Analyzing Satellite-Derived 3D Building Inventories and Quantifying Urban Growth towards Active Faults: A Case Study of Bishkek, Kyrgyzstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Urban Growth
2.1.1. KH-9 Classification
2.1.2. Sentinel-2 Classification
2.1.3. Other Land-Cover Datasets
2.1.4. Urban Redevelopment
2.1.5. Land-Cover Accuracy Assessment
2.2. Digital Elevation Model Generation and Analysis
2.3. Extracted Building Characteristics and Accuracy Assessment
2.3.1. Building Polygons
2.3.2. Building Heights
2.3.3. Building Height Validation
3. Results
3.1. Urban Growth
3.2. Urban Redevelopment
3.3. Building Classification
3.4. Building Characteristics
4. Discussion
4.1. Urban Change Mapping
4.2. Building Detection and Bishkek’s Expansion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN DESA. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Baker, J.L. Climate Change, Disaster Risk, and the Urban Poor; World Bank Publications: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Cardona, O.; Aalst, M.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.; Schipper, L.; Sinh, B. Determinants of Risk: Exposure and Vulnerability, in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2012; pp. 65–108. [Google Scholar] [CrossRef] [Green Version]
- Pittore, M.; Wieland, M.; Fleming, K. Perspectives on global dynamic exposure modelling for geo-risk assessment. Nat. Hazards 2016, 86, 7–30. [Google Scholar] [CrossRef]
- Wallemacq, P.; Unisdr, C. Economic Losses, Poverty and Disasters 1998–2017; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2018. [Google Scholar] [CrossRef]
- UN. The Sustainable Development Goals Report 2020. 2020. Available online: https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020.pdf (accessed on 2 November 2022).
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Watson, C.S.; Rounce, D.R.; Shugar, D.H.; Kargel, J.S.; Haritashya, U.K.; Amatya, P.; Shean, D.; Anderson, E.R.; Jo, M. The State of Remote Sensing Capabilities of Cascading Hazards Over High Mountain Asia. Front. Earth Sci. 2019, 7, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patino, J.E.; Duque, J.C. A review of regional science applications of satellite remote sensing in urban settings. Comput. Environ. Urban Syst. 2013, 37, 1–17. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Kerle, N.; Filatova, T. Remote sensing-based proxies for urban disaster risk management and resilience: A review. Remote Sens. 2018, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
- Kaku, K. Satellite remote sensing for disaster management support: A holistic and staged approach based on case studies in Sentinel Asia. Int. J. Disaster Risk Reduct. 2019, 33, 417–432. [Google Scholar] [CrossRef]
- Bessis, J.L.; Béquignon, J.; Mahmood, A. The International Charter “Space and Major Disasters” initiative. Acta Astronaut. 2004, 54, 183–190. [Google Scholar] [CrossRef]
- Schumann, G.J.-P.; Brakenridge, G.R.; Kettner, A.J.; Kashif, R.; Niebuhr, E. Assisting Flood Disaster Response with Earth Observation Data and Products: A Critical Assessment. Remote Sens. 2018, 10, 1230. [Google Scholar] [CrossRef] [Green Version]
- UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030. 2015. Available online: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 (accessed on 29 September 2022).
