A Direct Method for the Estimation of Top-of-Atmosphere Outgoing Longwave Radiation from Himawari-8/AHI Data
Abstract
:1. Introduction
2. Data
2.1. Himawari-8/AHI
2.2. CERES
3. Algorithm Description
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, S.; Wang, D.; He, T.; Yu, Y. Remote sensing of earth’s energy budget: Synthesis and review. Int. J. Digit. Earth 2019, 12, 737–780. [Google Scholar] [CrossRef] [Green Version]
- Schmetz, J.; Liu, Q. Outgoing longwave radiation and its diurnal variation at regional scales derived from Meteosat. J. Geophys. Res. Atmos. 1988, 93, 11192–11204. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sasmal, S.; Chakrabarti, S.K.; Bhattacharya, A. Observational signatures of unusual outgoing longwave radiation (OLR) and atmospheric gravity waves (AGW) as precursory effects of May 2015 Nepal earthquakes. J. Geodyn. 2018, 113, 43–51. [Google Scholar] [CrossRef]
- Barkstrom, B.R. The earth radiation budget experiment (ERBE). Bull. Am. Meteorol. Soc. 1984, 65, 1170–1185. [Google Scholar] [CrossRef]
- Kandel, R.; Viollier, M.; Raberanto, P.; Duvel, J.P.; Pakhomov, L.; Golovko, V.; Trishchenko, A.P.; Mueller, J.; Raschke, E.; Stuhlmann, R.; et al. The ScaRaB earth radiation budget dataset. Bull. Am. Meteorol. Soc. 1998, 79, 765–784. [Google Scholar] [CrossRef]
- Harries, J.E.; Russell, J.; Hanafin, J.; Brindley, H.; Futyan, J.; Rufus, J.; Kellock, S.; Matthews, G.; Wrigley, R.; Last, A.; et al. The geostationary earth radiation budget project. Bull. Am. Meteorol. Soc. 2005, 86, 945–960. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.G.; Doelling, D.R.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J.G.; Liang, L.; Mitrescu, C.; Rose, F.G.; Kato, S. Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Clim. 2018, 31, 895–918. [Google Scholar] [CrossRef]
- Lee, H.-T.; Gruber, A.; Ellingson, R.G.; Laszlo, I. Development of the HIRS outgoing longwave radiation climate dataset. J. Atmos. Ocean. Technol. 2007, 24, 2029–2047. [Google Scholar] [CrossRef] [Green Version]
- Ba, M.B.; Ellingson, R.G.; Gruber, A. Validation of a technique for estimating OLR with the GOES sounder. J. Atmos. Ocean. Technol. 2003, 20, 79–89. [Google Scholar] [CrossRef]
- Lee, T.F.; Hawkins, J.; Kuciauskas, A.; Miller, S. Applications and Training for Next-Generation Imagers. Am. Meteorol. Soc. 2010, 91, 727–740. [Google Scholar] [CrossRef]
- Park, M.-S.; Ho, C.-H.; Cho, H.; Choi, Y.-S. Retrieval of outgoing longwave radiation from COMS narrowband infrared imagery. Adv. Atmos. Sci. 2015, 32, 375–388. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Lee, K.-T.; Jee, J.-B.; Zo, I.-S. Retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI data. Remote Sens. Environ. 2018, 204, 498–508. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Wang, D.; Chen, X.; Song, D.-X.; Jiang, B. Land surface albedo estimation from Chinese HJ satellite data based on the direct estimation approach. Remote Sens. 2015, 7, 5495–5510. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Liu, Q.; Liang, S.; Wang, L.; Liu, N.; Liu, S. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 2013, 52, 907–919. [Google Scholar] [CrossRef]
