Remote Sensing of Chlorophyll-a in Xinkai Lake Using Machine Learning and GF-6 WFV Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Field Sampling
2.2.2. Experimental Analysis
2.2.3. Satellite Data Acquisition and Pre-Processing
2.3. Machine Learning Models Based on Chl-a Algorithms
2.3.1. Random Forest
2.3.2. Support Vector Regression
2.3.3. Back Propagation Neural Network
2.3.4. Input Variables for Machine Learning Models
2.4. Chl-a Estimation in Xingkai Lake with GF-6
2.5. Statistical Analysis and Accuracy Evaluation
3. Results and Discussion
3.1. Water Qualities Characteristics and Environmental Effects
3.1.1. Water Qualities and Optical Properties
3.1.2. Chl-a versus Water Biogeochemistry
3.2. Remote Sensing Reflectance Characteristics
3.3. Chlorophyll-a Model Calibration and Validation
3.4. Chlorophyll-a Distributions of Xingkai Lake
3.4.1. Temporal Distribution Characteristics
3.4.2. Spatial Distribution Characteristics
3.5. Uncertainty Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ibáez, C.; Peuelas, J. Changing nutrients, changing rivers. Science 2019, 365, 637–638. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Dai, Y.; Hou, X.; Xu, Y.; Zheng, C. Concerns about phytoplankton bloom trends in global lakes. Nature 2021, 590, E35–E47. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Fang, C.; Jacinthe, P.A.; Wen, Z.; Lyu, L. Climatic versus Anthropogenic Controls of Decadal Trends (1983–2017) in Algal Blooms in Lakes and Reservoirs across China. Environ. Sci. Technol 2021, 55, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Michalak, A. Study role of climate change in extreme threats to water quality. Nature 2016, 535, 349–350. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 2002, 25, 704–726. [Google Scholar] [CrossRef]
- Vera-Herrera, L.; Romo, S.; Soria, J. How Agriculture, Connectivity and Water Management Can Affect Water Quality of a Mediterranean Coastal Wetland. Agronomy 2022, 12, 486. [Google Scholar] [CrossRef]
- Li, Y.; Geng, M.; Yu, J.; Du, Y.; Xu, M.; Zhang, M.; Wang, J.; Su, H.; Wang, R.; Chen, F. Eutrophication decrease compositional dissimilarity in freshwater plankton communities. Sci. Total Environ. 2022, 821, 153434. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.; Garver, S.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for seawifs. J. Geophys. Res.-Atmos. 1998, 103, 937–953. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Smith, A.M.E.; Lainb, L.R.; Bernard, S. An optimized Chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters-ScienceDirect. Remote Sens. Environ. 2018, 215, 217–227. [Google Scholar] [CrossRef]
- Fang, C. Water Quality Remote Sensing Inversion and Spatiotemporal Analysis on International Lake—A Case Study of Lake Xingkai. Ph.D. Thesis, Chinese Academy of Sciences, Changchun, China, 2020. [Google Scholar]
- Piao, D.; Wang, F. Environmental conditions and the protection counter measures for waters of Lake Xingkai. Lake Sci. 2011, 23, 196–202. [Google Scholar]
- Kang, S.; Peng, X.R.; Zhang, L.; Liu, M.; Zhang, Y. The Assessment of the Present Eutrophication Status and Characteristic Analysis of Xingkai Lake. In Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–4. [Google Scholar]
- Wang, F.; Piao, D.; Liu, H. Current Status of Management of Xingkai Lake National. Wetl. Sci. Manag. 2011, 02, 32–35. [Google Scholar]
- Vishnu Prasanth, B.R.; Sivakumar, R.; Ramaraj, M. Springer. Available online: https://link.springer.com/article/10.1007/s00128-022-03511-9?utm_source=xmol&utm_medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata (accessed on 27 August 2022).
