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Abstract: Although numerous satellite-based soil moisture (SM) products can provide spatiotemporally
continuous worldwide datasets, they can hardly be employed in characterizing fine-grained
regional land surface processes, owing to their coarse spatial resolution. In this study, we proposed
a machine-learning-based method to enhance SM spatial accuracy and improve the availability of
SM data. Four machine learning algorithms, including classification and regression trees (CART),
K-nearest neighbors (KNN), Bayesian (BAYE), and random forests (RF), were implemented to
downscale the monthly European Space Agency Climate Change Initiative (ESA CCI) SM product
from 25-km to 1-km spatial resolution. During the regression, the land surface temperature (including
daytime temperature, nighttime temperature, and diurnal fluctuation temperature), normalized
difference vegetation index, surface reflections (red band, blue band, NIR band and MIR band),
and digital elevation model were taken as explanatory variables to produce fine spatial resolution SM.
We chose Northeast China as the study area and acquired corresponding SM data from 2003 to 2012
in unfrozen seasons. The reconstructed SM datasets were validated against in-situ measurements.
The results showed that the RF-downscaled results had superior matching performance to both ESA
CCI SM and in-situ measurements, and can positively respond to precipitation variation. Additionally,
the RF was less affected by parameters, which revealed its robustness. Both CART and KNN ranked
second. Compared to KNN, CART had a relatively close correlation with the validation data,
but KNN showed preferable precision. Moreover, BAYE ranked last with significantly abnormal
regression values.
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1. Introduction

Soil moisture (SM) is a key indicator for characterizing agricultural drought, hydrological
processes, land surface evapotranspiration, and regional climate change [1–4]. A systematic analysis of
SM is conducive to acquiring accurate crop growth information as well as yield prediction [5–7].
The SM observations provided by ground-based networks (e.g., the International Soil Moisture
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Network [8], the Global Soil Moisture Data Bank [9], the U.S. SCAN network [10] and Chinese
Ecosystem Research Field Observational Stations Network [11]) have been effective sources of
long time series of regional soil water data [12–14]. However, considering that there are a limited
number of ground stations with uneven distribution in an observation network, it is hard to reflect
the SM of an entire region on the same scale [15–18]. For example, the stations could be densely
distributed over flat terrain and key research areas, with a thin distribution over uncultivated
mountainous environments with high altitude, steep slopes and dangerous terrain. In addition,
because every single station only represents the SM of a restricted homogeneous region and all
the in-situ measurements could hardly cover the entire required time span, it is less suitable to
use ground station data for broad and long-term analysis [12–14]. After nearly two decades of
development of aerospace technology, attention has increasingly been paid to satellite-based SM,
as it can provide spatiotemporally continuous datasets on a large scale [19,20]. Currently, there are
various types of satellites that provide near real-time SM products, such as the passive (radiometer)
microwave-based Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) [21],
Advanced Microwave Scanning Radiometer 2 (AMSR2) [22], Soil Moisture Ocean Salinity (SMOS) [23],
WindSat [24], active (radar) microwave-based Advanced Land Observation Satellite-Phased Array type
L-band Synthetic Aperture Radar (ALOS PALSAR) [25], European Remote Sensing Satellites (ERS) [26],
Sentinel-1 [27], a combination of active and passive microwave-based Soil Moisture Active Passive
(SMAP) [28] and European Space Agency Climate Change Initiative (ESA CCI) [29]. In addition,
physically based COsmic-ray Soil Moisture Interaction Code (COSMIC) is also an efficient method
to acquire SM by data assimilation. Moreover, it can eliminate the bias between satellite-measured
date and in-situ observation data [30].These SM datasets have been extensively made use of by many
scholars. However, the coarse spatial resolution fails to meet the needs of studies for SM variations of
specific regions [31].

To enhance the spatial resolution of the satellite-based SM products, a considerable body of
research has been carried out to develop SM downscaling techniques. Some remarkable results have
been achieved during the process of exploring different fine-resolution datasets. Mallick et al. [32]
proposed a method that took advantage of the correlation between soil wetness and
vegetation-modulated land surface temperature to derive an SM index [33]. Against this
background, Fang et al. [34] constructed a pixel-based linear regression model to downscale passive
microwave-based daily AMSR-E SM datasets by utilizing the triangular relationship between SM,
vegetation cover and surface temperature. María Piles et al. [35] downscaled the SMOS-derived
SM using a universal triangle algorithm with the Moderate Resolution Imaging Spectroradiometer
(MODIS) [36] visible and infrared data, but the downscaled SM maps shows a high bias until the
SMOS brightness temperature was added as a parameter. Srivastava et al. [37] compared four machine
learning algorithms for downscaling SMOS SM data using the MODIS Terra level 3 Land Surface
Temperature (LST) product with the superior performance of an artificial neural network (ANN).
However, they did not take the decision tree-based algorithm into consideration, which is a mature
supervised learning method. Peng et al. [38] constructed a simple nonlinear formula taking the
vegetation temperature condition index as the only input parameter to get higher spatial resolution
ESA CCI SM over the Yunnan province of China without considering terrain effects.

