Impact of Smoke Plumes Transport on Air Quality in Sydney during Extensive Bushfires (2019) in New South Wales, Australia Using Remote Sensing and Ground Data
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. Influence of Bushfire Smoke Plumes on Air Quality
3.2. A Case Study: Bushfire Event on 10 December 2019
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, F.; Liu, X.; Yu, T.; Cachier, H. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ. 2004, 38, 1275–1282. [Google Scholar] [CrossRef]
- Carrico, C.M.; Kreidenweis, S.M.; Malm, W.C.; Day, D.E.; Lee, T.; Carrillo, J.; McMeeking, G.R.; Collett, J.L., Jr. Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park. Atmos. Environ. 2005, 39, 1393–1404. [Google Scholar] [CrossRef]
- Van der Linden, P.; Xiaosu, D. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University: Cambridge, UK, 2001. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Williams, R.J.; Gill, A.M.; Bradstock, R.A. Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in A Changing World; CSIRO Publishing: Clayton, Australia, 2012. [Google Scholar]
- Scholes, R.; Ward, D.; Justice, C. Emissions of trace gases and aerosol particles due to vegetation burning in southern hemisphere Africa. J. Geophys. Res. Atmos. 1996, 101, 23677–23682. [Google Scholar] [CrossRef]
- Levine, J.S. Biomass Burning and Global Change: Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa; MIT Press: Cambridge, MA, USA, 1996; Volume 1. [Google Scholar]
- Yamasoe, M.A.; Artaxo, P.; Miguel, A.H.; Allen, A.G. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmos. Environ. 2000, 34, 1641–1653. [Google Scholar] [CrossRef]
- Sinha, P.; Hobbs, P.V.; Yokelson, R.J.; Bertschi, I.T.; Blake, D.R.; Simpson, I.J.; Gao, S.; Kirchstetter, T.W.; Novakov, T. Emissions of trace gases and particles from savanna fires in southern Africa. J. Geophys. Res. Atmos. 2003, 108, D138487. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.; Gonçalves, C.; Pio, C.; Mirante, F.; Caseiro, A.; Tarelho, L.; Freitas, M.; Viegas, D. Smoke emissions from biomass burning in a Mediterranean shrubland. Atmos. Environ. 2010, 44, 3024–3033. [Google Scholar] [CrossRef]
- Crompton, R.P.; McAneney, K.J.; Chen, K.; Pielke Jr, R.A.; Haynes, K. Influence of location, population, and climate on building damage and fatalities due to Australian bushfire: 1925–2009. Weather. Clim. Soc. 2010, 2, 300–310. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, J.; Haynes, K.; Handmer, J.; McLennan, J. Community safety during the 2009 Australian ‘Black Saturday’bushfires: An analysis of household preparedness and response. Int. J. Wildland Fire 2013, 22, 841–849. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.S.; Eck, T.F.; Christopher, S.A.; Koppmann, R.; Dubovik, O.; Eleuterio, D.; Holben, B.N.; Reid, E.A.; Zhang, J. A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 827–849. [Google Scholar] [CrossRef]
- Adler, G.; Flores, J.; Riziq, A.A.; Borrmann, S.; Rudich, Y. Chemical, physical, and optical evolution of biomass burning aerosols: A case study. Atmos. Chem. Phys. 2011, 11, 1491. [Google Scholar] [CrossRef] [Green Version]
- Kasischke, E.S.; Bruhwiler, L.P. Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. J. Geophys. Res. Atmos. 2002, 107, FFR 2-1–FFR 2-14. [Google Scholar] [CrossRef] [Green Version]
- Morgan, G.; Sheppeard, V.; Khalaj, B.; Ayyar, A.; Lincoln, D.; Jalaludin, B.; Beard, J.; Corbett, S.; Lumley, T. Effects of bushfire smoke on daily mortality and hospital admissions in Sydney, Australia. Epidemiology 2010, 21, 47–55. [Google Scholar] [CrossRef]
