winker, D.M.; Powell, K.A.; Omar, A.H.; Liu, Z.; Hu, Y.; Hostetler, C.A. Fully Automated Analysis of Space-Based Lidar Data: An Overview of the CALIPSO Retrieval Algorithms and Data Products. In Proceedings of the Laser Radar Techniques for Atmospheric Sensing, Gran Canaria, Italy, 14–16 September 2004; Volume 5575, p. 16. [Google Scholar]
- Sekiyama, T.T.; Tanaka, T.Y.; Shimizu, A.; Miyoshi, T. Data Assimilation of CALIPSO Aerosol Observations. Atmos. Chem. Phys. 2010, 10, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Schuster, G.L.; Vaughan, M.; MacDonnell, D.; Su, W.; Winker, D.; Dubovik, O.; Lapyonok, T.; Trepte, C. Comparison of CALIPSO Aerosol Optical Depth Retrievals to AERONET Measurements, and a Climatology for the Lidar Ratio of Dust. Atmos. Chem. Phys. 2012, 12, 7431–7452. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and Surface UV Products Form Ozone Monitoring Instrument Observations: An Overview. J. Geophys. Res. Atmos. 2007, 112, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Eom, S.; Kim, J.; Lee, S.; Holben, B.N.; Eck, T.F.; Park, S.-B.; Park, S.S. Long-Term Variation of Aerosol Optical Properties Associated with Aerosol Types Over East Asia Using Aeronet and Satellite (Viirs, Omi) Data. SSRN Electron. J. 2022, 280, 106457. [Google Scholar] [CrossRef]
- Tariq, S.; Ali, M. Spatio-Temporal Distribution of Absorbing Aerosols over Pakistan Retrieved from OMI Onboard Aura Satellite. Atmos. Pollut. Res. 2015, 6, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Adams, A.M.; Prospero, J.M.; Zhang, C. CALIPSO-Derived Three-Dimensional Structure of Aerosol over the Atlantic Basin and Adjacent Continents. J. Clim. 2012, 25, 6862–6879. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.; Wang, F.; Huang, J.; Xia, F.; Lou, M.; Wu, Y.; Jiang, J.H.; Xie, T.; Zhaxi, Y.; et al. Three-Dimensional Structure of Aerosol in China: A Perspective from Multi-Satellite Observations. Atmos. Res. 2016, 178–179, 580–589. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Chishtie, F.; Bibi, S.; Shahid, I.; Blaschke, T. Intercomparison of MODIS, MISR, OMI, and CALIPSO Aerosol Optical Depth Retrievals for Four Locations on the Indo-Gangetic Plains and Validation against AERONET Data. Atmos. Environ. 2015, 111, 113–126. [Google Scholar] [CrossRef]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; Decarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and Related Data as an Indicator of Aerosol Composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef]
- Jethva, H.; Torres, O.; Ahn, C. Global Assessment of OMI Aerosol Single-Scattering Albedo Using Ground-Based AERONET Inversion. J. Geophys. Res. 2014, 119, 9020–9040. [Google Scholar] [CrossRef]
- Bollasina, M.; Nigam, S.; Lau, K.M. Absorbing Aerosols and Summer Monsoon Evolution over South Asia: An Observational Portrayal. J. Clim. 2008, 21, 3221–3239. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, S.; Rupakheti, M. Trends in Physical, Optical and Chemical Columnar Aerosol Characteristics and Radiative Effects over South and East Asia: Satellite and Ground-Based Observations. Gondwana Res. 2022, 105, 366–387. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Cao, X.; Zhang, Z.; Liang, J. A-Train Satellite Measurements of Dust Aerosol Distributions over Northern China. J. Quant. Spectrosc. Radiat. Transf. 2013, 122, 170–179. [Google Scholar] [CrossRef]