There exists a complicated nonlinear spatiotemporally changing relationship between SM and
the LST, vegetation cover, and altitude [33,37–43]. Hence, it is, to some extent, inappropriate to
implement a simple regression approach to downscale low-resolution heterogeneous SM datasets.
Moreover, several machine learning regression algorithms have been broadly utilized in downscaling
SM-relative subjects of remote sensing data, such as precipitation [39] and evapotranspiration [38].
Additionally, there is a great deal of research focusing on downscaling passive microwave
satellite SM [34,35,37,41,42]. However, there is still a lack of studies focused on comparing diverse
downscaling algorithms, especially by evaluating various machine learning downscaling methods
over a combination of active and passive microwave-based SM products. K-nearest neighbors
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(KNN) is a mature regression method and simple machine learning algorithm [44]. In Bayesian
regression (BAYE), a weighted integral rather than point estimation is employed to obtain posterior
distributions [45]. In addition to these, classification and regression trees (CART) is an easily understood
and commonly used supervised learning method [46]. By contrast, being an advanced algorithm
containing multiple decision trees, the random forest (RF) often yields results with higher accuracy [47].
Consequently, we tested and compared four types of machine learning methods, including CART,
KNN, BAYE and RF, to downscale ESA CCI SM over Northeast China to find a better algorithm for
retrieving finer-resolution data in this study.

Moreover, because LST is closely associated to SM, which means its day–night would remarkably
influence soil wetness [37–39], MODIS LST was involved in the downscaling process. Additionally,
vegetation conditions such as coverage, growing stages, species composition, and root morphology
could have complex and profound effects on soil water circulation [33,38,40,48]. Furthermore, with the
increase in altitude, soil water tends to drain away more easily [43]. Thus, we applied the normalized
difference vegetation index (NDVI), NDVI-related red band and near infrared band (NIR), blue band
that promotes chlorophyll synthesis, mid infrared band (MIR) that reflects the intense absorption of
soil water, and digital elevation model (DEM) as input parameters to downscale the monthly ESA CCI
SM over Northeast China from 2003 to 2012 for the unfrozen months from April to October. The water
area was removed before downscaling by a water mask extraction.

2. Study Area and Data Resources

2.1. Study Area

The three provinces of Northeast China, namely Heilongjiang, Jilin, and Liaoning Provinces,
were chosen for this case study. They span approximately 787,300 km2 within 38.72◦N–53.59◦N
and 121.00◦E–135.19◦E (Figure 1). The terrain in Northeast China is mainly dominated by plains
and mountainous areas. Owing to the high latitude, this region generally belongs to the cold and
mid-temperate monsoon climate with cold, long winters and warm, short summers. The annual
precipitation is 300–1000 mm and is mainly concentrated in the summer. As one of the major grain
crop producing regions in China, the whole area is renowned for its fertile black soil and deep soil
layer. However, the coarse pixel resolution (0.25◦) could hardly reflect the regional SM distribution
or satisfy the high accuracy requirement for irrigation analysis of agricultural production. Eight SM
stations were acquired from the Crop Growth and Soil Moisture Values in China datasets provided
by China Meteorological Science Data Sharing Network [49]. There were five different depths of
observation layers, which were 10 cm, 20 cm, 50 cm, 70 cm and 100 cm. Considering that microwave
remote sensing only penetrates 3–5 cm of the earth’s surface, the 10-cm data were utilized in this study.
In addition, we converted the relative humidity of the observed SM into volumetric water content
using Equation (1) to maintain consistency with ECA CCI SM data. The soil bulk density data and
field moisture capacity data [50,51] were derived from the Land and Gas Interaction Research Group,
Beijing Normal University (Beijing, China).

θv = Smρθg (1)

where θv, Sm, ρ and θg stand for soil volumetric moisture content, relative soil humidity, soil bulk
density and field moisture capacity, respectively.
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Figure 1. Distribution of soil moisture (SM) stations, elevation and grid cells of the European Space 
Agency Climate Change Initiative (ESA CCI) SM in Northeast China. 
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monitor 15 variables which correspond to climate changes [52,53]. SM, as one of these projects, aimed 
to integrate and synthesize a long time series of global SM datasets with a combination of both active 
and passive microwave remote sensing sensors [54]. ESA CCI SM provided a daily product with 0.25° 
spatial resolution across the globe. We used Version03.2 ESA CCI SM in this study. Considering the 
frequent and extensive absence of daily data, we treated ESA CCI SM, which had value at no fewer 
than 20 days in a month of a pixel valid data when computing the monthly SM data. The arithmetic 
mean was employed instead of maximum or minimum values, to maintain the stability and 
representativeness of SM. In addition, an administrative region mask layer was used for extracting 
the corresponding area. 