- Kutser, T.; Hedley, J.; Giardino, C.; Roelfsema, C.; Brando, V.E. Remote sensing of shallow waters—A 50 year retrospective and future directions. Remote Sens. Environ. 2020, 240, 111619. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Kravitz, J.; Matthews, M.; Bernard, S.; Griffith, D. Application of Sentinel-3 OLCI for Chl-a retrieval over small inland water targets: Successes and challenges. Remote Sens. Environ. 2019, 237, 111562. [Google Scholar] [CrossRef]
- Gurlin, D.; Gitelson, A.A.; Moses, W.J. Remote estimation of chl-a concentration in turbid productive waters-return to a simple two-band NIR-red model? Remote Sens. Environ. 2011, 115, 3479–3490. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Song, K.; Li, Y.; Lyu, H.; Wen, Z.; Fang, C.; Bi, S.; Sun, X.; Wang, Z.; et al. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters. Remote Sens. Environ. 2020, 239, 111648. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Wang, S.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Chen, F.; Xu, S.; Tao, H.; et al. Quantification of chlorophyll-a in typical lakes across china using Sentinel-2 MSI imagery with machine learning algorithm. Sci. Total Environ. 2021, 778, 146271. [Google Scholar] [CrossRef]
- Pan, X.; Yang, X.; Yang, Y.; Sun, Y.; Sun, P.; Li, T. Mass concentration inversion analysis of chlorophyll a in Taihu lake based on GF- 6 satellite data. J. Hohai Univ. 2021, 49, 50–56. [Google Scholar]
- Lu, C.; Bai, Z.; Li, Y.; Wu, B.; Di, G.; Dou, Y. Technical characteristics and new mode application of GF-6 satellite. Spacecr. Eng. 2020, 12, 12–17. [Google Scholar]
- O’reilly, J.E.; Maritorena, S.; Obrien, M.C.; Siegel, D.A.; Toole, D.; Mueller, J.L.; Mitchell, B.G.; Kahru, M.; Chavez, F.P.; Strutton, P. SeaWiFS postlaunch technical report series, volume 11, SeaWiFS postlaunch calibration and validation analyses. NASA Tech. Memo. SeaWIFS Postlaunch Tech. Rep. Ser. 2000, 55, 1–64. [Google Scholar]
- Gilerson, A.A.; Gilerson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 2010, 18, 24109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Lee, Z.P.; Carder, K.L.; Amone, R.A. Deriving Inherent Optical Properties from Water Color:A Multiband Quasi-Analytical Algorithm for Optically Deep Waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef]
- Luo, J.; Qin, L.; Mao, P.; Xiong, Y.; Zhao, W.; Gao, H.; Qiu, G. Research Progress in the Retrieval Algorithms for Chlorophyll-a, a Key Element of Water Quality Monitoring by Remote Sensing. Remote Sens. Technol. Appl. 2021, 36, 473–488. [Google Scholar]
- Werther, M.; Odermatt, D.; Simis, S.G.H.; Gurlin, D.; Jorge, D.S.F.; Loisel, H.; Hunter, P.D.; Tyler, A.N.; Spyrakos, E. Characterising retrieval uncertainty of chlorophyll-a algorithms in oligotrophic and mesotrophic lakes and reservoirs. ISPRS-J. Photogramm. Remote Sens. 2022, 190, 279–300. [Google Scholar] [CrossRef]
- Li, B.; Yang, G.; Wan, R.; Hoermann, G.; Huang, J.; Fohrer, N.; Zhang, L. Combining multivariate statistical techniques and random forests model to assess and diagnose the trophic status of Poyang lake in China. Ecol. Indic. 2017, 83, 74–83. [Google Scholar] [CrossRef]
