Nonlinear Ship Wake Detection in SAR Images Based on Electromagnetic Scattering Model and YOLOv5
Abstract
:1. Introduction
- For the purpose of detecting the nonlinear ship wake and weak wake in SAR images, the deep learning-based You Only Look Once Version five (YOLOv5) algorithm is used to improve the detection rate, which has a competitive generalization ability compared to other mainstream approaches [22];
- In order to deal with the problem that the measured SAR wake image data sets are difficult to obtain and cannot meet the YOLOv5 training requirements, we consider combining a semi-deterministic facet scattering model and a bunching modulation model to simulate the ship wake SAR images. The joint use of the simulated SAR images and the acquired measured ship wake images enriches the sample set and lays a solid foundation for the nonlinear ship wake and weak wake detection based on YOLOv5.
2. Modeling Ship Wake and Sea Surface
2.1. Elfouhaily Spectrum Model and Directional Function
2.2. Sea Surface Modeling
2.3. Kelvin Wake Modeling
3. Surface Scattering Distribution of Ship Wake on the Sea Surface
3.1. Semi-Deterministic Facet Scattering Model
3.2. Facet Scattering Distribution Based on SDFSM
4. Simulation of SAR Image Sample of Ship Wake
SAR Image Simulation of Ship Wake in Sea Background
- Simulation of a two-dimensional sea scene by the linear filter method;
- Simulation of wake by the Kelvin wake mathematical model;
- Superposition of the sea surface and Kelvin wake;
- Scattering distribution of sea wake based on a semi-deterministic facet model;
- Simulation of the Kelvin wake SAR image based on the modulation model.
5. Ship Wake Detection Method
5.1. Traditional Wake Detection Method
- Apply windows to split nonlinear wakes;
- Detect line segments that can be approximated by a straight line in each small image;
- Combine small line segments.
5.2. Wake Detection Method Based on YOLOv5
5.2.1. YOLOv5 Environment Configuration
- CUDA
- 2.
- CUDNN
- 3.
- Pytorch
5.2.2. Preparation of YOLOv5 Training Samples
5.2.3. YOLOv5 Training Results and Test Results Analysis
5.2.4. Comparison between the Yolov5 and Radon Transform Methods
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, K.S. Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach; CRC Press: Boca Raton, FL, USA, 2016; pp. 173–197. [Google Scholar]
- Jackson, C.R.; Apel, J.R. Synthetic Aperture Radar Marine User’s Manual; US Department of Commerce: Washington, DC, USA, 2004.
- Li, X.M.; Lehner, S.; Bruns, T. SAR measurement of ocean sea surface wind and wave for operational ship routing. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1334–1337. [Google Scholar] [CrossRef]
- Guo, C.; Ai, W.; Hu, S.; Du, X.; Chen, N. Sea surface wind direction retrieval based on convolution neural network and wavelet analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3868–3876. [Google Scholar] [CrossRef]
- Bayındır, C.; Frost, J.D.; Barnes, C.F. Assessment and enhancement of SAR noncoherent change detection of sea-surface oil spills. IEEE J. Ocean. Eng. 2018, 43, 211–220. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, T.; Lei, P.; Bai, X. Ground target classification in noisy SAR images using convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4180–4192. [Google Scholar] [CrossRef]
- Luo, S.; Yu, J.; Xi, Y.; Liao, X. Aircraft target detection in remote sensing images based on improved YOLOv5. IEEE Access 2022, 10, 5184–5192. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Cai, Z.; Chen, J. SAR imaging simulation of ship-generated internal wave wake in stratified ocean. J. Electromagn. Waves Appl. 2017, 31, 1101–1114. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, G.; Zhang, L.; Chen, C.; Gao, S.; Yao, L.; Bai, Q.; Gao, S. A Novel full-polarization SAR images ship detector based on the scattering mechanisms and the wave polarization anisotropy. ISPRS J. Photogramm. Remote Sens. 2022, 190, 129–143. [Google Scholar] [CrossRef]
- Nie, D.; Zhang, M.; Wei, P.; Man, M. Electromagnetic bistatic scattering features of shallow water waves over upslope submarine topography. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9873–9883. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J. Numerical simulation and analyses of SAR images from ship wakes. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium (ACES), Miami, FL, USA, 14–19 April 2019; pp. 1–2. [Google Scholar]
- Biondi, F. A polarimetric extension of low-rank plus sparse decomposition and Radon transform for ship wake detection in synthetic aperture radar images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 75–79. [Google Scholar] [CrossRef]
- Xu, J.; Sun, X.; Zhang, D.; Fu, K. Automatic detection of inshore ships in high-resolution remote sensing images using robust invariant generalized Hough transform. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2070–2074. [Google Scholar] [CrossRef]
- Wang, S.; Jin, Y. Ship wake detection in SAR images based on Radon transformation and Morphologic image processing. J. Remote Sens. 2001, 4, 289–294. [Google Scholar] [CrossRef]
- Karakuş, O.; Rizaev, I.; Achim, A. Ship wake detection in SAR images via sparse regularization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1665–1677. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, X. High-speed ship detection in SAR images based on a grid convolutional neural network. Remote Sens. 2019, 11, 1206. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Ji, K.; Leng, X.; Lin, Z. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection. Remote Sens. 2017, 9, 860. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.M.; Kim, D.J. Ship velocity estimation from ship wakes detected using convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4379–4388. [Google Scholar] [CrossRef]
- Graziano, M.D.; Renga, A. Towards automatic recognition of wakes generated by dark vessels in Sentinel-1 images. Remote Sens. 2021, 13, 1955. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Y.; Ren, Y.; Yu, J. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3. Remote Sens. 2020, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Kong, W.; Chen, X.; Xu, M.; Yasir, M.; Zhao, L.; Li, J. Multi-scale ship detection algorithm based on a lightweight neural network for spaceborne SAR images. Remote Sens. 2022, 14, 1149. [Google Scholar] [CrossRef]
- PyTorch-YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 6 September 2021).
