Ecological Policies Dominated the Ecological Restoration over the Core Regions of Kubuqi Desert in Recent Decades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Statistical Analysis
2.3.1. Trend Analysis of Vegetation Dynamics
2.3.2. Drivers Analysis of Vegetation Dynamics
2.3.3. Residual Analysis
3. Results
3.1. Spatiotemporal Characteristics of Vegetation Dynamics
3.2. Relationships between Vegetation Dynamics and Climate Change
3.3. Relative Roles of Climate Change and Human Activities on Vegetation Dynamics
4. Discussion
4.1. Facts of Ecological Restoration over the Kubuqi Desert during the Last Three Decades
4.2. Important Roles of Climatic Variables on Vegetation Variations in the Kubuqi Desert
4.3. Ecological Conservation Policies Dominated the Ecological Restoration over Kubuqi Desert
4.4. Uncertainties of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reynolds, J.F.; Smith, D.M.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maestre, F.T.; Eldridge, D.J.; Soliveres, S.; Kéfi, S.; Delgado-Baquerizo, M.; Bowker, M.A.; García-Palacios, P.; Gaitán, J.; Gallardo, A.; Lázaro, R.; et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, X.; Xiao, J.; Ma, M.; Tan, J.; Wang, X.; Geng, L. Carbon fluxes across alpine, oasis, and desert ecosystems in northwestern China: The importance of water availability. Sci. Total Environ. 2019, 697, 133978. [Google Scholar] [CrossRef] [PubMed]
- Middleton, N.J.; Sternberg, T. Climate hazards in drylands: A review. Earth Sci. Rev. 2013, 126, 48–57. [Google Scholar] [CrossRef]
- Wang, H.; Ma, M.; Geng, L. Monitoring the recent trend of aeolian desertification using Landsat TM and Landsat 8 imagery on the north-east Qinghai–Tibet Plateau in the Qinghai Lake basin. Nat. Hazards 2015, 79, 1753–1772. [Google Scholar] [CrossRef]
- Duan, H.; Wang, T.; Xue, X.; Yan, C. Dynamic monitoring of aeolian desertification based on multiple indicators in Horqin Sandy Land, China. Sci. Total Environ. 2019, 650, 2374–2388. [Google Scholar] [CrossRef]
- Wang, T.; Xue, X.; Zhou, L.; Guo, J. Combating aeolian desertification in northern China. Land Degrad. Dev. 2015, 26, 118–132. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, K.; Jia, B.; Ci, L. Desertification assessment in China: An overview. J. Arid Environ. 2005, 63, 517–531. [Google Scholar] [CrossRef]
- Wang, H.; Ma, M. Impacts of climate change and anthropogenic activities on the ecological restoration of wetlands in the arid regions of China. Energies 2016, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, H. Vegetation changes along the Qinghai-Tibet Plateau engineering corridor since 2000 induced by climate change and human activities. Remote Sens. 2018, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.; Che, T.; Wang, X.; Wang, H. Detecting spatiotemporal changes in vegetation with the BFAST model in the Qilian Mountain region during 2000–2017. Remote Sens. 2019, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Arneth, A. Climate science: Uncertain future for vegetation cover. Nature 2015, 524, 44–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, X.; Xiao, J.; Ma, M. Evapotranspiration components and water use efficiency from desert to alpine ecosystems in drylands. Agric. For. Meteorol. 2021, 298, 108283. [Google Scholar] [CrossRef]
- Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S.; Wang, H. Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe river basin, China. Remote Sens. 2014, 6, 2024–2049. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, J.; Tong, S.; Guo, E. Monitoring the trends of aeolian desertified lands based on time-series remote sensing data in the Horqin Sandy Land, China. Catena 2017, 157, 286–298. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2015, 6, 166–171. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high- resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.; McColl, K.A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Chang. 2021, 11, 331–337. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Ji, M.; Ran, J. Dryland expansion in northern China from 1948 to 2008. Adv. Atmos. Sci. 2015, 32, 870–876. [Google Scholar] [CrossRef]
- Gao, W.; Zheng, C.; Liu, X.; Lu, Y.; Chen, Y.; Wei, Y.; Ma, Y. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecol. Indic. 2022, 137, 108745. [Google Scholar] [CrossRef]
- Wang, R.; Yan, F.; Wang, Y. Vegetation growth status and topographic effects in the pisha sandstone area of China. Remote Sens. 2020, 12, 2759. [Google Scholar] [CrossRef]
- Pei, H.; Liu, M.; Jia, Y.; Zhang, H.; Li, Y.; Xiao, Y. The trend of vegetation greening and its drivers in the Agro-pastoral ecotone of northern China, 2000–2020. Ecol. Indic. 2021, 129, 108004. [Google Scholar] [CrossRef]
- Chang, X.; Lu, H.Y.; Lv, N.N.; Cui, M.C.; Li, H.Y. Variation of desert and sandy field in China on the basis of remote sensing analysis and the relationship with climate change during 1992–2015. J. Desert Res. 2020, 40, 57–63. [Google Scholar]
- Balvanera, P.; Siddique, I.; Dee, L.; Paquette, A.; Isbell, F.; Gonzalez, A.; Byrnes, J.; O’Connor, M.I.; Hungate, B.A.; Griffin, J.N. Linking biodiversity and ecosystem services: Current uncertainties and the necessary next steps. Bioscience 2014, 64, 49–57. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, X.; Hu, H.; Shen, H.; Fang, J. Long-term vegetation changes in the four mega-sandy lands in Inner Mongolia, China. Landscape Ecol. 2015, 30, 1613–1626. [Google Scholar] [CrossRef]
- Zhou, X.; Yamaguchi, Y.; Arjasakusuma, S. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau. Sci. Total Environ. 2018, 616, 730–743. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.X.; Li, C.; Shankman, D.; Wang, C.M.; Zhang, H.; Wang, X.B. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Zhang, Z.X.; Kong, R.; Jiang, S.S.; Chen, X.; Xu, C.Y.; Tian, J.X.; Zhu, B.; Chang, J. Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities. Remote Sens. 2019, 11, 1451. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lee, X.; Schultz, N.; Chen, S.; Wei, Z.; Fu, C.; Gao, Y.; Yang, Y.; Lin, G. Response of surface temperature to afforestation in the Kubuqi Desert, Inner Mongolia. J. Geophys. Res. Atmos. 2018, 123, 948–964. [Google Scholar] [CrossRef]
- Wang, L.; Lee, X.; Feng, D.; Fu, C.; Wei, Z.; Yang, Y.; Yin, Y.; Luo, Y.; Lin, G. Impact of large-scale afforestation on surface temperature: A case study in the Kubuqi Desert, Inner Mongolia based on the WRF model. Forests 2019, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.U.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Env. 2020, 1, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.X. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 2008, 42, 1826–1831. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Moore, J.C.; Zeng, F.; Lei, J.; Ding, J.; He, B.; Cui, X. Footprint of research in desertification management in China. Land Degrad. Dev. 2015, 26, 450–457. [Google Scholar] [CrossRef]
- Liu, X.; Cai, Z.; Xu, Y.; Zheng, H.; Wang, K.; Zhang, F. Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance. Water Resour. Manag. 2022, 36, 1463–1479. [Google Scholar] [CrossRef]