- Hollister, J.W.; Milstead, W.B.; Kreakie, B.J. Modeling lake trophic state: A random forest approach. Ecosphere 2016, 7, e01321. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, C.; Shi, R. Outline data of the Khanka Lake. J. Glob. Chang. Data Discov. 2017, 1, 370. [Google Scholar]
- Sun, D.; Sun, X. Hydrological characteristics of Xingkai Lake. Water Resour. Hydropower Northeast. China 2006, 24, 21. [Google Scholar]
- Ji, X.; Liu, T.; Liu, J.; Li, J.; Pan, B. Investigation and Study on Water Quality and Pollution Condition in Lake Xingkai of China. Environ. Monit. China 2013, 29, 79–84. [Google Scholar]
- Meng, F.; Zhao, Y.; Cui, Y. Analysis of ecological water level of Xingkai Lake. Water Resour. Prod. 2008, 24, 46–48. [Google Scholar]
- Jeffrey, S.T.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Song, K.S.; Zang, S.Y.; Zhao, Y.; Li, L.; Du, J.; Zhang, N.N.; Wang, X.D.; Shao, T.T.; Guan, Y.; Liu, L. Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region, China. Hydrol. Earth Syst. Sci. 2013, 17, 4269–4281. [Google Scholar] [CrossRef] [Green Version]
- Constantin, S.; Doxaran, D.; Constantinescu, Ș. Estimation of water turbidity and analysis of its spatio-temporal variability in the danube river plume (black sea) using MODIS satellite data. Cont. Shelf Res. 2016, 112, 14–30. [Google Scholar] [CrossRef]
- Cleveland, J.S.; Weidemann, A.D. Quantifying absorption by aquatic particles: A multiple scattering correction for glass-fiber filters. Limnol. Oceanogr. 1993, 38, 1321–1327. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the normalized difference water index (NDVI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven earth system science. Nature 2019, 566, 195. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kanevski, M.; Parkin, R.; Pozdnukhov, A.; Timonin, V.; Maignan, M.; Demyanov, V.; Canu, S. Environmental data mining and modeling based on machine learning algorithms and geostatistics. Environ. Model. Softw. 2004, 19, 845–855. [Google Scholar] [CrossRef]
- Nazeer, M.; Bilal, M.; Alsahli, M.M.; Shahzad, M.I.; Waqas, A. Evaluation of empirical and machine learning algorithms for estimation of coastal water quality parameters. ISPRS. Int. J. Geo-Inf. 2017, 6, 360. [Google Scholar] [CrossRef] [Green Version]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using landsat multispectral data. Remote Sens. Environ. 2002, 82, 32–47. [Google Scholar] [CrossRef]
- Saeys, W.; Mouazen, A.M.; Ramon, H. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosyst. Eng. 2005, 91, 393–402. [Google Scholar] [CrossRef]
- Lyu, L.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Li, S.; Tao, H.; Wang, X.; Hou, J. Estimation of the lake trophic state index (TSI) using hyperspectral remote sensing in Northeast China. Opt. Express 2022, 30, 10329–10345. [Google Scholar] [CrossRef]
- Powers, S.M.; Bruulsema, T.W.; Burt, T.P.; Chan, N.I.; Elser, J.J.; Haygarth, P.M.; Howden, N.J.K.; Jarvie, H.P.; Lyu, Y.; Peterson, H.M.; et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 2016, 9, 353–356. [Google Scholar] [CrossRef]
- Filazzola, A.; Mahdiyan, O.; Shuvo, A.; Ewins, C.; Sharma, S. A database of chlorophyll and water chemistry in freshwater lakes. Sci. Data 2020, 7, 310. [Google Scholar] [CrossRef]
