Evolution of Influence Ranges of Neolithic-Bronze Age Cities in the Songshan Mountain Region of Central China Based on GIS Spatial Analysis
Abstract
:1. Introduction
2. Regional Setting
3. Materials and Methods
3.1. Research Strategy
3.2. Data Basis
3.3. Average Nearest Neighbor Analysis
3.4. Thiessen Polygon Analysis
- (1)
- Within each polygon, there is one and merely one discrete point;
- (2)
- In the B area, for any point (x1, y1) lying inside the polygon containing the discrete point (xi, yi), the following inequation always holds, when i ≠ j:
- (3)
- In the B area, for any point (x1, y1) on the common edge of two polygons containing the discrete point (xi, yi), the following equation holds:
3.5. Calculation of the Cost-Weighted Distance
4. Results
4.1. Spatial-Temporal Distribution Characteristics of Neolithic-Bronze Age Cities
4.2. Morphological Characteristics of Constructed Thiessen Polygons for Early Cities
4.3. Influence Range Evolution of Neolithic-Bronze Age Cities
5. Discussion
5.1. Social Changes Suggested by the Evolution of Influence Ranges of Early Cities
5.2. Interaction between the Early City Evolution and Natural Environment
6. Conclusions
- (1)
- Spatial distributions of early cities in the study area are random during the Yangshao and Longshan cultures, dispersed during the Erlitou culture and Shang Dynasty, and again random during the Zhou Dynasty.
- (2)
- Influence ranges of early cities are the largest during the Erlitou culture, followed by those of the Longshan culture, Yangshao Culture, and Shang Dynasty. This fact is different from the conventional view that the city’s influence range should continuously expand with time.
- (3)
- The Holocene climate variation and the consequent cyclic river downcutting and silting affect the city site selection and thus the spatial-temporal distribution and influence range of early cities. The enfeoffment system occurring during the Erlitou culture also plays a key role.
- (4)
- In general, the natural environment is more important for the spatial distribution and influence range of early cities during Yangshao and Erlitou cultures, while human culture plays a dominant role during Xia and Shang Dynasties when the natural environment is relatively stable.
Author Contributions
Funding
Conflicts of Interest
References
- Lu, P.; Chen, P.; Tian, Y.; He, Y.; Mo, D.; Yang, R.; Lasaponara, R.; Masini, N. Reconstructing settlement evolution from neolithic to Shang dynasty in Songshan mountain area of central China based on self-organizing feature map. J. Cult. Herit. 2019, 36, 23–31. [Google Scholar] [CrossRef]
- Gu, C.; Chai, Y.; Cai, J.; Niu, Y.; Sun, Y.; Chen, T.; Ye, J. Chinese Urban Geography; The Commercial Press: Beijing, China, 1999. [Google Scholar]
- Xu, X.; Zhou, Y.; Ning, Y. Urban Geography; Higher Education Press: Beijing, China, 1997. [Google Scholar]
- Xu, H. Pre-Qin City Archaeology; Gold Wall Press and Xiyuan Press: Beijing, China, 2017. [Google Scholar]
- Lu, P. Review on prehistoric settlement geography research. Prog. Geogr. 2013, 32, 1286–1295. [Google Scholar]
- Lu, P.; Yang, R. Overview on the researches of the prehistoric settlement in the digital environment archaeology. Areal Res. Dev. 2013, 32, 165–169. [Google Scholar]
- Nakoinz, O.; Knitter, D. Modelling Human Behaviour in Landscapes; Quantitative Archaeology and Archaeological Modelling; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Unwin, D. Geographic Information Analysis; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Bevan, A.H.; Lake, M. (Eds.) Computational Approaches to Archaeological Spaces; Left Coast Press: Walnut Creek, CA, USA, 2013. [Google Scholar]