- Wieland, M.; Pittore, M.; Parolai, S.; Zschau, J. Exposure Estimation from Multi-Resolution Optical Satellite Imagery for Seismic Risk Assessment. ISPRS Int. J. Geo-Inf. 2012, 1, 69–88. [Google Scholar] [CrossRef] [Green Version]
- Amey, R.M.J.; Elliott, J.R.; Hussain, E.; Walker, R.; Pagani, M.; Silva, V.; Abdrakhmatov, K.E.; Watson, C.S. Significant Seismic Risk Potential from Buried Faults Beneath Almaty City, Kazakhstan, revealed from high-resolution satellite DEMs. Earth Space Sci. 2021. [Google Scholar] [CrossRef]
- Mansouri, B.; Ghafory-Ashtiany, M.; Amini-Hosseini, K.; Nourjou, R.; Mousavi, M. Building Seismic Loss Model for Tehran. Earthq. Spectra 2010, 26, 153–168. [Google Scholar] [CrossRef]
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A.; et al. Outlining where humans live, the World Settlement Footprint 2015. Sci. Data 2020, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Corbane, C.; Pesaresi, M.; Kemper, T.; Politis, P.; Florczyk, A.J.; Syrris, V.; Melchiorri, M.; Sabo, F.; Soille, P. Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data 2019, 3, 140–169. [Google Scholar] [CrossRef]
- Maltezos, E.; Doulamis, A.; Doulamis, N.; Ioannidis, C. Building Extraction from LiDAR Data Applying Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 155–159. [Google Scholar] [CrossRef]
- Priestnall, G.; Jaafar, J.; Duncan, A. Extracting urban features from LiDAR digital surface models. Comput. Environ. Urban Syst. 2000, 24, 65–78. [Google Scholar] [CrossRef]
- Weidner, U.; Förstner, W. Towards automatic building extraction from high-resolution digital elevation models. ISPRS J. Photogramm. Remote Sens. 1995, 50, 38–49. [Google Scholar] [CrossRef]
- Huang, H.; Chen, P.; Xu, X.; Liu, C.; Wang, J.; Liu, C.; Clinton, N.; Gong, P. Estimating building height in China from ALOS AW3D30. ISPRS J. Photogramm. Remote Sens. 2022, 185, 146–157. [Google Scholar] [CrossRef]
- Esch, T.; Brzoska, E.; Dech, S.; Leutner, B.; Palacios-Lopez, D.; Metz-Marconcini, A.; Marconcini, M.; Roth, A.; Zeidler, J. World Settlement Footprint 3D-A first three-dimensional survey of the global building stock. Remote Sens. Environ. 2022, 270, 112877. [Google Scholar] [CrossRef]
- Xie, Y.; Feng, D.; Xiong, S.; Zhu, J.; Liu, Y. Multi-Scene Building Height Estimation Method Based on Shadow in High Resolution Imagery. Remote Sens. 2021, 13, 2862. [Google Scholar] [CrossRef]
- Cheng, F.; Thiel, K.H. Delimiting the building heights in a city from the shadow in a panchromatic SPOT-image—Part 1. Test of forty-two buildings. Int. J. Remote Sens. 1995, 16, 409–415. [Google Scholar] [CrossRef]
- Goldblatt, R.; Jones, N.; Mannix, J. Assessing OpenStreetMap Completeness for Management of Natural Disaster by Means of Remote Sensing: A Case Study of Three Small Island States (Haiti, Dominica and St. Lucia). Remote Sens. 2020, 12, 118. [Google Scholar] [CrossRef] [Green Version]
- Herfort, B.; Lautenbach, S.; Porto de Albuquerque, J.; Anderson, J.; Zipf, A. The evolution of humanitarian mapping within the OpenStreetMap community. Sci. Rep. 2021, 11, 3037. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; He, C.; Fang, J.; Zheng, J.; Fu, H.; Yu, L. Semantic Segmentation-Based Building Footprint Extraction Using Very High-Resolution Satellite Images and Multi-Source GIS Data. Remote Sens. 2019, 11, 403. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Kang, J.; Jung, J.; Sohn, G. Building Extraction from Satellite Images Using Mask R-CNN with Building Boundary Regularization. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 242–2424. [Google Scholar]
- Liu, C.; Huang, X.; Wen, D.; Chen, H.; Gong, J. Assessing the quality of building height extraction from ZiYuan-3 multi-view imagery. Remote Sens. Lett. 2017, 8, 907–916. [Google Scholar] [CrossRef]
- Elliott, J.R. Earth Observation for the Assessment of Earthquake Hazard, Risk and Disaster Management. Surv. Geophys. 2020, 41, 1323–1354. [Google Scholar] [CrossRef]
- Erdik, M.; Rashidov, T.; Safak, E.; Turdukulov, A. Assessment of seismic risk in Tashkent, Uzbekistan and Bishkek, Kyrgyz Republic. Soil Dyn. Earthq. Eng. 2005, 25, 473–486. [Google Scholar] [CrossRef]
- Global Earthquake Model. Country Profile for Kyrgyzstan Version 1.2. 2022. Available online: https://downloads.openquake.org/countryprofiles/KGZ.pdf (accessed on 28 October 2022).