Day and Night LST were derived from the MODIS 11A1 product, and we calculated the 
difference between Day LST and Night LST to indicate the daily temperature fluctuation. We 
acquired parameters including NDVI, red band, NIR band, blue band and mid infrared band, which 
are interrelated to vegetation coverage, photosynthesis and soil water absorption from MODIS 13A3. 
Moreover, the MODIS 44W 250-m land–water mask data were employed to remove water body 
pixels. Furthermore, considering that water freezes below 0 °C, we selected SM in the unfrozen 
months from April to October. All MODIS data were downloaded from Land Process Distributed 
Active Archive Center (LP DAAC) [55], and were re-projected to the Albers Conical Equal Area 

Figure 1. Distribution of soil moisture (SM) stations, elevation and grid cells of the European Space
Agency Climate Change Initiative (ESA CCI) SM in Northeast China.

2.2. Data Resources

The European Space Agency (ESA) initiated the Climate Change Initiative (CCI) program to
monitor 15 variables which correspond to climate changes [52,53]. SM, as one of these projects, aimed to
integrate and synthesize a long time series of global SM datasets with a combination of both active
and passive microwave remote sensing sensors [54]. ESA CCI SM provided a daily product with
0.25◦ spatial resolution across the globe. We used Version03.2 ESA CCI SM in this study. Considering
the frequent and extensive absence of daily data, we treated ESA CCI SM, which had value at
no fewer than 20 days in a month of a pixel valid data when computing the monthly SM data.
The arithmetic mean was employed instead of maximum or minimum values, to maintain the stability
and representativeness of SM. In addition, an administrative region mask layer was used for extracting
the corresponding area.

Day and Night LST were derived from the MODIS 11A1 product, and we calculated the
difference between Day LST and Night LST to indicate the daily temperature fluctuation. We acquired
parameters including NDVI, red band, NIR band, blue band and mid infrared band, which are
interrelated to vegetation coverage, photosynthesis and soil water absorption from MODIS 13A3.
Moreover, the MODIS 44W 250-m land–water mask data were employed to remove water body pixels.
Furthermore, considering that water freezes below 0 ◦C, we selected SM in the unfrozen months from
April to October. All MODIS data were downloaded from Land Process Distributed Active Archive
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Center (LP DAAC) [55], and were re-projected to the Albers Conical Equal Area projection, WGS 1984
datum and resampled to 1-km spatial resolution using the nearest neighbor algorithm.

We downloaded DEM data from Shuttle Radar Topography Mission (SRTM), which has 30-m,
90-m and 1-km pixel resolutions available online [56]. Taking into account the factual resolution needed
in this study, we selected the 1-km pixel resolution version DEM data and re-projected it to the Albers
Conical Equal Area projection, WGS 1984 datum.

Moreover, satellite-based precipitation data was employed in this study to validate the inter
feedback relation between SM and rainfall. Tropical Rainfall Measuring Mission (TRMM), launched
in 1997 and ended in 2015, was co-sponsored by the National Aeronautics and Space Administration
(NASA) and Japan Aerospace Exploration Agency (JAXA) to study rainfall for weather and climate
change [57]. The TRMM 3B43 product covered the range of 50◦N–50◦S and provided monthly
precipitation data at a pixel resolution of 0.25◦. TRMM 3B43 data was utilized to analyze the temporal
relevance of SM and precipitation.

3. Methods

3.1. Downscaling Process

The machine-learning-based ESA CCI SM downscaling method is based on three main relevant
study bases: (1) Machine learning algorithms have been widely used in various satellite-based SM
data product downscaling methods to obtain preferable results. (2) SM change is a complex and
multifactorial interaction soil hydrological process, but some research has suggested [33,37–43] that
LST, NDVI, surface reflections, and DEM all have an influence on the moisture and water-holding
capacity of soil. (3) A 25-km spatial resolution pixel value stands for the integral attribute of the pixel
rather than extreme situation of a certain area. Moreover, models developed by explanatory variables
over a proper range of scales are applicable to soil moisture response reproducing [58]. It seems that it
is usually feasible to assume stationarity at appropriate different scales as data limitation [59]. Hence,
the correlation between independent variables and dependent variables on the 25-km scale can be
also applicable to the 1-km scale. The procedures of relevant data processing and downscaling are as
follows. The specific steps are described in Figure 2.

(1) We get the diurnal temperature fluctuation (LSTDF) by LSTNIGHT from LSTDAY. Then, all nine
independent variables are re-projected to the Albers Conical Equal Area projection, WGS 1984
datum and resampled to 1-km as input parameters.

(2) MODIS 44W 250-m land–water mask data are utilized to remove water body area from both
25-km and 1-km data for the sake of excluding unnecessary influences of water areas.

(3) Multiple correlations and fitting models are established through the CART, KNN, BAYE, and RF
algorithms among the independent variables and ESA CCI SM on the 25-km scale.

