Monitoring Megathrust-Earthquake-Cycle-Induced Relative Sea-Level Changes near Phuket, South Thailand, Using (Space) Geodetic Techniques
Abstract
:1. Introduction
2. Co-Location of GNSS and Tide Gauge Station and Tectonic Setting Phuket Island
3. Phuket GPS Data Analysis
3.1. GPS Daily Position Solutions and Velocity Estimates
3.2. Long-Term Tectonic Motion Changes of Phuket Island
3.3. Phuket Tide-Gauge Platform Stability
4. Combining Tide-Gauge, Satellite Altimetry and Vertical Land-Motion Data
4.1. Absolute Sea-Level Changes from Satellite Altimetry
4.2. Validation of the Relative Sea-Level Changes from Tide-Gauge Records in Phuket
4.3. Relative Sea-Level Changes from Other Tide-Gauge Records in South Thailand
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, N.J. Coastal and global averaged sea level rise for 1950 to 2000. Geophys. Res. Lett. 2005, 32, L01601. [Google Scholar] [CrossRef]
- Simons, W.J.F.; Naeije, M.C.; Brown, B.E.; Niemnil, S.; Pradit, S.; Thongtham, N.; Mustafar, M.A.; Towatana, P.; Darnsawasdi, R.; Yucharoen, M.; et al. Vertical motion of Phuket Island (1994–2018) due to the Sumatra-Andaman mega-thrust earthquake cycle: Impact on sea-level and consequences for coral reefs. Mar. Geol. 2019, 414, 92–102. [Google Scholar] [CrossRef]
- Kowalczyk, K.; Pajak, K.; Wieczorek, B.; Naumowicz, B. An Analysis of Vertical Crustal Movements along the European Coast from Satellite Altimetry, Tide Gauge, GNSS and Radar Interferometry. Remote Sens. 2021, 13, 2173. [Google Scholar] [CrossRef]
- Klos, A.; Kusche, J.; Fenoglio-Marc, L.; Bos, M.S.; Bogusz, J. Introducing a vertical land motion model for improving estimates of sea level rates derived from tide gauge records affected by earthquakes. GPS Solut. 2019, 23, 102. [Google Scholar] [CrossRef] [Green Version]
- Harvey, T.C.; Hamlington, B.D.; Frederikse, T.; Nerem, R.S.; Piecuch, C.G.; Hammond, W.C.; Blewitt, G.; Thompson, P.R.; Bekaert, D.P.S.; Landerer, F.W.; et al. Ocean mass, sterodynamic effects, and vertical land motion largely explain US coast relative sea level rise. Commun. Earth Environ. 2021, 2, 233. [Google Scholar] [CrossRef]
- Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 2003, 4, 1027. [Google Scholar] [CrossRef]
- Argus, D.F.; Gordon, R.G.; DeMets, C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem. Geophys. Geosyst. 2011, 12, Q11001. [Google Scholar] [CrossRef] [Green Version]
- Mustafar, M.A.; Simons, W.J.F.; Tongkul, F.; Satirapod, C.; Omar, K.M.; Visser, P.N.A.M. Quantifying deformation in North Borneo with GPS. J. Geod. 2017, 91, 1241–1259. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, W.B. Tectonics of the Indonesian Region; USGS: Washington, DC, USA, 1979.
- Wilson, P.; Rais, J.; Reigber, C.; Reinhart, E.; Ambrosius, B.A.C.; Le Pichon, X.; Kasser, M.; Suharto, P.; Majid, D.A.; Yaakub, D.; et al. Study provides data on active plate tectonics in southeast Asia region. EOS Trans. Am. Geophys. Union 1998, 79, 545. [Google Scholar] [CrossRef]
- Simons, W.J.F.; Socquet, A.; Vigny, C.; Ambrosius, B.A.C.; Haji Abu, S.; Promthong, C.; Subarya, C.; Sarsito, D.A.; Matheussen, S.; Morgan, P.; et al. A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. J. Geophys. Res. 2007, 112, B06420. [Google Scholar] [CrossRef]
- Vigny, C.; Simons, W.J.F.; Abu, S.; Bamphenyu, R.; Satirapod, C.; Choosakul, N.; Subarya, C.; Socquet, A.; Omar, K.; Abidin, H.Z.; et al. Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in southeast Asia. Nature 2005, 436, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Philibosian, B.; Meltzner, A.J. Segmentation and supercycles: A catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide. Quat. Sci. Rev. 2020, 241, 106390. [Google Scholar] [CrossRef]
- Satirapod, C.; Trisirisatayawong, I.; Fleitout, L.; Garaud, J.D.; Simons, W.J.F. Vertical motions in Thailand after the 2004 Sumatra–Andaman Earthquake from GPS observations and its geophysical modelling. Adv. Space Res. 2013, 51, 1565–1571. [Google Scholar] [CrossRef]
- Satirapod, C.; Simons, W.; Promthong, C.; Yousamran, S.; Trisirisatayawong, I. Deformation of Thailand as Detected by GPS Measurements due to the December 26th, 2004 Mega-Thrust Earthquake. Surv. Rev. 2007, 39, 109–115. [Google Scholar] [CrossRef]
- Jet Propulsion, L. GNSS-Inferred Positioning System and Orbit Analysis Simulation Software (GIPSY-OASIS). Available online: https://gipsy-oasis.jpl.nasa.gov (accessed on 1 August 2022).