- Elfouhaily, T.; Chapron, B.; Katsaros, K. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. 1997, 102, 15781–15796. [Google Scholar] [CrossRef] [Green Version]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Gartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, H.; Hasselmann, D.E.; Kruseman, P.; et al. Meansurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. Suppl. 1973, 12, 1–95. [Google Scholar]
- Pierson, W.J.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Donelan, M.A.; Hamilton, J.; Hui, W.H.; Stewart, R.W. Directional spectra of wind-generated ocean waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1985, 315, 509–562. [Google Scholar] [CrossRef]
- Mitsuyasu, H.; Tasai, F.; Suhara, T.; Mizuno, S.; Ohkusu, M.; Honda, T.; Rikiishi, K. Observations of the directional spectrum of ocean wavesusing a cloverleaf buoy. J. Phys. Oceanogr. 1975, 5, 750–760. [Google Scholar] [CrossRef]
- Hwang, P.A.; Wang, D.W. Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum. J. Phys. Oceanogr. 2001, 31, 1346–1360. [Google Scholar] [CrossRef]
- Oumansour, K.; Wang, Y.; Saillard, J. Multifrequency SAR observation of a ship wake. IEE Proc.-Radar Sonar Navig. 1996, 143, 275–280. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Zhao, Y.; Luo, W. An efficient slope-deterministic facet model for SAR imagery simulation of marine scene. IEEE Trans. Antennas Propag. 2010, 58, 3751–3756. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.; Zhao, Y.; Geng, X. A bistatic SAR image intensity model for the composite ship-ocean scene. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4250–4258. [Google Scholar] [CrossRef]
- Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed.; McGraw-Hill: New York, NY, USA, 1986; pp. 356–357. [Google Scholar]
- Aerospace Information Research Institute. Available online: http://ids.ceode.ac.cn/ (accessed on 15 October 2021).
- Case, K.; Dashen, R.; Munk, W.; Vesecky, J.; Watson, K. SEASAT Report, Jason Rep. JSR 84-203; Mitre Corp.: McLean, VA, USA, 1985. [Google Scholar]
- HH Stripmap Mode TerraSAR-X Image of the Straight of Gibraltar. Available online: https://www.dlr.de/content/en/images/2011/1/spain-strait-of-gibraltar_333.html (accessed on 16 October 2021).
Hardware Configuration | Parameter |
---|---|
Operating system | Windows 10/Ubuntu 18.04 LTS |
Mainboard | OMEN by HP Laptop-ce0xx |
CPU | Inter(R) Core (TM) i5-7300 CPU @ 2.50 GHz |
GPU | NVIDIA GeForce GTX 1050 Ti |
Hard disk | WDC WDS500G2B0C-00PXH0 |
RAM | Crucial-16 GB |
Hyperparameter | lr0 | lrf | Momentum | Weight Decay | Epochs | Batch Size |
---|---|---|---|---|---|---|
value | 0.01 | 0.1 | 0.937 | 0.0005 | 120 | 8 |
Test Set | Environmental Factor | mAP | Batch | Epoch | Test Platform |
---|---|---|---|---|---|
Simulated wake | High sea state | 73.7% | 2 | 60 | GPU |
Low sea state | 95.0% | 2 | 60 | GPU |
Test Set | Environmental Factor | Network Structure | mAP | Speed | Training Time | Batch | Epoch | Test Platform |
---|---|---|---|---|---|---|---|---|
Simulated wake | High sea state | YOLOv5s | 73.7% | 29 ms | 0.977 h | 2 | 60 | GPU |
YOLOv5l | 98.5% | 102 ms | 3.169 h | 2 | 60 | GPU |
Test Set | Network Structure | mAP | Speed | Training Time | Batch | Epoch | Test Platform |
---|---|---|---|---|---|---|---|
Measured wakes | YOLOv5s | 80.1% | 30 ms | 1.078 h | 2 | 60 | GPU |
YOLOv5l | 84.8% | 117 ms | 3.673 h | 2 | 60 | GPU |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Nie, D.; Zuo, Y.; Tang, L.; Zhang, M. Nonlinear Ship Wake Detection in SAR Images Based on Electromagnetic Scattering Model and YOLOv5. Remote Sens. 2022, 14, 5788. https://doi.org/10.3390/rs14225788
Wang H, Nie D, Zuo Y, Tang L, Zhang M. Nonlinear Ship Wake Detection in SAR Images Based on Electromagnetic Scattering Model and YOLOv5. Remote Sensing. 2022; 14(22):5788. https://doi.org/10.3390/rs14225788
Chicago/Turabian StyleWang, Hui, Ding Nie, Yacong Zuo, Lu Tang, and Min Zhang. 2022. "Nonlinear Ship Wake Detection in SAR Images Based on Electromagnetic Scattering Model and YOLOv5" Remote Sensing 14, no. 22: 5788. https://doi.org/10.3390/rs14225788
APA StyleWang, H., Nie, D., Zuo, Y., Tang, L., & Zhang, M. (2022). Nonlinear Ship Wake Detection in SAR Images Based on Electromagnetic Scattering Model and YOLOv5. Remote Sensing, 14(22), 5788. https://doi.org/10.3390/rs14225788