(4) Based on the models already built by the training sample data, 1-km spatial resolution parameters
are input as predicting data to obtain downscaled fine-resolution SM data.
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sub-tree. Moreover, the relationship between the independent variables and dependent 
variables within a sub-tree can be explained in a same model [61]. 

(2) KNN is a simple and efficient machine learning algorithm. If in the feature space the k-most-
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group, and has the characteristics of the group. In determining the classification, the KNN 
method decides the category of the sample to be divided merely according to the nearest one or 
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3.2. Brief Introduction of Machine Learning Regression Algorithms

Four machine learning regression algorithms, namely CART, KNN, BAYE, and RF, were employed
in this study to compare the performance of downscaling. Introductions of the four downscaling
methods are as follows.

(1) The essence of CART is to divide the feature space into two parts, namely to generate
a binary decision tree [60]. CART can split both nominal attributes and continuous attributes.
CART produces a series of cut points to make sure that samples within a subgroup have maximal
homogeneity and samples in different subgroups have maximal diversity. The cut points are
called nodes and the terminal nodes are called leaf nodes, which divide the dataset to a final
sub-tree. Moreover, the relationship between the independent variables and dependent variables
within a sub-tree can be explained in a same model [61].

(2) KNN is a simple and efficient machine learning algorithm. If in the feature space the
k-most-adjacent samples belong to a certain group, then the nonclassified sample also belongs to
this group, and has the characteristics of the group. In determining the classification, the KNN
method decides the category of the sample to be divided merely according to the nearest one or
few samples [62].
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(3) There are two main steps in a BAYE model. First, training data are utilized to obtain the likelihood
function. We get the posterior distribution by a combination of the likelihood function and a prior
distribution. After that, for a new test dataset, a weighted integral is computed in the whole
parameter space by using the previously obtained posterior as weights, yielding a predictive data
distribution [63].

(4) RF is an ensemble learning algorithm that uses multiple decision trees to obtain better prediction
performance. It was first developed by Leo Breiman and Adele Cutler [64]. Its superiority is
embodied in relative fast training speed, and the performance optimization process improves
the accuracy of the RF model [65]. The RF regression process can be divided into three parts.
First, several sub-sets are randomly drawn from the original datasets with replacement.
The elements of different sub-datasets can be repeated, as can elements in the same subset. Second,
every sub-decision tree is constructed by a certain sub-dataset and then outputs a regression
result. Third, for classification problems, the final output is the mode of the classes of all the
individual trees; for regression problems, the predicted results are obtained by averaging the
prediction of individual trees [66].

Each of the four algorithms has its own properties, and we obtained access to these algorithms
by the scikit-learn package, which is an open access data source and provides efficient machine
learning tools in Python for data mining and data analysis [67]. Parameter optimization is required
for machine learning algorithms. In this study, we employed a combination of different values from
the key parameters of each algorithm to optimize the training process. The value range of these
parameters covered major values in common use (Table 1). Here, we took advantage of a grid-search
method from scikit-learn, which can perform an exhaustive search over specified parameter values for
an estimator [68]. The grid search algorithm that we implemented to find the optimal parameters is
based on a cross-validation scheme. The grid search exhaustively considers all parameter combinations
with a cross-validation scheme. We used a k-fold strategy, which divides all the samples in k groups of
samples, called folds, of equal sizes. The prediction function is learned using k-1 folds, and the fold
left out is used for test. In this study, we used default k value 3.

Table 1. Parameter ranges of classification and regression trees (CART), k-nearest neighbor (KNN),
Bayesian (BAYE) and random forest (RF) algorithms.

Algorithm Parameter Name Parameter Meaning Value Ranges

CART MinSamplesLeaf
The minimum sample

number to split internal node.
(default = 2)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

KNN n_neighbors Used neighbor number.
(default = 5) 2, 5, 8, 11, 14, 17, 20, 23, 26, 29

BAYE n_iter Maximal iteration times.
(default = 300) 100, 150, 200, 300, 350, 400, 450, 500, 550, 600

RF n_estimators Trees in the forest.
(default = 10) 20, 40, 60, 80, 100, 120, 140, 160, 180, 200

4. Results and Analysis

4.1. Performance of Different Algorithms

We calculated the 10-year arithmetic mean coefficients of determination (R2) of the four machine
learning downscaling algorithms. Figure 3 shows R2 with different parameters of CART, KNN,
BAYE and RF. It is illustrated that with the increasing of MinSamplesLeaf of CART, the R2 values
decreased remarkably from nearly 1.00 to 0.73. This is similar to the R2 values of KNN, which fluctuate
from 0.82 to 0.51 as n_estimators vary between 2 and 29. Both CART and KNN are vulnerable to
parameter changes. On the contrary, BAYE and RF behave more stably with respect to parameter