- Rebischung, P.; Schmid, R. IGS14/igs14.atx: A New Framework for the IGS Products; American Geophysical Union: Washington, DC, USA, 2016. [Google Scholar]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Blewitt, G.; Lavallée, D. Effect of annual signals on geodetic velocity. J. Geophys. Res. Solid Earth 2002, 107, ETG9–ETG11. [Google Scholar] [CrossRef] [Green Version]
- Nazaruddin, D.A.; Duerrast, H. 2012 Earthquake Swarm in Phuket, Southern Thailand. Chiang Mai J. Sci. 2021, 48, 648–663. [Google Scholar]
- Mazzotti, S.; Jones, C.; Thomson, R.E. Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge-GPS analysis. J. Geophys. Res. 2008, 113, C11019. [Google Scholar] [CrossRef] [Green Version]
- Ballu, V.; Bouin, M.-N.; Siméoni, P.; Crawford, W.C.; Calmant, S.; Boré, J.-M.; Kanas, T.; Pelletier, B. Comparing the role of absolute sea-level rise and vertical tectonic motions in coastal flooding, Torres Islands (Vanuatu). Proc. Natl. Acad. Sci. USA 2011, 108, 13019–13022. [Google Scholar] [CrossRef] [Green Version]
- Trisirisatayawong, I.; Naeije, M.; Simons, W.; Fenoglio-Marc, L. Sea level change in the Gulf of Thailand from GPS-corrected tide gauge data and multi-satellite altimetry. Glob. Planet. Chang. 2011, 76, 137–151. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 2016, 54, 64–92. [Google Scholar] [CrossRef] [Green Version]
- Scharroo, R.; Leuliette, E.; Lillibridge, J.; Byrne, D.; Naeije, M.; Mitchum, G. RADS: Consistent Multi-Mission Products. In Proceedings of the 20 Years of Progress in Radar Altimetry Symposium, Venice, Italy, 24–29 September 2012; p. 69. [Google Scholar]
- Cheng, Y.; Hamlington, B.D.; Plag, H.-P.; Xu, Q. Influence of ENSO on the variation of annual sea level cycle in the South China Sea. Ocean. Eng. 2016, 126, 343–352. [Google Scholar] [CrossRef]
- Intergovernmental Oceanographic Commission. The Global Sea-Level Observing System (GLOSS): Implementation Plan, 2012; IOC Technical Series No. 100; UNESCO/IOC: Paris, France, 2012; p. 41. [Google Scholar]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New Data Systems and Products at the Permanent Service for Mean Sea Level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar] [CrossRef]
- Webster, P.J.; Moore, A.M.; Loschnigg, J.P.; Leben, R.R. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 1999, 401, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Brown, B.E.; Dunne, R.P.; Somerfield, P.J.; Edwards, A.J.; Simons, W.J.F.; Phongsuwan, N.; Putchim, L.; Anderson, L.; Naeije, M.C. Long-term impacts of rising sea temperature and sea level on shallow water coral communities over a ~40 year period. Sci. Rep. 2019, 9, 8826. [Google Scholar] [CrossRef] [Green Version]
- Moreley, C.K.; Charusiri, P.; Watkinson, I.M. Structural geology of Thailand during the Cenozoic. In The Geology of Thailand; Ridd, M.F., Barber, A.J., Crow, M.J., Eds.; The Geological Society of London: London, UK, 2011; pp. 273–334. [Google Scholar]
- Pongpiachan, S.; Settacharnwit, T.; Chalangsut, P.; Hirunyatrakul, P.; Kittikoon, I. Impacts and preventative measures against flooding and coastal erosion in Thailand. WIT Trans. Ecol. Environ. 2012, 159, 155–166. [Google Scholar]