- Kang, L.; Chen, S.; Huang, J.; Zhao, S.; Ma, X.; Yuan, T.; Zhang, X.; Xie, T. The Spatial and Temporal Distributions of Absorbing Aerosols over East Asia. Remote Sens. 2017, 9, 1050. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Cao, F.S.; Tian, Q.; Chen, Y.H.; Liu, Q.; Huang, Y.W.; Wang, Y.J. Spatial-Temporal Distribution of Absorptive Aerosols in the Yangtze River Delta. Huanjing Kexue/Environ. Sci. 2019, 40, 3898–3907. [Google Scholar] [CrossRef]
- Ali, M.A.; Nichol, J.E.; Bilal, M.; Qiu, Z.; Mazhar, U.; Wahiduzzaman, M.; Almazroui, M.; Islam, M.N. Classification of Aerosols over Saudi Arabia from 2004–2016. Atmos. Environ. 2020, 241, 117785. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Lasko, K.; Giglio, L.; Justice, C. Vegetation Fires, Absorbing Aerosols and Smoke Plume Characteristics in Diverse Biomass Burning Regions of Asia. Environ. Res. Lett. 2015, 10, 105003. [Google Scholar] [CrossRef] [Green Version]
- Joshi, H.; Naja, M.; Singh, K.P.; Kumar, R.; Bhardwaj, P.; Babu, S.S.; Satheesh, S.K.; Moorthy, K.K.; Chandola, H.C. Investigations of Aerosol Black Carbon from a Semi-Urban Site in the Indo-Gangetic Plain Region. Atmos. Environ. 2016, 125, 346–359. [Google Scholar] [CrossRef]
- Satheesh, S.K.; Torres, O.; Remer, L.A.; Babu, S.S.; Vinoj, V.; Eck, T.F.; Kleidman, R.G.; Holben, B.N. Improved Assessment of Aerosol Absorption Using OMI-MODIS Joint Retrieval. J. Geophys. Res. Atmos. 2009, 114, 1–10. [Google Scholar] [CrossRef]
- Kauppi, A.; Kolmonen, P.; Laine, M.; Tamminen, J. Aerosol-Type Retrieval and Uncertainty Quantification from OMI Data. Atmos. Meas. Tech. 2017, 10, 4079–4098. [Google Scholar] [CrossRef] [Green Version]
- Eswaran, K.; Satheesh, S.K.; Srinivasan, J. Multi-Satellite Retrieval of Single Scattering Albedo Using the OMI–MODIS Algorithm. Atmos. Chem. Phys. 2019, 19, 3307–3324. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Gu, X.; Yu, T.; Cheng, T.; Chen, H. Trend Analysis of the Aerosol Optical Depth from Fusion of MISR and MODIS Retrievals over China. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012036. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Makkonen, R.; Guo, Z.; Zhao, Y.; Seppä, H. An Increase in the Biogenic Aerosol Concentration as a Contributing Factor to the Recent Wetting Trend in Tibetan Plateau. Sci. Rep. 2015, 5, 14628. [Google Scholar] [CrossRef] [Green Version]
- Chanllawala, K.; Turakhia, T.; Iyer, R. Long Term Trend of Aerosol Optical Depth (AOD) over Ahmedabad and Gandhinagar: A Satellite Approach. In Proceedings of the 2020 IEEE India Geoscience and Remote Sensing Symposium, GARSS 2020 Proceedings, Ahmedabad, India, 1–4 December 2020; pp. 189–192. [Google Scholar]
- Go, S.; Kim, J.; Park, S.S.; Kim, M.; Lim, H.; Kim, J.Y.; Lee, D.W.; Im, J. Synergistic Use of Hyperspectral Uv-Visible Omi and Broadband Meteorological Imager Modis Data for a Merged Aerosol Product. Remote Sens. 2020, 12, 3987. [Google Scholar] [CrossRef]
- Levelt, P.F.; Van Den Oord, G.H.J.; Dobber, M.R.; Mälkki, A.; Visser, H.; De Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1100. [Google Scholar] [CrossRef]
- Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI Near-UV Aerosol Algorithm Using A-Train CALIOP and AIRS Observations. Atmos. Meas. Tech. 2013, 6, 3257–3270. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS Aerosol Products over Land and Ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Burton, S.P.; Ferrare, R.A.; Vaughan, M.A.; Omar, A.H.; Rogers, R.R.; Hostetler, C.A.; Hair, J.W. Aerosol Classification from Airborne HSRL and Comparisons with the CALIPSO Vertical Feature Mask. Atmos. Meas. Tech. 2013, 6, 1397–1412. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-Screening and Quality Control Algorithms for the AERONET Database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Z.; Li, D.; Xu, H.; Li, K. Aerosol Optical and Microphysical Properties of Four Typical Sites of SONET in China Based on Remote Sensing Measurements. Remote Sens. 2015, 7, 9928–9953. [Google Scholar] [CrossRef] [Green Version]