- Xu, Y.; Cai, Z.; Wang, K.; Zhang, Y.; Zhang, F. Evaluation for Appropriate Tillage of Sandy Land in Arid Sandy Area Based on Limitation Factor Exclusion Method. Land 2022, 11, 807. [Google Scholar] [CrossRef]
- Dong, X.; Chen, Z.; Wu, M.; Hu, C. Long time series of remote sensing to monitor the transformation research of Kubuqi Desert in China. Earth Sci. Inform. 2020, 13, 795–809. [Google Scholar] [CrossRef]
- Yu, X.; Zhuo, Y.; Liu, H.; Wang, Q.; Wen, L.; Li, Z.; Liang, C.; Wang, L. Degree of desertification based on normalized landscape index of sandy lands in inner Mongolia, China. Glob. Ecol. Conserv. 2020, 23, e01132. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Wang, H.; Tan, J.; Li, X. Global NO2 dynamics During the COVID-19 pandemic: A comparison between two waves of the coronavirus. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4310–4320. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, T.; Pei, C.; Zhao, X.; Li, Y.; Hu, S.; Bu, C.; Zhang, Q. Multisource Remote Sensing Monitoring and Analysis of the Driving Forces of Vegetation Restoration in the Mu Us Sandy Land. Land 2022, 11, 1553. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Zuo, Q.; Yu, J.; Li, Y. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000–2019. Resour. Sci. 2021, 4, 849–858. [Google Scholar]
- Cai, Y.; Zhang, F.; Duan, P.; Jim, C.; Chan, N.; Shi, J.; Liu, C.; Wang, J.; Bahtebay, J.; Ma, X. Vegetation cover changes in China induced by ecological restoration-protection projects and land-use changes from 2000 to 2020. Catena 2022, 217, 106530. [Google Scholar] [CrossRef]
- Marrelec, G.; Krainik, A.; Duffau, H.; Pélégrini-Issac, M.; Lehéricy, S.; Doyon, J.; Benali, H. Partial correlation for functional brain interactivity investigation in functional MRI. Neuroimage 2006, 32, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, Y.; Zhang, L.; Wang, Z. The relative roles of climate variations and human activities in vegetation change in North China. Phys. Chem. Earth 2015, 87, 67–78. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Chen, Z.; Xiong, H.; Lian, L. Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010? Atmos. Res. 2016, 167, 275–284. [Google Scholar] [CrossRef]
- Guo, Q.; Fu, B.; Shi, P.; Cudahy, T.; Zhang, J.; Xu, H. Satellite monitoring the spatial-temporal dynamics of desertification in response to climate change and human activities across the Ordos Plateau, China. Remote Sens. 2017, 9, 525. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Huang, X.X.; Kevin, L.; Dang, Q.W.; Wen, R.Y. Vegetation responses to climate change in the Qilian Mountain Nature Reserve, Northwest China. Glob. Ecol. Conserv. 2021, 28, e01698. [Google Scholar]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563, 210–220. [Google Scholar] [CrossRef] [PubMed]
Slopeobs | Drivers | Drivers Division | Contribution Rate (%) | ||
---|---|---|---|---|---|
SlopeCI | SlopeHI | CI | AI | ||
>0 | CI & HI | >0 | >0 | SlopeCI/Slopeobs | SlopeHI/Slopeobs |
CI | >0 | <0 | 100 | 0 | |
HI | <0 | >0 | 0 | 100 | |
<0 | CI & HI | <0 | <0 | SlopeCI/Slopeobs | SlopeHI/Slopeobs |
CI | <0 | >0 | 100 | 0 | |
HI | >0 | <0 | 0 | 100 |
Year | Coverage | Jiri Galantu | Sinai | Balagon | Huhe Mudu | Duguitra | Yihe Usumu | Total Region |
---|---|---|---|---|---|---|---|---|
1986 | Very low | 81.69 | 10.28 | 89.72 | 76.47 | 50.68 | 45.45 | 53.32 |
Low | 6.89 | 19.60 | 7.26 | 10.20 | 18.60 | 37.21 | 20.32 | |
Medium | 2.23 | 26.45 | 0.51 | 3.01 | 14.18 | 13.03 | 11.84 | |
High | 1.58 | 22.58 | 0.31 | 1.91 | 6.59 | 2.92 | 6.40 | |
Very high | 7.61 | 21.08 | 2.21 | 8.41 | 9.95 | 1.38 | 8.12 | |
2001 | Very low | 81.86 | 10.08 | 80.15 | 68.10 | 62.11 | 37.39 | 52.48 |