Remote Sens. 2018, 10, 31 8 of 23

changes, indicating the notable robustness of these two methods. Additionally, compared to BAYE,
RF shows outstanding performance with R2 generally greater than 0.92.
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To investigate the goodness of fit between the original ESA CCI SM and CART, KNN, BAYE and RF
downscaled SM (CART_SM, KNN_SM, BAYE_SM and RF_SM), we drew scatterplots and established
regression correlations, as shown in in Figure 4. When the downscaled 1-km SM data were resampled
to the 25-km scale, the upscaling procedure could eliminate extreme values and tended to homogenize
the whole area by simple arithmetic mean. In consequence, the monthly 25-km ESA CCI SM was first
regressed to 25 km other than 1 km to retain the raw regressed values. In terms of the root mean square
error (RMSE), mean absolute error (MAE), and R2 (coefficient of determination), RF behaved the best
with RMSE = 0.009 m3·m−3, MAE = 0.006 m3·m−3, and R2 = 0.961, followed by CART, KNN, and BAYE.
In addition, considering the slope and intercept in the linear regression equation, CART produced
a better fit degree with the original SM data (y = 1.000x − 0.000) than all the other algorithms. The slopes
of KNN, BAYE and RF were all greater than 1.0, which indicated that the three regressions slightly
underestimated the SM data during regression. Overall, it is suggested that RF and CART seemed
to outperform KNN and BAYE in processing the SM data. Figure 5 shows that the ESA CCI SM and
machine learning methods-processed SM had similar mean values. However, ESA CCI SM showed the
largest standard deviation (0.044), followed by RF_SM (0.041) and CART_SM (0.040). BAYE_SM had
the least standard deviation (0.036). Additionally, this explained the why in Figure 4 RF_SM had the
largest value range and BAYE_SM had the lowest value range. The standard deviation in the error bar
reflected the discretization degree of each SM dataset by calculating the average value of deviations
from the average data. By contrast, RMSE expressed the degree of deviation from the ESA CCI SM
value of the machine learning-regressed data.
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Figure 5. Comparison of ESA CCI SM, CART_SM, KNN_SM, BAYE_SM and RF_SM by error bars.

Similarly, we analyzed the matching level between ESA CCI SM and the four algorithms
regressed SM data in different months. Table 2 revealed that all the months’ SM data demonstrated
an approximate 1:1 positive correlation with average slopes and interceptions ranging from
1.026 to 1.059 and −0.001 to −0.014 respectively. Moreover, the average RMSE value interval
(0.018–0.022 m3·m−3) and MAE value range (0.006–0.007 m3·m−3) clarified that deviation and
error between regressed values and true values were also small. However, lower R2 = 0.662 in
August presented that the fitting degree of the model was not as good as for the other months.
This phenomenon may result from the comprehensive impact of heavy rainfall causing a sharp rise
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in local SM, especially in low-lying areas, as well as high-temperature oriented sunny slopes with
SM rapid evaporation, which co-contributed to comparatively uneven and irregular distribution of
SM value.

Table 2. Monthly slope, interception, RMSE, MAE and R2 between ESA CCI SM and the four algorithms
regressed data.