- Inomata, T.; Triadan, D.; López, V.A.V.; Fernandez-Diaz, J.C.; Omori, T.; Bauer, M.B.M.; Hernández, M.G.; Beach, T.; Cagnato, C.; Aoyama, K.; et al. Monumental architecture at Aguada Fénix and the rise of Maya civilization. Nature 2020, 582, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Ayala, G.; Wainwright, J.; Walker, J.; Hodara, R.; Lloyd, J.M.; Leng, M.; Doherty, C. Palaeoenvironmental reconstruction of the alluvial landscape of Neolithic Çatalh€oyük, central southern Turkey: The implications for early agriculture and responses to environmental change. J. Archaeol. Sci. 2017, 87, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Wang, X.; Liu, C.; Guo, H.; Du, X. Integrated RS, GIS and GPS approaches to archaeological prospecting in the Hexi Corridor, NW China: A case study of the royal road to ancient Dunhuang. J. Archaeol. Sci. 2014, 50, 178–190. [Google Scholar] [CrossRef]
- Lu, P.; Yang, R.; Chen, P.; Guo, Y.; Chen, F.; Masini, N.; Lasaponara, R. On the use of historical archive of aerial photographs for the discovery and interpretation of ancient hidden linear cultural relics in the alluvial plain of eastern Henan, China. J. Cult. Herit. 2017, 23, 20–27. [Google Scholar] [CrossRef]
- Garcia, A. GIS-based methodology for Palaeolithic site location preferences analysis. A case study from Late Palaeolithic Cantabria (Northern Iberian Peninsula). J. Archaeol. Sci. 2013, 40, 217–226. [Google Scholar] [CrossRef]
- Li, Y.; Lu, P.; Mao, L.; Chen, P.; Yan, L.; Guo, L. Mapping spatiotemporal variations of Neolithic and Bronze Age settlements in the Gansu-Qinghai region, China: Scale grade, chronological development, and social organization. J. Archaeol. Sci. 2021, 129, 105357. [Google Scholar] [CrossRef]
- Lu, P.; Tian, Y.; Yang, R. The study of size-grade of prehistoric settlement in the Circum-Songshan area based on SOFM network. J. Geogr. Sci. 2013, 23, 538–548. [Google Scholar] [CrossRef]
- Zheng, H.; Zhou, Y.; Yang, Q.; Hu, Z.; Ling, G.; Zhang, J.; Gu, C.; Wang, Y.; Cao, Y.; Huang, X.; et al. Spatial and temporal distribution of Neolithic sites in coastal China: Sea level changes, geomorphic evolution and human adaption. Sci. China Earth Sci. 2018, 61, 123–133. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, Y.; Ma, M. Spatiotemporal evolution of prehistoric Neolithic-Bronze Age settlements and influencing factors in the Guanting Basin, northeast Tibetan Plateau. Sci. China Earth Sci. 2018, 61, 149–162. [Google Scholar] [CrossRef]
- Dong, G.; Jia, X.; Elston, R.; Chen, F.; Li, S.; Wang, L.; Cai, L.; An, C. Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River valley, Qinghai Province, China. J. Archaeol. Sci. 2013, 40, 2538–2546. [Google Scholar] [CrossRef]
- Yan, L.; Shi, Y.; Yang, R.; Lu, P. Prehistoric settlement sites selection preference zoning around Songshan area. J. Tongji Univ. (Nat. Sci.) 2013, 41, 624–629. [Google Scholar]
- Wu, L.; Zhou, H.; Li, J.; Li, K.; Sun, X.; Lu, S.; Li, L.; Zhu, T.; Guo, Q. Thiessen polygon analysis and spatial pattern evolution of Neolithic cultural sites (8.0–4.0 ka BP) in Huaibei Plain of Anhui, East China. Quat. Int. 2019, 521, 75–84. [Google Scholar] [CrossRef]
- Fang, L.; Yu, L.; Nie, Y.; Zhu, J. Spatiotemporal analysis of prehistoric settlement clustering based on terrain constraints in the Linfen area of China. Geoarchaeology 2019, 34, 509–521. [Google Scholar]
- Shi, Z. Henan Natural Conditions and Natural Resources; Henan Science and Technology Press: Zhengzhou, China, 1983. [Google Scholar]
- Wang, W.; Mao, J. The Geography Annals of Henan; Henan people’s Publishing House: Zhengzhou, China, 1990. [Google Scholar]
- You, L.; Yang, J. Chinese Geomorphology; Science Press: Beijing, China, 2013. [Google Scholar]
- Zhou, K.; Zhang, S.; Zhang, Z.; Yang, R.; Cai, Q.; Song, G.; Song, Y.; Mo, D.; Wang, H.; Lu, P.; et al. Mountain Song culture circle. Cent. Plains Cult. Relics 2005, 1, 12–20. [Google Scholar]