- Thepsiriamnuay, H.; Pumijumnong, N. Modelling Assessment of Sandy Beaches Erosion in Thailand. Environ. Nat. Resour. J. 2019, 17, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Ritphring, S.; Nidhinarangkoon, P.; Udo, K.; Shirakawa, H. The Comparative Study of Adaptation Measure to Sea Level Rise in Thailand. J. Mar. Sci. Eng. 2021, 9, 588. [Google Scholar] [CrossRef]
GNSS Station | Velocity Estimates (2017–2021/IGS14) mm/yr | ||
---|---|---|---|
North (Latitude) | East (Longitude) | Up (Vertical) | |
KTPH (Phuket, Thailand) | −10.6 ± 0.2 | 14.8 ± 0.3 | −0.7 ± 0.5 |
PMBC (Phuket, Thailand) | −11.4 ± 0.1 | 12.6 ± 0.2 | −0.8 ± 0.5 |
SPKN (Bangkok, Thailand) | −9.4 ± 0.1 | 25.0 ± 0.2 | −1.5 ± 0.6 |
CUSV (IGS, Bangkok, Thailand) | −9.6 ± 0.2 | 24.9 ± 0.2 | −2.2 ± 0.7 |
MKNB (Sabah, East Malaysia) | −10.6 ± 0.1 | 26.0 ± 0.2 | 0.2 ± 0.5 |
NTUS (IGS, Singapore) | −5.6 ± 0.1 | 26.8 ± 0.2 | −0.8 ± 0.5 |
Estimated Signals | Before the Earthquake | After the Earthquake | Throughout the Whole Period the Same |
---|---|---|---|
Altimetry SLA (SALT) | - | - | Bias, trend, annual and semi-annual period (6 parameters) |
Tide gauge water level (TG) | Bias and trend (2 parameters) | Exponential decay (1 parameter) | Annual and semi-annual period (4 parameters) |
Vertical Land Motion (GNSS) | Bias and trend (2 parameters) | Exponential decay (1 parameter) | Annual (seasonal) period (2 parameters) |
Trend < 2005 (mm/yr) | Annual Cycle (cm and Days) | Semi-Annual (cm–Days) | Expon > 2005 (cm) | Sigma (cm) | |
---|---|---|---|---|---|
SALT (ASL) | 3.32 ± 0.44 | 7.23 & 232 | 6.84 & 161 | - | 6.22 |
TG (RSL) | 0.95 ± 0.66 | 7.30 & 224 | 6.81 & 160 | −275 ± 4.0 | 8.94 |
GNSS (VLM) | 2.35 ± 0.21 | 0.50 & 12 | - | 131 ± 0.1 | 1.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeije, M.C.; Simons, W.J.F.; Pradit, S.; Niemnil, S.; Thongtham, N.; Mustafar, M.A.; Noppradit, P. Monitoring Megathrust-Earthquake-Cycle-Induced Relative Sea-Level Changes near Phuket, South Thailand, Using (Space) Geodetic Techniques. Remote Sens. 2022, 14, 5145. https://doi.org/10.3390/rs14205145
Naeije MC, Simons WJF, Pradit S, Niemnil S, Thongtham N, Mustafar MA, Noppradit P. Monitoring Megathrust-Earthquake-Cycle-Induced Relative Sea-Level Changes near Phuket, South Thailand, Using (Space) Geodetic Techniques. Remote Sensing. 2022; 14(20):5145. https://doi.org/10.3390/rs14205145
Chicago/Turabian StyleNaeije, Marc C., Wim J. F. Simons, Siriporn Pradit, Sommart Niemnil, Nalinee Thongtham, Mohamad A. Mustafar, and Prakrit Noppradit. 2022. "Monitoring Megathrust-Earthquake-Cycle-Induced Relative Sea-Level Changes near Phuket, South Thailand, Using (Space) Geodetic Techniques" Remote Sensing 14, no. 20: 5145. https://doi.org/10.3390/rs14205145
APA StyleNaeije, M. C., Simons, W. J. F., Pradit, S., Niemnil, S., Thongtham, N., Mustafar, M. A., & Noppradit, P. (2022). Monitoring Megathrust-Earthquake-Cycle-Induced Relative Sea-Level Changes near Phuket, South Thailand, Using (Space) Geodetic Techniques. Remote Sensing, 14(20), 5145. https://doi.org/10.3390/rs14205145