Month Method CART KNN BAYE RF Average

pril

Slope 1 1.049 1.009 1.074 1.033
Interception 0 −0.011 −0.002 −0.015 −0.007

RMSE 0.018 0.024 0.034 0.01 0.022
MAE 0.012 0.018 0.026 0.007 0.016

R2 0.847 0.715 0.437 0.959 0.74

May

Slope 1 1.041 1.005 1.059 1.026
Interception 0 −0.009 −0.001 −0.012 −0.001

RMSE 0.017 0.022 0.029 0.009 0.019
MAE 0.013 0.016 0.022 0.006 0.014

R2 0.849 0.762 0.575 0.964 0.79

June

Slope 1 1.038 1.005 1.075 1.03
Interception 0 −0.009 −0.001 −0.016 −0.007

RMSE 0.017 0.022 0.026 0.008 0.018
MAE 0.013 0.017 0.02 0.006 0.014

R2 0.815 0.7 0.583 0.959 0.764

July

Slope 1 1.056 1.006 1.091 1.038
Interception 0 −0.014 −0.001 −0.022 −0.009

RMSE 0.019 0.024 0.027 0.009 0.02
MAE 0.014 0.018 0.021 0.007 0.015

R2 0.777 0.641 0.537 0.954 0.727

August

Slope 1 1.108 1.012 1.116 1.059
Interception 0 −0.026 −0.003 −0.028 −0.014

RMSE 0.017 0.022 0.027 0.009 0.019
MAE 0.013 0.017 0.021 0.006 0.014

R2 0.745 0.585 0.371 0.945 0.662

September

Slope 1 1.059 1.009 1.084 1.038
Interception 0 −0.015 −0.002 −0.02 −0.009

RMSE 0.019 0.024 0.032 0.009 0.021
MAE 0.014 0.018 0.025 0.007 0.016

R2 0.81 0.69 0.446 0.957 0.726

October

Slope 1 1.033 1.007 1.069 1.027
Interception 0 −0.009 −0.001 −0.016 −0.009

RMSE 0.019 0.025 0.033 0.009 0.022
MAE 0.014 0.019 0.027 0.007 0.017

R2 0.837 0.734 0.52 0.965 0.764

4.2. Downscaled Soil Moisture

We compared the ESA CCI SM and CART, KNN, BAYE, and RF downscaled SM in April 2003,
May 2009 and October 2011 in Figure 6. The CART_SM produced a similar spatial distribution pattern
to ESA CCI SM in May 2009, but shows obvious differences to ESA CCI SM in the eastern, northern,
and central regions of the study area in April 2003 and October 2011. In comparison, KNN_SM
generally underestimated the SM value. In addition, BAYE_SM remained consistent with ESA CCI SM
data in April 2003 and May 2009, but it failed to reveal high-value areas in October 2011. By contrast,
both the RF_SM value range and spatial distribution present an outstanding matching degree.
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CART_SM in April 2003, May 2009 and October 2011; (g–i) are KNN_SM in April 2003, May 2009 and
October 2011; (j–l) are BAYE_SM in April 2003, May 2009 and October 2011; (m–o) are RF_SM in April
2003, May 2009 and October 2011.

4.3. Validation for In-Situ Soil Moisture

The in-situ measurements from eight sites were utilized to validate the downscaled SM data.
The RMSE, MAE, Bias, and R2 were calculated. The results are shown in Table 3. We found that, in terms
of R2, RF showed the superior coefficient of determination (R2 = 0.191), CART (R2 = 0.135) ranked
second, followed by KNN (R2 = 0.13), and BAYE had the lowest R2 value (R2 = 0.081). In addition,
BAYE performed, to some extent, better than the others in terms of Bias. Furthermore, RF and KNN
revealed fairly good performance for Bias. The downscaled results produced by using the CART
model had the worst accuracy of all the algorithms. The fluctuation of deviation between downscaled
data and measurements was relatively small in general. Figures 7–9 show the error boxplot of R2,
RMSE (m3·m−3) and Bias, which are more intuitive than the numerical figures in Table 3. We can
clearly see the mean, median, 75 and 25 percentiles, and maximum and minimum values of each index.
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Table 3. Validation results of different downscaling methods in different soil moisture stations.

CART_SM KNN_SM BAYE_SM RF_SM ESA CCI SM

In-Situ R2 RMSE
(m3·m−3) Bias R2 RMSE

(m3·m−3) Bias R2 RMSE
(m3·m−3) Bias R2 RMSE

(m3·m−3) Bias R2 RMSE
(m3·m−3) Bias

1 0.220 0.066 −0.177 0.180 0.066 −0.173 0.258 0.057 −0.130 0.265 0.067 −0.187 0.235 0.056 −0.103
2 0.081 0.090 −0.250 0.168 0.079 −0.224 0.046 0.080 −0.188 0.116 0.086 −0.242 0.137 0.073 −0.177
3 0.123 0.107 −0.290 0.194 0.100 −0.277 0.000 0.099 −0.227 0.281 0.101 −0.285 0.173 0.086 −0.216
4 0.063 0.073 −0.198 0.026 0.071 −0.183 0.034 0.067 −0.126 0.112 0.072 −0.200 0.188 0.060 −0.148
5 0.245 0.046 −0.044 0.192 0.050 −0.081 0.003 0.065 −0.018 0.313 0.043 −0.052 0.071 0.060 −0.103
6 0.125 0.102 −0.225 0.082 0.107 −0.242 0.111 0.099 −0.197 0.133 0.100 −0.22 0.195 0.111 −0.273
7 0.064 0.082 −0.166 0.077 0.076 −0.139 0.076 0.079 −0.104 0.140 0.077 −0.163 0.280 0.075 −0.180
8 0.156 0.041 0.092 0.122 0.039 0.098 0.119 0.053 0.135 0.169 0.040 0.107 ** ** **

Average 0.135 0.076 −0.157 0.130 0.074 −0.153 0.081 0.075 −0.107 0.191 0.073 −0.155 0.183 0.074 −0.172