- Zhang, Z.; Zhou, K.; Yang, R.; Zhang, S.; Cai, Q.; Lu, P.; Hao, L.; Wang, C. Environmental archaeology in the Shuangji River Basin. Quat. Sci. 2007, 27, 453–460. [Google Scholar]
- Wang, Y.; Gu, W.; Xia, Z.; Zhang, J.; He, J.; Qu, T.; Chen, Y.; Zhao, J.; Lin, Y.; Gao, X.; et al. Study on the Development of Late Pleistocene Hominid Culture in Central China; Science Press: Beijing, China, 2022. [Google Scholar]
- Wang, Y.; Xia, Z.; Wang, S. Lijiagou Site and Paleolithic-Neolithic Transition-Agricultural Origin Research in the East Piedmont of Songshan Mountain; Science Press: Beijing, China, 2018. [Google Scholar]
- Liu, Q.; Han, G. The archaeological observation on the evolution of the history and culture in the Central Plains area. Acta Archeol. 2016, 3, 293–318. [Google Scholar]
- Expert Group of Xia, Shang and Zhou Dynasty Chronology Project. The Report of Xia, Shang and Zhou Dynasty Chronology Project; Science Press: Beijing, China, 2022. [Google Scholar]
- Zhang, S.; Xin, Y.; Hu, Y.; Yan, F. Excavation of Peiligang culture remains in Tanghu site of Xinzheng, Henan. Archaeology 2008, 5, 3–20. [Google Scholar]
- Zhang, Y.; Zhao, X.; Qiao, L. Excavation of a Yangshao site of city in the Outskirts of Zhengzhou. Cult. Relics 1999, 7, 4–15. [Google Scholar]
- Zhang, G. A Comprehensive Study of Early Cities in the Central China; Science Press: Beijing, China, 2018. [Google Scholar]
- Zhao, C. The Neolithic Settlement Evolution in Zhengzhou-Luoyang Region; Peking University Press: Beijing, China, 2001. [Google Scholar]
- Bo, X. General History of China; Huaxia Publishing Co. LTD: Beijing, China, 2016. [Google Scholar]
- Ge, Z. Study on Enfeoffment System in Zhou Dynasty; Heilongjiang People’s Publishing House: Haerbin, China, 1992. [Google Scholar]
- Li, X. The Formation of Ancient Civilization and the State of China; Beijing China Social Sciences Press: Beijing, China, 2007. [Google Scholar]
- National Cultural Heritage Administration of China. Atlas of Chinese Cultural Relics: Henan Volume; SinoMaps Press: Beijing, China, 1991.
- Gu, W. Civilizational Light–Exploration and Research on Ancient City of Zhengzhou; Science Press: Beijing, China, 2016. [Google Scholar]
- Zhang, Y. Study on the Changes of Cities from Eastern Zhou to Qin-Han Dynasties around Songshan Region; Zhengzhou University: Zhengzhou, China, 2019. [Google Scholar]
- Zhengzhou Institute of Cultural Relics and Archaeology, The Institute of Archaeology, Chinese Academy of Social Sciences. The archaeological report of Neolithic culture within Shuanghuaishu site. Archaeology 2021, 7, 747–768. [Google Scholar]
- Training Course for Archeological Team Leaders of State Cultural Heritage Administration. Excavation of Xishan Yangshao Era city site in Zhengzhou. Cult. Relics 1997, 7, 4–15. [Google Scholar]
- Liu, Y.; Wu, Q.; Xue, B. A new investigation of the city layout and the trend of the outline wall of Zhengzhou in Shang Dynast. J. Zhengzhou Univ. (Philos. Soc. Sci. Edn.) 2010, 43, 164–168. [Google Scholar]
- Wang, F. Quantitative Methods and Applications in GIS; Taylor & Francis Group: Abingdon, UK, 2006. [Google Scholar]
- Zhang, H.; Wen, Y.; Liu, A. Algorithm Foundation of Geographic Information System; Science Press: Beijing, China, 2006. [Google Scholar]
- Ren, W.; Liu, Y. Archaeology Zhengzhou; Science Press: Beijing, China, 2019. [Google Scholar]
- Marcott, S.A.; Shakun, J.D.; Clark, P.U.; Mix, A.C. A Reconstruction of Regional and Global Temperature for the Past 11,300 Years. Sciences 2013, 339, 1198–1201. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Lv, J.; Zhuang, Y.; Chen, P.; Wang, H.; Tian, Y.; Mo, D.; Xu, J.; Gu, W.; Hu, Y.; et al. Evolution of Holocene alluvial landscapes in the northeastern Songshan Region, Central China: Chronology, models and socio-economic impact. Catena 2021, 197, 104956. [Google Scholar] [CrossRef]