- Xin, J.; Wang, Y.; Li, Z.; Wang, P.; Hao, W.M.; Nordgren, B.L.; Wang, S.; Liu, G.; Wang, L.; Wen, T.; et al. Aerosol Optical Depth (AOD) and Ångström Exponent of Aerosols Observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. J. Geophys. Res. Atmos. 2007, 112, D5. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Z.; Chen, B.; Zhang, Y.; Su, M.; Ulgiati, S. Prevention and Control Policy Analysis for Energy-Related Regional Pollution Management in China. Appl. Energy 2016, 166, 292–300. [Google Scholar] [CrossRef]
- Li, J. Pollution Trends in China from 2000 to 2017: A Multi-Sensor View from Space. Remote Sens. 2020, 12, 208. [Google Scholar] [CrossRef] [Green Version]
- Guttikunda, S.K.; Gurjar, B.R. Role of Meteorology in Seasonality of Air Pollution in Megacity Delhi, India. Environ. Monit. Assess. 2012, 184, 3199–3211. [Google Scholar] [CrossRef]
- Cohen, J.B. Quantifying the Occurrence and Magnitude of the Southeast Asian Fire Climatology. Environ. Res. Lett. 2014, 9, 114018. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Cohen, J.B.; Wang, S.; Lin, C. Improving the Understanding between Climate Variability and Observed Extremes of Global NO2 over the Past 15 Years. Environ. Res. Lett. 2021, 16, 054020. [Google Scholar] [CrossRef]
- Kompalli, S.K.; Babu, S.S.; Moorthy, K.K.; Manoj, M.R.; Kumar, N.V.P.K.; Shaeb, K.H.B.; Joshi, A.K. Aerosol Black Carbon Characteristics over Central India: Temporal Variation and Its Dependence on Mixed Layer Height. Atmos. Res. 2014, 147–148, 27–37. [Google Scholar] [CrossRef]
- Tosca, M.G.; Randerson, J.T.; Zender, C.S. Global Impact of Smoke Aerosols from Landscape Fires on Climate and the Hadley Circulation. Atmos. Chem. Phys. 2013, 13, 5227–5241. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Chen, H.; Goloub, P.; Zong, X.; Zhang, W.; Wang, P. Climatological Aspects of Aerosol Optical Properties in North China Plain Based on Ground and Satellite Remote-Sensing Data. J. Quant. Spectrosc. Radiat. Transf. 2013, 127, 12–23. [Google Scholar] [CrossRef]
Parameters | Spectral Band | Resolution |
---|---|---|
Aqua MODIS AOD | 500 nm | 1° × 1° |
OMI AAOD | 500 nm | 1° × 1° |
MODIS-OMI AAOD | 500 nm | 1° × 1° |
CALIPSO VFM | - | 1° × 1° × 0.03 km |
The smoke/dust frequencies from OMI | - | 1° × 1° |
AERONET/SONET AOD, AAOD | 500 nm | Within ±1 h of the satellite overpass |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Xue, Y.; Qin, K.; Wang, H.; Kang, H.; Wang, L. Investigating the Long-Term Variation Trends of Absorbing Aerosols over Asia by Using Multiple Satellites. Remote Sens. 2022, 14, 5832. https://doi.org/10.3390/rs14225832
Li D, Xue Y, Qin K, Wang H, Kang H, Wang L. Investigating the Long-Term Variation Trends of Absorbing Aerosols over Asia by Using Multiple Satellites. Remote Sensing. 2022; 14(22):5832. https://doi.org/10.3390/rs14225832
Chicago/Turabian StyleLi, Ding, Yong Xue, Kai Qin, Han Wang, Hanshu Kang, and Lizhang Wang. 2022. "Investigating the Long-Term Variation Trends of Absorbing Aerosols over Asia by Using Multiple Satellites" Remote Sensing 14, no. 22: 5832. https://doi.org/10.3390/rs14225832
APA StyleLi, D., Xue, Y., Qin, K., Wang, H., Kang, H., & Wang, L. (2022). Investigating the Long-Term Variation Trends of Absorbing Aerosols over Asia by Using Multiple Satellites. Remote Sensing, 14(22), 5832. https://doi.org/10.3390/rs14225832