Extracting Urban Water Bodies from Landsat Imagery Based on mNDWI and HSV Transformation
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. HSV Transformation
3.2. M-Statistic Test
3.3. Urban Water Extraction Algorithm (UWEA)
3.4. Validation
4. Results
4.1. Separability of HSV
4.2. Water Mapping Results
4.3. Accuracy Assessment
4.4. Robustness of Thresholds
5. Discussion
5.1. Different Bands for HSV Transformation
5.2. Separability of the UWEA
5.3. Advantages and Uncertainties
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water from Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Du, P.; Liu, P.; Xia, J.; Feng, L.; Liu, S.; Tan, K.; Cheng, L. Remote Sensing Image Interpretation for Urban Environment Analysis: Methods, System and Examples. Remote Sens. 2014, 6, 9458–9474. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Gao, C.; Tong, X.; Chen, S.; Lei, Z.; Wang, J. Spatial Patterns of Land Surface Temperature and Their Influencing Factors: A Case Study in Suzhou, China. Remote Sens. 2019, 11, 182. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, X. Fusion of High- and Medium-Resolution Optical Remote Sensing Imagery and GlobeLand30 Products for the Automated Detection of Intra-Urban Surface Water. Remote Sens. 2020, 12, 4037. [Google Scholar] [CrossRef]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, Y.; Zhang, L.; Qin, S.; Zhang, Q.; Liu, P.; Liu, L.; Zou, K.; Cheng, S.; Cheng, L. Land surface models significantly underestimate the impact of land-use changes on global evapotranspiration. Environ. Res. Lett. 2021, 16, 124047. [Google Scholar] [CrossRef]
- Li, L.; Xu, T.; Chen, Y. Improved Urban Flooding Mapping from Remote Sensing Images Using Generalized Regression Neural Network-Based Super-Resolution Algorithm. Remote Sens. 2016, 8, 625. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Cheng, L.; Liu, P.; Makarieva, O.; Chen, M. Detecting and quantifying the impact of long-term terrestrial water storage changes on the runoff ratio in the head regions of the two largest rivers in China. J. Hydrol. 2021, 601, 126668. [Google Scholar] [CrossRef]
- Lu, S.; Deng, R.; Liang, Y.; Xiong, L.; Ai, X.; Qin, Y. Remote Sensing Retrieval of Total Phosphorus in the Pearl River Channels Based on the GF-1 Remote Sensing Data. Remote Sens. 2020, 12, 1420. [Google Scholar] [CrossRef]
- Wu, T.; Li, M.; Wang, S.; Yang, Y.; Sang, S.; Jia, D. Urban Black-Odor Water Remote Sensing Mapping Based on Shadow Removal: A Case Study in Nanjing. IEEE J.-STARS 2021, 14, 9584–9596. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Chen, F.; Chen, X.; Van de Voorde, T.; Roberts, D.; Jiang, H.; Xu, W. Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sens. Environ. 2020, 242, 111706. [Google Scholar] [CrossRef]
- Michael, A.W.; Thomas, R.L.; David, P.R.; Christopher, J.C.; Jeffrey, G.M.; Curtis, E.W.; Richard, G.A.; Martha, C.A.; Alan, S.B.; Warren, B.C.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar]
- Michael, A.W.; Joanne, C.W.; Thomas, R.L.; Curtis, E.W.; Alan, S.B.; Warren, B.C.; Eugene, A.F.; Jerad, S.; Jeffrey, G.M.; David, P.R. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 2007, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2007, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Yang, X.; Chen, L. Evaluation of automated urban surface water extraction from Sentinel-2A imagery using different water indices. J. Appl. Remote Sens. 2017, 11, 26016. [Google Scholar] [CrossRef]
- Yang, X.; Qin, Q.; Grussenmeyer, P.; Koehl, M. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sens. Environ. 2018, 219, 259–270. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Gong, J.; Feng, Q.; Zhou, J.; Sun, J.; Shi, C.; Hu, W. Urban Water Extraction with UAV High-Resolution Remote Sensing Data Based on an Improved U-Net Model. Remote Sens. 2021, 13, 3165. [Google Scholar] [CrossRef]