- Johnston, F.; Hanigan, I.; Henderson, S.; Morgan, G.; Bowman, D. Extreme air pollution events from bushfires and dust storms and their association with mortality in Sydney, Australia 1994–2007. Environ. Res. 2011, 111, 811–816. [Google Scholar] [CrossRef]
- Le, G.E.; Breysse, P.N.; McDermott, A.; Eftim, S.E.; Geyh, A.; Berman, J.D.; Curriero, F.C. Canadian forest fires and the effects of long-range transboundary air pollution on hospitalizations among the elderly. ISPRS Int. J. Geo-Inf. 2014, 3, 713–731. [Google Scholar]
- Guo, Y.; Feng, N.; Christopher, S.A.; Kang, P.; Zhan, F.B.; Hong, S. Satellite remote sensing of fine particulate matter (PM2.5) air quality over Beijing using MODIS. Int. J. Remote Sens. 2014, 35, 6522–6544. [Google Scholar] [CrossRef]
- Gupta, P.; Khan, M.N.; da Silva, A.; Patadia, F. MODIS aerosol optical depth observations over urban areas in Pakistan: Quantity and quality of the data for air quality monitoring. Atmos. Pollut. Res. 2013, 4, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, K.; Boucher, O.; Spracklen, D.; Mann, G.; Rae, J.; Woodward, S.; Kulmala, M. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 2010, 10, 1701–1737. [Google Scholar] [CrossRef] [Green Version]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University: Cambridge, UK, 2007. [Google Scholar]
- Toll, V.; Reis, K.; Ots, R.; Kaasik, M.; Männik, A.; Prank, M.; Sofiev, M. SILAM and MACC reanalysis aerosol data used for simulating the aerosol direct radiative effect with the NWP model HARMONIE for summer 2010 wildfire case in Russia. Atmos. Environ. 2015, 121, 75–85. [Google Scholar]
- Pere, J.-C.; Mallet, M.; Pont, V.; Bessagnet, B. Impact of aerosol direct radiative forcing on the radiative budget, surface heat fluxes, and atmospheric dynamics during the heat wave of summer 2003 over western Europe: A modeling study. J. Geophys. Res. Atmos. 2011, 116, D23119. [Google Scholar] [CrossRef]
- Tsay, S.-C.; Hsu, N.C.; Lau, W.K.-M.; Li, C.; Gabriel, P.M.; Ji, Q.; Holben, B.N.; Welton, E.J.; Nguyen, A.X.; Janjai, S. From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia. Atmos. Environ. 2013, 78, 20–34. [Google Scholar]
- Holben, B.N.; Eck, T.F.; Slutsker, I.a.; Tanre, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Pope, C.A., III. Epidemiological basis for particulate air pollution health standards. Aerosol. Sci. Technol. 2000, 32, 4–14. [Google Scholar]
- Badarinath, K.; Latha, K.M.; Chand, T.K.; Gupta, P.K.; Ghosh, A.; Jain, S.; Gera, B.; Singh, R.; Sarkar, A.; Singh, N. Characterization of aerosols from biomass burning––A case study from Mizoram (Northeast), India. Chemosphere 2004, 54, 167–175. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar]
- Löndahl, J.; Swietlicki, E.; Pagels, J.; Massling, A.; Boman, C.; Rissler, J.; Blomberg, A.; Sandström, T. Respiratory tract deposition of particles from biomass combustion. J. Phys. Conf. Ser. 2009, 151, 012066. [Google Scholar] [CrossRef]
- Anderson, T.L.; Wu, Y.; Chu, D.A.; Schmid, B.; Redemann, J.; Dubovik, O. Testing the MODIS satellite retrieval of aerosol fine-mode fraction. J. Geophys. Res. Atmos. 2005, 110, D18204. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.R.; Ginoux, P.; Stein, A.F. An empirically derived emission algorithm for wind-blown dust. J. Geophys. Res. Atmos. 2010, 115, D16212. [Google Scholar]
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar]
- Draxler, R.; Rolph, G. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website; Silver Spring: Montgomery, MD, USA; NOAA Air Resources Laboratory: College Park, MD, USA, 2013. Available online: http://ready.arl.noaa.gov/HYSPLIT.php (accessed on 1 January 2020).