- Tang, B.; Li, Z.-L.; Zhang, R. A direct method for estimating net surface shortwave radiation from MODIS data. Remote Sens. Environ. 2006, 103, 115–126. [Google Scholar] [CrossRef]
- Wang, D.; Liang, S. Estimating high-resolution top of atmosphere albedo from Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ. 2016, 178, 93–103. [Google Scholar] [CrossRef]
- Song, Z.; Liang, S.; Wang, D.; Zhou, Y.; Jia, A. Long-term record of top-of-atmosphere albedo over land generated from AVHRR data. Remote Sens. Environ. 2018, 211, 71–88. [Google Scholar] [CrossRef]
- Zhan, C.; Liang, S. Improved estimation of the global top-of-atmosphere albedo from AVHRR data. Remote Sens. Environ. 2022, 269, 112836. [Google Scholar] [CrossRef]
- Letu, H.; Nakajima, T.Y.; Wang, T.; Shang, H.; Ma, R.; Yang, K.; Baran, A.J.; Riedi, J.; Ishimoto, H.; Yoshida, M.; et al. A new benchmark for surface radiation products over the East Asia-Pacific region retrieved from the Himawari-8/AHI next-generation geostationary satellite. Bull. Am. Meteorol. Soc. 2022, 103, E873–E888. [Google Scholar] [CrossRef]
- Bessho, K. An Introduction to Himawari-8/9-Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Loeb, N.G.; Manalo-Smith, N.; Su, W.; Shankar, M.; Thomas, S. CERES top-of-atmosphere earth radiation budget climate data record: Accounting for in-orbit changes in instrument calibration. Remote Sens. 2016, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
Band | Wavelength (μm) | Spatial Resolution (km) |
---|---|---|
1 | 0.47 | 1 |
2 | 0.51 | 1 |
3 | 0.64 | 0.5 |
4 | 0.86 | 1 |
5 | 1.6 | 2 |
6 | 2.3 | 2 |
7 | 3.9 | 2 |
8 | 6.2 | 2 |
9 | 6.9 | 2 |
10 | 7.3 | 2 |
11 | 8.6 | 2 |
12 | 9.6 | 2 |
13 | 10.4 | 2 |
14 | 11.2 | 2 |
15 | 12.4 | 2 |
16 | 13.3 | 2 |
Configuration | RMSE (W/m2) | Bias (W/m2) | ||
---|---|---|---|---|
Clear-Sky | Cloudy-Sky | Clear-Sky | Cloudy-Sky | |
Band 11–16 | 10.22 (3.9%) | 13.47 (6.5%) | −2.39 | −0.22 |
Band 7–16 | 8.50 (3.3%) | 12.51 (6.2%) | −1.87 | −0.06 |
Band 11–16 and VZA | 9.12 (3.6%) | 13.13 (6.3%) | −0.54 | 0.21 |
Band 7–16 and VZA | 7.46 (3.0%) | 11.61 (5.8%) | −0.14 | 0.21 |
Date | RMSE (W/m2) | Bias (W/m2) |
---|---|---|
1 February | 6.2 (3.1%) | 0.40 |
1 May | 5.3 (2.4%) | −0.45 |
1 August | 6.3 (2.8%) | −0.60 |
1 November | 5.3 (2.4%) | −0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, C.; Jiang, Y.; Chen, Y.; Miao, Z.; Zeng, X.; Li, J. A Direct Method for the Estimation of Top-of-Atmosphere Outgoing Longwave Radiation from Himawari-8/AHI Data. Remote Sens. 2022, 14, 5696. https://doi.org/10.3390/rs14225696
Zhan C, Jiang Y, Chen Y, Miao Z, Zeng X, Li J. A Direct Method for the Estimation of Top-of-Atmosphere Outgoing Longwave Radiation from Himawari-8/AHI Data. Remote Sensing. 2022; 14(22):5696. https://doi.org/10.3390/rs14225696
Chicago/Turabian StyleZhan, Chuan, Yazhen Jiang, Yong Chen, Zuohua Miao, Xiangyang Zeng, and Jun Li. 2022. "A Direct Method for the Estimation of Top-of-Atmosphere Outgoing Longwave Radiation from Himawari-8/AHI Data" Remote Sensing 14, no. 22: 5696. https://doi.org/10.3390/rs14225696
APA StyleZhan, C., Jiang, Y., Chen, Y., Miao, Z., Zeng, X., & Li, J. (2022). A Direct Method for the Estimation of Top-of-Atmosphere Outgoing Longwave Radiation from Himawari-8/AHI Data. Remote Sensing, 14(22), 5696. https://doi.org/10.3390/rs14225696