- Ren, X.; Xu, J.; Wang, H.; Storozum, M.; Lu, P.; Mo, D.; Li, T.; Xiong, J.; Kidder, T. Holocene fluctuations in vegetation and human population demonstrate social resilience in the prehistory of the Central Plains of China. Environ. Res. Lett. 2021, 16, 055030. [Google Scholar] [CrossRef]
- Chen, F.; Xu, Q.; Chen, J.; Birks, H.J.B.; Liu, J.; Zhang, S.; Jin, L.; An, C.; Telford, R.J.; Cao, X.; et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 2015, 5, 11186. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Dong, G.; An, Z.; Edwards, R.; Li, H.; Li, D. Megadrought and cultural exchange along the proto-Silk Road. Sci. Bull 2021, 66, 602–610. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Edwards, R.; Kong, X.; Shao, X.; Chen, S.; Wu, J.; Jiang, X.; Wang, X.; An, Z. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 2008, 451, 1090–1093. [Google Scholar] [CrossRef]
Periods | Age (ka BP) | Type | Quantity |
---|---|---|---|
Yangshao | 7.0–5.0 | Moat settlement, city wall settlement | 16 |
Longshan | 5.0–4.0 | City wall settlement, regional central settlement | 18 |
Erlitou | 3.8–3.5 | City wall settlement, regional central settlement, capital settlement | 10 |
Shang | 3.6–3.0 | City wall settlement, complex capital-city system | 11 |
Zhou | 3.0–2.2 | City wall settlement, complex capital-city system | 53 |
Factors | Categories | Cost Values | Weights |
---|---|---|---|
Elevation | <200 m | 1 | 0.47 |
200–600 m | 2 | ||
600–1000 m | 5 | ||
1000–1500 m | 10 | ||
>1500 m | 20 | ||
Slope | 0−5° | 1 | 0.33 |
5−15° | 5 | ||
15−35° | 10 | ||
>35° | 20 | ||
Topographic relief | <20 m | 1 | 0.14 |
20–75 m | 2 | ||
75–200 m | 5 | ||
200–600 m | 10 | ||
>600 m | 20 | ||
River types | Main stream | 1 | 0.06 |
First tributary | 5 | ||
Second tributary | 20 |
Periods | Measured Average Distance (km) | Expected Average Distance (km) | Nearest Neighbor Ratio | Z-Score | p-Value | Area (km2) |
---|---|---|---|---|---|---|
Yangshao | 16.02 | 13.63 | 1.18 | 1.34 | 0.17932 | 11,881 |
Longshan | 19.16 | 18.55 | 1.03 | 0.25 | 0.80108 | 22,020 |
Erlitou | 23.86 | 15.64 | 1.53 | 3.19 | 0.00146 | 9778 |
Shang | 17.69 | 10.65 | 1.66 | 4.19 | 0.00003 | 4992 |
Zhou | 10.68 | 11.41 | 0.94 | −0.88 | 0.37689 | 27,585 |
Periods | Maximum Area (km2) | Minimum Area (km2) | Average Area (km2) | Total Area (km2) |
---|---|---|---|---|
Yangshao | 6031 | 82 | 1804 | 28,865 |
Longshan | 9054 | 347 | 2810 | 44,958 |
Erlitou | 10,624 | 1100 | 2984 | 29,838 |
Shang | 3657 | 83 | 1343 | 14,776 |
Zhou | 4451 | 47 | 914 | 45,711 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Chen, P.; Lu, P.; Yang, H.; Yang, S.; Zhang, L.; Wei, Q.; Zhao, X.; Guo, L.; Wang, Z.; et al. Evolution of Influence Ranges of Neolithic-Bronze Age Cities in the Songshan Mountain Region of Central China Based on GIS Spatial Analysis. Remote Sens. 2022, 14, 5631. https://doi.org/10.3390/rs14225631
Tian Y, Chen P, Lu P, Yang H, Yang S, Zhang L, Wei Q, Zhao X, Guo L, Wang Z, et al. Evolution of Influence Ranges of Neolithic-Bronze Age Cities in the Songshan Mountain Region of Central China Based on GIS Spatial Analysis. Remote Sensing. 2022; 14(22):5631. https://doi.org/10.3390/rs14225631
Chicago/Turabian StyleTian, Yan, Panpan Chen, Peng Lu, He Yang, Shugang Yang, Li Zhang, Qingli Wei, Xiangli Zhao, Lanbo Guo, Zhen Wang, and et al. 2022. "Evolution of Influence Ranges of Neolithic-Bronze Age Cities in the Songshan Mountain Region of Central China Based on GIS Spatial Analysis" Remote Sensing 14, no. 22: 5631. https://doi.org/10.3390/rs14225631
APA StyleTian, Y., Chen, P., Lu, P., Yang, H., Yang, S., Zhang, L., Wei, Q., Zhao, X., Guo, L., Wang, Z., & Luo, R. (2022). Evolution of Influence Ranges of Neolithic-Bronze Age Cities in the Songshan Mountain Region of Central China Based on GIS Spatial Analysis. Remote Sensing, 14(22), 5631. https://doi.org/10.3390/rs14225631