- Rolph, G. Real-Time Environmental Applications and Display System (READY) Website. 2003. Available online: http://www.arl.noaa.gov/ready.php (accessed on 1 January 2020).
- Rolph, G.D.; Draxler, R.R.; Stein, A.F.; Taylor, A.; Ruminski, M.G.; Kondragunta, S.; Zeng, J.; Huang, H.-C.; Manikin, G.; McQueen, J.T. Description and verification of the NOAA smoke forecasting system: The 2007 fire season. Weather. Forecast. 2009, 24, 361–378. [Google Scholar] [CrossRef]
- Christensen, J.H. The Danish Eulerian hemispheric model—A three-dimensional air pollution model used for the Arctic. Atmos. Environ. 1997, 31, 4169–4191. [Google Scholar] [CrossRef]
- Barnaba, F.; Angelini, F.; Curci, G.; Gobbi, G.P. An important fingerprint of wildfires on the European aerosol load. Atmos. Chem. Phys. 2011, 11, 10487–10501. [Google Scholar]
- Amiridis, V.; Zerefos, C.; Kazadzis, S.; Gerasopoulos, E.; Eleftheratos, K.; Vrekoussis, M.; Stohl, A.; Mamouri, R.-E.; Kokkalis, P.; Papayannis, A. Impact of the 2009 Attica wild fires on the air quality in urban Athens. Atmos. Environ. 2012, 46, 536–544. [Google Scholar] [CrossRef]
- Saarikoski, S.; Sillanpää, M.; Sofiev, M.; Timonen, H.; Saarnio, K.; Teinilä, K.; Karppinen, A.; Kukkonen, J.; Hillamo, R. Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: Experimental and modelling assessments. Atmos. Environ. 2007, 41, 3577–3589. [Google Scholar] [CrossRef]
- Amaral, S.S.; de Carvalho Junior, J.A.; Costa, M.A.M.; Neto, T.G.S.; Dellani, R.; Leite, L.H.S. Comparative study for hardwood and softwood forest biomass: Chemical characterization, combustion phases and gas and particulate matter emissions. Bioresour. Technol. 2014, 164, 55–63. [Google Scholar] [PubMed]
- Rissler, J.; Swietlicki, E.; Zhou, J.; Roberts, G.; Andreae, M.O.; Gatti, L.; Artaxo, P. Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition? Comparison of modeled and measured CCN concentrations. Atmos. Chem. Phys. 2004, 4, 2119–2143. [Google Scholar]
- Deng, X.; Tie, X.; Zhou, X.; Wu, D.; Zhong, L.; Tan, H.; Li, F.; Huang, X.; Bi, X.; Deng, T. Effects of Southeast Asia biomass burning on aerosols and ozone concentrations over the Pearl River Delta (PRD) region. Atmos. Environ. 2008, 42, 8493–8501. [Google Scholar] [CrossRef]
- Liu, H.; Chang, W.L.; Oltmans, S.J.; Chan, L.Y.; Harris, J.M. On springtime high ozone events in the lower troposphere from Southeast Asian biomass burning. Atmos. Environ. 1999, 33, 2403–2410. [Google Scholar]
- Jaffe, D.; Bertschi, I.; Jaeglé, L.; Novelli, P.; Reid, J.S.; Tanimoto, H.; Vingarzan, R.; Westphal, D.L. Long–range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophys. Res. Lett. 2004, 31, L16106. [Google Scholar]
- Ou-Yang, C.-F.; Hsieh, H.-C.; Wang, S.-H.; Lin, N.-H.; Lee, C.-T.; Sheu, G.-R.; Wang, J.-L. Influence of Asian continental outflow on the regional background ozone level in northern South China Sea. Atmos. Environ. 2013, 78, 144–153. [Google Scholar] [CrossRef]