- Amey, R.M.J.; Elliott, J.; Watson, C.S.; Walker, R.; Pagani, M.; Silva, V.; Hussain, E.; Abdrakhmatov, K.; Baikulov, S.; Kyzyz, G.T. Improving Urban Seismic Risk Estimates for Bishkek, Kyrgyzstan, Incorporating Recent Geological Knowledge of Hazards. EarthArXiv. Prepr. 2021. [Google Scholar] [CrossRef]
- Gamba, P.; Cavalca, D.; Jaiswal, K.; Huyck, C.; Crowley, H. The GED4GEM project: Development of a global exposure database for the global earthquake model initiative. In Proceedings of the 15th WCEE, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Active Tectonics Research Group. Active Tectonics of the Northern Tien Shan, Kyrgyzstan. Available online: http://activetectonics.asu.edu/N_tien_shan/N_tien_shan_data.html (accessed on 23 August 2021).
- Styron, R. GEMScienceTools/gem-global-active-faults: First release of 2019 (Version 2019.0). ZENODO 2019. [Google Scholar] [CrossRef]
- Goerlich, F.; Bolch, T.; Mukherjee, K.; Pieczonka, T. Glacier Mass Loss during the 1960s and 1970s in the Ak-Shirak Range (Kyrgyzstan) from Multiple Stereoscopic Corona and Hexagon Imagery. Remote Sens. 2017, 9, 275. [Google Scholar] [CrossRef] [Green Version]
- Surazakov, A.; Aizen, V. Positional accuracy evaluation of declassified Hexagon KH-9 mapping camera imagery. Photogramm. Eng. Remote Sens. 2010, 76, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Dehecq, A.; Gardner, A.S.; Alexandrov, O.; McMichael, S.; Hugonnet, R.; Shean, D.; Marty, M. Automated Processing of Declassified KH-9 Hexagon Satellite Images for Global Elevation Change Analysis Since the 1970s. Front. Earth Sci. 2020, 8, 566802. [Google Scholar] [CrossRef]
- USGS. Earth Explorer. 2022. Available online: https://earthexplorer.usgs.gov/ (accessed on 20 May 2021).
- Agisoft Metashape v1.7.2. Available online: https://www.agisoft.com/ (accessed on 1 March 2021).
- Orfeo Toolbox. User Guide. 2021. Available online: https://www.orfeo-toolbox.org/CookBook/C++/UserGuide.html (accessed on 7 January 2022).
- Lindsay, J.B. Whitebox GAT: A case study in geomorphometric analysis. Comput. Geosci. 2016, 95, 75–84. [Google Scholar] [CrossRef]
- Lindsay, J. The Whitebox Geospatial Analysis Tools project and open-access GIS; 2014. Available online: https://www.researchgate.net/publication/271205138_The_Whitebox_Geospatial_Analysis_Tools_project_and_open-access_GIS (accessed on 20 May 2021).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Esri. Land Cover Classification (Sentinel-2). 2021. Available online: https://www.arcgis.com/home/item.html?id=afd124844ba84da69c2c533d4af10a58 (accessed on 25 August 2021).