** means that ESA CCI SM had no data in in-situ 8.
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According to the analysis above, the coefficient of determination between the downscaled SM and
in-situ measurements did not reach ideal accuracy. There were four specific reasons for this, which are
as follows. First, the accuracy of the downscaled SM mainly relies on the accuracy of the ESA CCI
SM. Table 3 shows that the average R2 value of ESA CCI SM and in-situ measurements was 0.183,
which was lower than that of RF_SM. This indicates that the downscaled SM by using the RF model
is more correlated to in-situ SM than the original ESA CCI SM product. Dorigo et al. [29] evaluated
the ESA CCI SM product using in-situ measurements and found that RMSE varied among different
networks. Furthermore, according to the validation results by using the SM networks, the integral
data quality showed a decreasing tendency from 2007 to 2010. Second, ESA CCI SM acquired data
in the depth range of 3–5 cm, whereas the in-situ measurements used in this study monitored SM at
a depth of 10 cm. The physical factors which resulted in SM change were different at different depths.
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Furthermore, the sand content in soil can have an effect on microwave penetration [69], and therefore,
the diversity of sand content led to different microwave penetration depth [70]. Third, the original
in-situ SM data were recorded in relative humidity (%). The bulk density and field capacity data
were used in unit conversion. However, their accuracies were affected by the source map, measured
soil properties, and interrelations [71]. Therefore, a certain amount of error could appear during
the unit conversion to volumetric water content (m3·m−3). Finally, considering the scale mismatch
between the in-situ measurements and the pixels of satellite-based SM, the spatial representativeness
of the point-scale in-situ measurements is not ideal for the evaluation of the coarse remote sensing SM
products. Although the spatial resolution of the downscaled SM is highly improved, the grid size of
the downscaled SM is still much larger than point-scale measurements.

4.4. Comparison with Precipitation Data

As previous studies suggested that SM could have a predominantly positive feedback on
precipitation [72,73], we compared the downscaled SM, in-situ measurements, and precipitation
from 2003 to 2012 in Figure 10. We utilized monthly TRMM 3B43 V7 precipitation data at a spatial
resolution of 0.25◦ × 0.25◦, which was downloaded from the official website for NASA Precipitation
Measurement Missions and extracted the precipitation values via the in-situ locations.
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Figure 10 shows that both SM and rainfall exhibited significant and correlative inter-annual
variability. Specifically, SM showed increasing trends with the increase in precipitation in summer
and declined as precipitation decreased in spring and autumn. Moreover, the precipitation is mainly
concentrated in June, July and August, and the peak value of SM lagged the rainfall peak by no more
than one month. When comparing the different SM, the in-situ measurements were mostly larger
than the downscaled SM in Figure 10a–d,f,g, whereas the in-situ measurements were slightly smaller
than the downscaled SM in Figure 10e,h. This phenomenon could probably explain the heterogeneity
between SM at depths of 3–5 cm and 10 cm.

Equally, the performance of the downscaled SM was diverse among the specific methods.
It is known that CART and RF are tree-based algorithms, and thus, there is a consistency in the
variation tendency of the two data series. Nonetheless, CART_SM showed a few of unusual extreme
values (larger peak value in October 2010 in Figure 6b and smaller valley value in August 2004 in
Figure 10h than the other downscaled SM results). By contrast, RF_SM displayed relative robustness
and consistency with proper values, demonstrating corresponding variation tendency and reasonable
extreme values with precipitation and in-situ measurements as well. The variation tendency of
KNN_SM was relatively consistent with the whole trend, but there were still some dissimilarities.
For example, KNN_SM showed a peak in April 2004 in Figure 10a, whereas all the other SM results as
well as precipitation present a valley at the same time. In addition, the fluctuation curve of KNN_SM
was more like that of BAYE_SM; this may be because, during the regression progress, both KNN
and BAYE mainly take the nearby important point values into consideration when predicting SM.
BAYE_SM shows noticeably abnormal peak and valley values compared to the other downscaled SM
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and in-situ measurements. In general, the BAYE algorithm expressed an unstable performance in
peaks and valleys during the downscaling progress.

5. Discussion

The variation of SM is a complex and synthetic process, which is impacted by numerous
meteorological factors and physical aspects. Previous studies lent support to the assumption that the
LST, vegetation conditions and terrain can directly affect SM [37–42,48]. However, the coarse resolution
of satellite-based SM products has limited accurate regional crop yield estimation, calculation of
irrigation levels, hydrothermal condition analysis and soil water holding capacity comparison.
We utilized four machine learning algorithms to downscale monthly averaged ESA CCI SM from 25-km
to 1-km spatial resolution by implementing LST, NDVI, surface reflection and DEM as explanatory
variables. A parameter-exhaustive search method was applied to choose optimal parameters. Moreover,
1-km spatial resolution SM was validated by eight in-situ SM measurements from 2003 to 2012 to
verify the quality and features of the downscaled results.