- Huang, K.; Fu, J.S.; Hsu, N.C.; Gao, Y.; Dong, X.; Tsay, S.-C.; Lam, Y.F. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmos. Environ. 2013, 78, 291–302. [Google Scholar] [CrossRef]
- Duc, H.N.; Bang, H.Q.; Quang, N.X. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia. Environ. Monit. Assess. 2016, 188, 106. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long–range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos. 2008, 113, D23212. [Google Scholar] [CrossRef]
- Yen, M.-C.; Peng, C.-M.; Chen, T.-C.; Chen, C.-S.; Lin, N.-H.; Tzeng, R.-Y.; Lee, Y.-A.; Lin, C.-C. Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmos. Environ. 2013, 78, 35–50. [Google Scholar] [CrossRef]
Date | Location | Pollutant | Value | UTC | EST |
---|---|---|---|---|---|
12 November | Richmond | PM10 | 785 μg/m3 | 07:00 | 18:00 |
26 November | Richmond | PM10 | 848.9 μg/m3 | 07:00 | 18:00 |
10 December | St Marys | PM10 | 961.5 μg/m3 | 01:00 | 12:00 |
12 November | Randwick | PM10 | 466.5 μg/m3 | 07:00 | 18:00 |
26 November | Randwick | PM10 | 575.3 μg/m3 | 07:00 | 18:00 |
10 December | Randwick | PM10 | 197.7 μg/m3 | 22:00 | 09:00 |
12 November | Chullora | PM2.5 | 103.4 μg/m3 | 15:00 | 02:00 |
26 November | Rouse Hill | PM2.5 | 162.7 μg/m3 | 22:00 | 09:00 |
10 December | Oakdale | PM2.5 | 714.6 μg/m3 | 18:00 | 05:00 |
19 November | Parramatta North | NO | 18.2 ppm | 19:00 | 06:00 |
10 December | Rouse Hill | O3 | 3.3 ppm | 06:00 | 17:00 |
19 December | Randwick | O3 | 9.8 ppm | 00:00 | 11:00 |
10 December | Macquarie Park | CO | 5.9 ppm | 00:00 | 11:00 |
29 November | Randwick | SO2 | 1.4 ppm | 23:00 | 10:00 |
21 December | Rozelle | SO2 | 1.7 ppm | 00:00 | 11:00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attiya, A.A.; Jones, B.G. Impact of Smoke Plumes Transport on Air Quality in Sydney during Extensive Bushfires (2019) in New South Wales, Australia Using Remote Sensing and Ground Data. Remote Sens. 2022, 14, 5552. https://doi.org/10.3390/rs14215552
Attiya AA, Jones BG. Impact of Smoke Plumes Transport on Air Quality in Sydney during Extensive Bushfires (2019) in New South Wales, Australia Using Remote Sensing and Ground Data. Remote Sensing. 2022; 14(21):5552. https://doi.org/10.3390/rs14215552
Chicago/Turabian StyleAttiya, Ali A., and Brian G. Jones. 2022. "Impact of Smoke Plumes Transport on Air Quality in Sydney during Extensive Bushfires (2019) in New South Wales, Australia Using Remote Sensing and Ground Data" Remote Sensing 14, no. 21: 5552. https://doi.org/10.3390/rs14215552
APA StyleAttiya, A. A., & Jones, B. G. (2022). Impact of Smoke Plumes Transport on Air Quality in Sydney during Extensive Bushfires (2019) in New South Wales, Australia Using Remote Sensing and Ground Data. Remote Sensing, 14(21), 5552. https://doi.org/10.3390/rs14215552