- Yao, F.; Wang, C.; Dong, D.; Luo, J.; Shen, Z.; Yang, K. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery. Remote Sens. 2015, 7, 12336–12355. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Vitti, A. Reconstruction of River Boundaries at Sub-Pixel Resolution: Estimation and Spatial Allocation of Water Fractions. ISPRS Int. J. Geo-Inf. 2017, 6, 383. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fan, R.; Yang, X.; Wang, J.; Latif, A. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning. Water 2018, 10, 585. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Cheng, L.; Qin, S.; Zhang, L.; Liu, P.; Liu, L.; Xu, Z.; Wang, Q. Improved Understanding of How Catchment Properties Control Hydrological Partitioning through Machine Learning. Water Resour. Res. 2022, 58, e2021WR031412. [Google Scholar] [CrossRef]
- Polidorio, A.M.; Flores, F.C.; Imai, N.N.; Tommaselli, A.M.G.; Franco, C. Automatic shadow segmentation in aerial color images. In Proceedings of the 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003), Sao Carlos, Brazil, 12–15 October 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 270–277. [Google Scholar]
- Tsai, V.J.D. A comparative study on shadow compensation of color aerial images in invariant color models. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1661–1671. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, P.; Cheng, L.; Zhang, X. Study on Extraction Method of Water Body from TM Based on Munsell HSV Transformation. Remote Sens. Technol. Appl. 2009, 24, 797–800. [Google Scholar]
- Li, J.; Feng, K.; Yu, J.; Gu, H.; Su, J.; Chu, J.; Yu, Q.; Jiang, H. River extraction of color remote sensing image based on HSV and shape detection. Seventh Symposium on Novel Photoelectronic Detection Technology and Applications. In Proceedings of the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 5–7 November 2020; SPIE: Bellingham, WA, USA, 2021; Volume 11763, p. 117635W. [Google Scholar]
- Schwarz, M.W.; Cowan, W.B.; Beatty, J.C. An experimental comparison of RGB, YIQ, LAB, HSV, and opponent color models. ACM Trans. Graph. 1987, 6, 123–158. [Google Scholar] [CrossRef]
- Pekel, J.F.; Vancutsem, C.; Bastin, L.; Clerici, M.; Vanbogaert, E.; Bartholomé, E.; Defourny, P. A near real-time water surface detection method based on HSV transformation of MODIS multi-spectral time series data. Remote Sens. Environ. 2014, 140, 704–716. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Li, Q.; Tian, Y.; Shen, L. An Uneven Illumination Correction Algorithm for Optical Remote Sensing Images Covered with Thin Clouds. Remote Sens. 2015, 7, 11848–11862. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Qi, J.; Su, S.; Zhang, Z.; Wu, J. Water body delineation using index composition and HIS transformation. Int. J. Remote Sens. 2011, 33, 3402–3421. [Google Scholar] [CrossRef]
- Ma, H.; Qin, Q.; Shen, X. Shadow Segmentation and Compensation in High Resolution Satellite Images. In Proceedings of the 2008 IEEE International Geoscience & Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; IEEE: Piscataway, NJ, USA, 2008; Volume 2, pp. 1036–1039. [Google Scholar]
- Ngoc, D.D.; Loisel, H.; Jamet, C.; Vantrepotte, V.; Duforêt-Gaurier, L.; Minh, C.D.; Mangin, A. Coastal and inland water pixels extraction algorithm (WiPE) from spectral shape analysis and HSV transformation applied to Landsat 8 OLI and Sentinel-2 MSI. Remote Sens. Environ. 2019, 223, 208–228. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.; Wu, Z.; Ling, Z.; Peng, K.; Deng, Y. Assessing Surface Water Losses and Gains under Rapid Urbanization for SDG 6.6.1 Using Long-Term Landsat Imagery in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Remote Sens. 2022, 14, 881. [Google Scholar] [CrossRef]