Four typical machine learning algorithms, namely BAYE, CART, KNN, and RF, were chosen to
acquire fine-resolution SM imagery. An exhaustive method implemented in Python was employed to
pick optimal parameters and compare the robustness of different algorithms. Moreover, these findings
provide evidence that RF ranked first with stable superior performance and the highest R2,
CART ranked second with R2 ranging from nearly 1.00 to 0.73, followed by KNN, and BAYE ranked last.
This ranking applied equally to correlation and accuracy analysis between ESA CCI SM and the four
regressed SM results. Moreover, the machine learning algorithm-regressed SM also matched quite well
with ESA CCI SM monthly, except in August. This was a period when a large amount of precipitation
converged on low-lying land and soil water on a sunny slope evaporated rapidly owing to a high LST.
In consequence, when studying SM downscaling in summer in the future, detailed terrain attributes
such as slope, aspect and elevation should be taken into account. In addition, the validation between
the downscaled SM and in-situ measurements did not obtain ideal accuracy. This phenomenon
could be mainly ascribed to four points: (1) The quality of the downscaled SM was based on the
quality of the ESA CCI SM. Consequently, the correlation level between the in-situ measurements
and downscaled SM was limited by the precision of the original data. (2) Previous studies showed
that as sandy soil has massive macropores and an air–soil interface, microwave penetration depth
increases with increasing soil sand content [69,70,74]. Additionally, high sand content caused multiple
reflection/scattering and led to higher reflectance [74]. Hence, in theory, a diversity of sand content
led to different microwave penetration depth. (3) Bulk density and field capacity data were developed
by multiple pedotransfer functions, which represent regional digital soil properties [50]. However,
the precision of the dataset cannot exceed the source data, including the soil map, measured soil
attributes, and the linking relationship [71], and these are the sources of uncertainty. Accordingly,
errors resulting from the unit conversion (from relative humidity (%) to volumetric water content
(m3·m−3)) could appear. (4) The spatial representativeness of the point-scale in-situ measurements
could hardly stand for the integral SM of 1 km2; namely, there is a SM value mismatch between the
point-scale and 1-km-pixel scale.

Therefore, it is necessary to explore other effective validation methods to evaluate downscaled
SM, objectively and effectively. Thus, considering the positive feedback relation between SM and
precipitation, we tried to analyze the tendency correlation between downscaled SM, in-situ SM,
and precipitation data. We found that the SM peak value lagged the rainfall peak by no more than
one month, which means that precipitation can have a remarkable promotion effect on SM. Hence,
SM-related physical elements could be employed in validating downscaled SM accuracy in the next
study to explore multiple and efficient validation methods.

This study has attempted to downscale ESA CCI SM and evaluate the accuracy of four selected
machine learning downscaling algorithms. Among the regression methods, RF_SM ranked first with
preferable SM values and matching degree. BAYE_SM showed the worst accuracy, with apparent
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abnormal extreme values and low R2. For CART_SM and KNN_SM, the former had an advantage in
correlation whereas the latter did well in data accuracy.

Additionally, the artificial neural network (ANN) is an important and rapid developing machine
learning algorithm in recent years. It has been widely utilized in soil moisture downscaling [37],
precipitation downscaling [75], rainfall–runoff modeling [76] and other hydrological process simulation
and achieved relative good performance. Thus, we tested the performance of ANN in downscaling
ESA CCI SM over Northeast China. However, comparing to the ESA CCI SM, the downscaled values
lacked spatial consistency. Thus, we did not further analyze ANN downscaled product. According to
our speculation, the reasons may be attributed to two aspects. First, different number and kinds of
explanatory variables could result in different downscaled results by ANN. Second, heterogeneous soil
attributes and study area could also lead to different downscaled outcome. The ANN is an outstanding
machine learning algorithm, but it performed poorly in the experiments. We did not include the ANN
in the comparison in this study, because the detailed mechanisms for the inconsistency are still not
comprehensible and remain to be investigated, and the conclusions should be drawn very cautiously.

6. Conclusions

The traditional coarse spatial resolution of satellite-based SM, despite its wide coverage area,
could hardly satisfy high-accuracy geological analysis requirements such as regional hydrological
process analysis, crop yield estimation, and land surface evapotranspiration analogy. Moreover,
it seems that a basic linear regression model and universal triangle method are vulnerable to parameter
variation. To date, machine learning downscaling algorithms have been extensively utilized in
regressing hydrology-related subjects of remote sensing data. Accordingly, there is an urgent need for
retrieving high-resolution SM from satellite-based coarse SM images by machine learning methods
and evaluating its precision.

As there is a lack of studies on multiple parameters including satellite-based SM downscaling,
we implemented 1-km SM-relevant parameters to downscale 25-km ESA CCI SM by four machine
learning methods (BAYE, CART, KNN and RF). From the four regression results, it could be concluded
with certainty that RF_SM showed the best performance in both value accuracy and tendency variation.
CART and KNN ranked second by showing their own disadvantages in data accuracy and correlation,
respectively. BAYE ranked last, with significantly abnormal regression values.

This study has taken a step in the direction of comparing the capacity and suitability of different
machine-learning-based algorithms in downscaling ESA CCI SM. In the future, further studies would
be focused on clarifying the mechanism by which these parameters act on SM and result in its variation.
This could be beneficial for the chosen explanatory variables in the downscaling process. Additionally,
the attributes of the soil itself, such as sand content, parent material and organic matter content can
also impact soil water holding capacity. Thus, the soil attribute data play a vital role in SM as well and
could be applied to SM downscaling.
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