- Florczyk, A.J.; Corbane, C.; Ehrlich, D.; Freire, S.; Kemper, T.; Maffenini, L.; Melchiorri, M.; Pesaresi, M.; Politis, P.; Schiavina, M. GHSL data package 2019. Luxemb. EUR 2019, 29788, 290498. [Google Scholar]
- Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.; Freire, S.; Halkia, M.; Julea, A.; Kemper, T.; Soille, P.; Syrris, V. Operating procedure for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975, 1990, 2000, and 2014; Publications Office of the European Union: Luxembourg, 2016; pp. 1–62. [Google Scholar]
- Marconcini, M.; Metz-Marconcini, A.; Esch, T.; Gorelick, N. Understanding Current Trends in Global Urbanisation-The World Settlement Footprint Suite. GI_Forum 2021, 9, 33–38. [Google Scholar] [CrossRef]
- Omurakunova, G.; Bao, A.; Xu, W.; Duulatov, E.; Jiang, L.; Cai, P.; Abdullaev, F.; Nzabarinda, V.; Durdiev, K.; Baiseitova, M. Expansion of Impervious Surfaces and Their Driving Forces in Highly Urbanized Cities in Kyrgyzstan. Int. J. Environ. Res. Public Health 2020, 17, 362. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Agisoft Metashape v1.8.0. Available online: https://www.agisoft.com/ (accessed on 1 September 2021).
- Lastilla, L.; Belloni, V.; Ravanelli, R.; Crespi, M. DSM Generation from Single and Cross-Sensor Multi-View Satellite Images Using the New Agisoft Metashape: The Case Studies of Trento and Matera (Italy). Remote Sens. 2021, 13, 593. [Google Scholar] [CrossRef]
- ArcGIS Pro 2.8.0. Available online: https://pro.arcgis.com/en (accessed on 18 January 2022).
- Planet Labs. Planet Imagery Product Specifications. 2021. Available online: https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf (accessed on 18 January 2022).
- Ghuffar, S. DEM Generation from Multi Satellite PlanetScope Imagery. Remote Sens. 2018, 10, 1462. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite—2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef] [PubMed]
- Neumann, T.A.; Brenner, A.; Hancock, D.; Robbins, J.; Saba, J.; Harbeck, K.; Gibbons, A.; Lee, J.; Luthcke, S.B.; Rebold, T. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020. [Google Scholar] [CrossRef]
- Khalsa, S.J.S.; Borsa, A.; Nandigam, V.; Phan, M.; Lin, K.; Crosby, C.; Fricker, H.; Baru, C.; Lopez, L. OpenAltimetry—Rapid analysis and visualization of Spaceborne altimeter data. Earth Sci. Inform. 2020, 15, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Parsons, B.; Elliott, J.R.; Barisin, I.; Walker, R.T. Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes: A case study for the El Mayor-Cucapah epicentral area. J. Geophys. Res. Solid Earth 2015, 120, 8793–8808. [Google Scholar] [CrossRef] [Green Version]
- Höhle, J.; Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Tiede, D.; Schwendemann, G.; Alobaidi, A.; Wendt, L.; Lang, S. Mask R-CNN-based building extraction from VHR satellite data in operational humanitarian action: An example related to Covid-19 response in Khartoum, Sudan. Trans. GIS 2021, 25, 1213–1227. [Google Scholar] [CrossRef]
- Stiller, D.; Stark, T.; Wurm, M.; Dech, S.; Taubenböck, H. Large-scale building extraction in very high-resolution aerial imagery using Mask R-CNN. In Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France, 22–24 May 2019; pp. 1–4. [Google Scholar]
- OpenStreetMap Contributors. OpenStreetMap. 2015. Available online: https://www.openstreetmap.org (accessed on 13 April 2021).
- Isenburg, M. LAStools—Efficient LiDAR Processing Software, (200509, Academic). 2019. Available online: http://rapidlasso.com/LAStools (accessed on 29 September 2022).
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Macrotrends. Bishkek, Kyrgyzstan Metro Area Population 1950–2022. Available online: https://www.macrotrends.net/cities/21770/bishkek/population (accessed on 31 January 2022).
- United Nations Statistics Division. City Population by Sex, City and City Type. 2022. Available online: https://data.un.org/ (accessed on 31 January 2022).