Low | 5.06 | 27.47 | 11.07 | 13.51 | 19.38 | 31.39 | 20.47 | |
Medium | 2.72 | 36.63 | 3.55 | 4.09 | 7.87 | 20.09 | 14.26 | |
High | 1.51 | 16.05 | 1.07 | 1.80 | 3.21 | 7.45 | 5.82 | |
Very high | 8.86 | 9.78 | 4.15 | 12.50 | 7.43 | 3.68 | 6.98 | |
2020 | Very low | 74.34 | 2.42 | 32.32 | 54.37 | 29.20 | 15.35 | 30.17 |
Low | 11.26 | 18.14 | 51.13 | 24.95 | 29.57 | 47.86 | 31.78 | |
Medium | 4.39 | 44.04 | 11.02 | 6.15 | 21.33 | 28.24 | 22.15 | |
High | 1.80 | 25.04 | 1.08 | 3.07 | 10.76 | 4.26 | 8.37 | |
Very high | 8.20 | 10.36 | 4.46 | 11.45 | 9.15 | 4.29 | 7.52 | |
2020–1986 | Very low | −7.35 | −7.87 | −57.40 | −22.10 | −21.48 | −30.09 | −23.15 |
Low | 4.37 | −1.45 | 43.87 | 14.76 | 10.97 | 10.64 | 11.46 | |
Medium | 2.16 | 17.58 | 10.51 | 3.14 | 7.15 | 15.21 | 10.31 | |
High | 0.22 | 2.45 | 0.77 | 1.17 | 4.17 | 1.34 | 1.97 | |
Very high | 0.59 | −10.72 | 2.25 | 3.04 | −0.80 | 2.91 | −0.59 |
Periods | Improvement | Insig- Improved | Insig- Degraded | Degradation | ||||
---|---|---|---|---|---|---|---|---|
Highly Significant | Slightly Significant | Sum | Highly Significant | Slightly Significant | Sum | |||
1986–2020 | 24.85 | 5.20 | 30.05 | 22.39 | 30.22 | 10.10 | 7.24 | 17.34 |
1986–2001 | 4.35 | 3.24 | 7.59 | 34.54 | 46.03 | 5.89 | 5.95 | 11.84 |
2001–2020 | 22.12 | 7.86 | 29.98 | 34.63 | 29.02 | 3.30 | 3.08 | 6.37 |
Time | Partial Correlation between Tem and FVC | Partial Correlation between Pre and FVC | ||||||
---|---|---|---|---|---|---|---|---|
Sig-Positive | Insig-Positive | Sig-Negative | Insig-Negative | Sig-Positive | Insig-Positive | Sig-Negative | Insig-Negative | |
1986–2020 | 17.93% | 31.47% | 14.15% | 36.45% | 28.77% | 43.54% | 5.15% | 22.55% |
1986–2001 | 5.97% | 26.92% | 13.57% | 53.53% | 18.92% | 30.60% | 12.51% | 37.98% |
2001–2020 | 3.19% | 66.09% | 0.56% | 30.16% | 20.02% | 53.58% | 2.44% | 23.96% |
Contributions | Drivers | Contribution Rate from 1986 to 2020 | Contribution Rate from 1986 to 2001 | Contribution Rate from 2001 to 2020 |
---|---|---|---|---|
Significantly positive | Only CI | 0.14% | 0.31% | 0% |
Only HI | 0.28% | 0.10% | 5.22% | |
CI dominated | 11.24% | 4.24% | 0% | |
HI dominated | 20.25% | 0.78% | 30.87% | |
Significantly negative | Only CI | 0.19% | 0.18% | 0% |
Only HI | 0.10% | 0% | 0.81% | |
CI dominated | 7.67% | 10.39% | 0.01% | |
HI dominated | 6.58% | 4.40% | 3.85% | |
Insignificantly Changed | Only CI | 10.76% | 24.84% | 6.48% |
Only HI | 15.10% | 19.59% | 27.25% | |
CI dominated | 12.15% | 18.72% | 6.73% | |
HI dominated | 15.54% | 16.45% | 18.79% | |
Summary | Total CI | 42.15% | 58.68% | 13.22% |
Total HI | 57.85% | 41.32% | 86.79% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, M.; Chen, W.; Wang, H. Ecological Policies Dominated the Ecological Restoration over the Core Regions of Kubuqi Desert in Recent Decades. Remote Sens. 2022, 14, 5243. https://doi.org/10.3390/rs14205243
Ren M, Chen W, Wang H. Ecological Policies Dominated the Ecological Restoration over the Core Regions of Kubuqi Desert in Recent Decades. Remote Sensing. 2022; 14(20):5243. https://doi.org/10.3390/rs14205243
Chicago/Turabian StyleRen, Min, Wenjiang Chen, and Haibo Wang. 2022. "Ecological Policies Dominated the Ecological Restoration over the Core Regions of Kubuqi Desert in Recent Decades" Remote Sensing 14, no. 20: 5243. https://doi.org/10.3390/rs14205243
APA StyleRen, M., Chen, W., & Wang, H. (2022). Ecological Policies Dominated the Ecological Restoration over the Core Regions of Kubuqi Desert in Recent Decades. Remote Sensing, 14(20), 5243. https://doi.org/10.3390/rs14205243