- Feng, K.; Mao, D.; Wang, Z.; Pu, H.; Du, B.; Qiu, Z. Spatial and Temporal Characteristics of Water Bodies Occupied by Global Urban Land Expansion from 1986 to 2015 Based on GEE and Remote Sensing Big Data. Sci. Geogr. Sin. 2022, 42, 143–151. [Google Scholar]
- Victor, K. Remote Sensing of Algal Blooms: An Overview with Case Studies. J. Coast. Res. 2012, 28, 34–43. [Google Scholar]
- Cheng, S.; Cheng, L.; Liu, P.; Qin, S.; Zhang, L.; Xu, C.; Xiong, L.; Liu, L.; Xia, J. An Analytical Baseflow Coefficient Curve for Depicting the Spatial Variability of Mean Annual Catchment Baseflow. Water Resour. Res. 2021, 57, e2020WR029529. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L.A. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
Dataset | City | High-Resolution Image on Google Earth (Image ©2022 Maxar Technologies) | Landsat Image (Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI) |
---|---|---|---|
Sampling | Beijing | 1 October 2019 | 1 January 2019–1 January 2020 |
Shanghai | 10 December 2019 | 1 June 2019–1 June 2020 | |
Hangzhou | 28 October 2018 | 1 January 2018–1 January 2019 | |
Suzhou | 15 March 2009 | 1 January 2009–1 January 2010 | |
Tokyo | 30 November 2018, 24 May 2019 | 1 June 2018–1 June 2019 | |
Validation | Beijing | 28 August 2020 | 1 January 2020–1 January 2021 |
Tokyo | 1 November 2019 | 1 January 2019–1 January 2020 | |
New York | 24 May 2020 | 1 January 2020–1 January 2021 |
Beijing | ||||
---|---|---|---|---|
Region | Method | Commission Error | Omission Error | Total Error |
R1 | UWEA | 3.05% | 28.85% | 31.89% |
mNDWI | 1.27% | 35.34% | 36.61% | |
HIS method | 3.54% | 50.91% | 54.45% | |
R2 | UWEA | 2.69% | 23.12% | 25.81% |
mNDWI | 1.47% | 26.16% | 27.63% | |
HIS method | 0.36% | 37.90% | 38.26% | |
Tokyo | ||||
R1 | UWEA | 38.52% | 52.46% | 90.98% |
mNDWI | 34.21% | 60.46% | 94.66% | |
HIS method | 63.22% | 71.51% | 134.73% | |
R2 | UWEA | 0.42% | 9.68% | 10.10% |
mNDWI | 0.42% | 9.71% | 10.13% | |
HIS method | 4.83% | 10.87% | 15.70% | |
New York | ||||
R1 | UWEA | 0.27% | 12.92% | 13.19% |
mNDWI | 0.77% | 15.16% | 15.93% | |
HIS method | 0.77% | 25.95% | 26.72% | |
R2 | UWEA | 0.34% | 8.45% | 8.79% |
mNDWI | 5.84% | 8.37% | 14.21% | |
HIS method | 7.64% | 9.89% | 17.53% |
Beijing | Tokyo | New York | ||
---|---|---|---|---|
Water Area (km2) | 12.70 | 71.82 | 84.06 | |
UWEA | Commission error | 4.42% | 2.27% | 0.73% |
Omission error | 51.68% | 12.53% | 12.14% | |
Total error | 56.10% | 14.79% | 12.88% | |
mNDWI | Commission error | 1.94% | 2.01% | 1.15% |
Omission error | 57.06% | 12.82% | 12.94% | |
Total error | 58.99% | 14.83% | 14.10% | |
HIS method | Commission error | 4.34% | 7.45% | 1.95% |
Omission error | 66.90% | 12.31% | 14.73% | |
Total error | 71.23% | 19.76% | 16.69% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, L.; Cheng, L.; Huang, C.; Qin, S.; Fu, C.; Li, S. Extracting Urban Water Bodies from Landsat Imagery Based on mNDWI and HSV Transformation. Remote Sens. 2022, 14, 5785. https://doi.org/10.3390/rs14225785
Chang L, Cheng L, Huang C, Qin S, Fu C, Li S. Extracting Urban Water Bodies from Landsat Imagery Based on mNDWI and HSV Transformation. Remote Sensing. 2022; 14(22):5785. https://doi.org/10.3390/rs14225785
Chicago/Turabian StyleChang, Liwei, Lei Cheng, Chang Huang, Shujing Qin, Chenhao Fu, and Shiqiong Li. 2022. "Extracting Urban Water Bodies from Landsat Imagery Based on mNDWI and HSV Transformation" Remote Sensing 14, no. 22: 5785. https://doi.org/10.3390/rs14225785
APA StyleChang, L., Cheng, L., Huang, C., Qin, S., Fu, C., & Li, S. (2022). Extracting Urban Water Bodies from Landsat Imagery Based on mNDWI and HSV Transformation. Remote Sensing, 14(22), 5785. https://doi.org/10.3390/rs14225785