- Bindi, D.; Mayfield, M.; Parolai, S.; Tyagunov, S.; Begaliev, U.T.; Abdrakhmatov, K.; Moldobekov, B.; Zschau, J. Towards an improved seismic risk scenario for Bishkek, Kyrgyz Republic. Soil Dyn. Earthq. Eng. 2011, 31, 521–525. [Google Scholar] [CrossRef] [Green Version]
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A Review of the Health Benefits of Greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.S.; Elliott, J.R.; Ebmeier, S.K.; Vásquez, M.A.; Zapata, C.; Bonilla-Bedoya, S.; Cubillo, P.; Orbe, D.F.; Córdova, M.; Menoscal, J.; et al. Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador. Nat. Hazards Earth Syst. Sci. Discuss. 2022, 2022, 1–37. [Google Scholar] [CrossRef]
- Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raskar, R. Deepglobe 2018: A challenge to parse the earth through satellite images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 172–181. [Google Scholar]
District | District Size (km2) | Number of Buildings | Buildings per km2 | Mean Building Size (m2) (One Standard Deviation) | 500 m Grid Cell Building Coverage (%) (One Standard Deviation) |
---|---|---|---|---|---|
Leninskii District | 54 | 72,714 | 1351 | 137 (239) | 19 (6) |
Oktiabrskii District | 35 | 23,714 | 670 | 208 (461) | 15 (9) |
Pervomaiskii District | 42 | 48,773 | 1150 | 137 (250) | 18 (7) |
Sverlovskii District | 35 | 45,155 | 1274 | 146 (368) | 19 (7) |
Metric | Pleiades (2013) | WorldView-2 (2019) | Google Satellite Basemap (2021) |
---|---|---|---|
Number of buildings (Mask R-CNN) | 1090 | 1024 | 967 |
Number of buildings (validation) | 1163 | 1113 | 1064 |
TP (overlap) | 781 | 652 | 676 |
FP (no overlap) | 309 | 372 | 291 |
FN (reference not overlapping Mask R-CNN) | 374 | 461 | 388 |
Total area reference (m2) | 151,961 | 194,427 | 141,164 |
Total area Mask R-CNN | 142,930 | 189,880 | 140,597 |
Total area overlap (m2) | 110,223 | 149,066 | 108,072 |
True overlapping area (%) | 72.53 | 76.67 | 76.56 |
Precision | 0.72 | 0.64 | 0.70 |
Recall | 0.68 | 0.59 | 0.64 |
F1 | 0.70 | 0.61 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watson, C.S.; Elliott, J.R.; Amey, R.M.J.; Abdrakhmatov, K.E. Analyzing Satellite-Derived 3D Building Inventories and Quantifying Urban Growth towards Active Faults: A Case Study of Bishkek, Kyrgyzstan. Remote Sens. 2022, 14, 5790. https://doi.org/10.3390/rs14225790
Watson CS, Elliott JR, Amey RMJ, Abdrakhmatov KE. Analyzing Satellite-Derived 3D Building Inventories and Quantifying Urban Growth towards Active Faults: A Case Study of Bishkek, Kyrgyzstan. Remote Sensing. 2022; 14(22):5790. https://doi.org/10.3390/rs14225790
Chicago/Turabian StyleWatson, C. Scott, John R. Elliott, Ruth M. J. Amey, and Kanatbek E. Abdrakhmatov. 2022. "Analyzing Satellite-Derived 3D Building Inventories and Quantifying Urban Growth towards Active Faults: A Case Study of Bishkek, Kyrgyzstan" Remote Sensing 14, no. 22: 5790. https://doi.org/10.3390/rs14225790
APA StyleWatson, C. S., Elliott, J. R., Amey, R. M. J., & Abdrakhmatov, K. E. (2022). Analyzing Satellite-Derived 3D Building Inventories and Quantifying Urban Growth towards Active Faults: A Case Study of Bishkek, Kyrgyzstan. Remote Sensing, 14(22), 5790. https://doi.org/10.3390/rs14225790