- Lv, J.; Wu, H. The Effects of TN:TP Ratios on the Phytoplankton and Colonial Cyanobacteria in Eutrophic Shallow Lakes. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–5. [Google Scholar]
- Lillicrap, T.P.; Santoro, A.; Marris, L.; Akerman, C.J.; Hinton, G. Backpropagation and the brain. Nat. Rev. Neuroence 2020, 21, 335–346. [Google Scholar] [CrossRef]
- Lawrence, S.; Giles, C.L. Overfitting and Neural Networks: Conjugate Gradient and Backpropagation. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, Como, Italy, 27 July 2000; pp. 114–119. [Google Scholar]
- Beck, R.; Zhan, S.; Liu, H.; Tong, S.; Yang, B.; Xu, M.; Ye, Z.; Huang, Y.; Shu, S.; Wu, Q. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sens. Environ. 2016, 178, 15–30. [Google Scholar] [CrossRef]
- Fernández-Pedrera, B.M.; Grifoll, M.; Fernández-Tejedor, M.; Espino, M. Short-Term Response of Chlorophyll a Concentration Due to Intense Wind and Freshwater Peak Episodes in Estuaries: The Case of Fangar Bay (Ebro Delta). Water 2021, 13, 701. [Google Scholar]
- Jiang, B.; Liu, H.; Xing, Q.; Cai, J.; Zheng, X.; Li, L.; Liu, S.; Zheng, Z.; Xu, H.; Meng, L. Evaluating Traditional Empirical Models and BPNN Models in Monitoring the Concentrations of Chlorophyll-A and Total Suspended Particulate of Eutrophic and Turbid Waters. Water 2021, 13, 650. [Google Scholar] [CrossRef]
Date | Parameter | N | Min. | Max. | Mean | SD. | |
---|---|---|---|---|---|---|---|
XXK | 2020.10 | Chl-a (µg/L) | 10 | 1.46 | 4.51 | 2.56 | 0.98 |
TSM (mg/L) | 10 | 57.06 | 199.17 | 144.31 | 41.69 | ||
SDD (cm) | 10 | - | - | - | - | ||
Turbidity (NTU) | 10 | 69.39 | 297.51 | 200.48 | 62.85 | ||
TN (mg/L) | 10 | 0.85 | 1.37 | 1.11 | 0.18 | ||
TP (mg/L) | 10 | 0.12 | 0.20 | 0.17 | 0.02 | ||
2021.08 | Chl-a (µg/L) | 6 | 0.81 | 3.55 | 2.65 | 1.02 | |
TSM (mg/L) | 6 | 22.00 | 43.85 | 29.55 | 7.92 | ||
SDD (cm) | 6 | 24.00 | 35.00 | 30.40 | 4.41 | ||
Turbidity (NTU) | 6 | 29.70 | 70.11 | 50.57 | 13.66 | ||
TN (mg/L) | 6 | 1.18 | 9.66 | 4.52 | 3.17 | ||
TP (mg/L) | 6 | 0.06 | 0.37 | 0.19 | 0.13 | ||
2021.09 | Chl-a (µg/L) | 19 | 3.96 | 7.99 | 5.93 | 1.19 | |
TSM (mg/L) | 19 | 28.00 | 66.00 | 44.41 | 9.54 | ||
SDD (cm) | 19 | 16.00 | 27.00 | 21.00 | 3.75 | ||
Turbidity (NTU) | 19 | 43.23 | 74.76 | 57.23 | 8.45 | ||
TN (mg/L) | 19 | 0.33 | 0.49 | 0.40 | 0.04 | ||
TP (mg/L) | 19 | 0.09 | 0.27 | 0.16 | 0.05 | ||
2021.10 | Chl-a (µg/L) | 45 | 9.78 | 23.95 | 15.29 | 3.06 | |
TSM (mg/L) | 45 | 30.00 | 297.50 | 111.63 | 52.05 | ||
SDD (cm) | 45 | 13.00 | 31.00 | 19.89 | 3.77 | ||
Turbidity (NTU) | 45 | 46.63 | 439.60 | 163.63 | 78.40 | ||
TN (mg/L) | 45 | 0.36 | 0.58 | 0.44 | 0.05 | ||
TP (mg/L) | 45 | 0.05 | 0.34 | 0.16 | 0.08 | ||
DXK | 2020.10 | Chl-a (µg/L) | 10 | 2.98 | 7.92 | 4.85 | 1.64 |
TSM (mg/L) | 10 | 85.00 | 216.00 | 119.42 | 40.30 | ||
SDD (cm) | 10 | 10.00 | 20.00 | 14.00 | 3.46 | ||
Turbidity (NTU) | 10 | 85.90 | 226.13 | 126.21 | 41.60 | ||
TN (mg/L) | 10 | 0.43 | 0.77 | 0.50 | 0.16 | ||
TP (mg/L) | 10 | 0.12 | 0.20 | 0.17 | 0.02 | ||
2021.06 | Chl-a (µg/L) | 31 | 0.14 | 4.05 | 1.46 | 1.03 | |
TSM (mg/L) | 31 | 56.67 | 106.43 | 81.05 | 13.17 | ||
SDD (cm) | 31 | 14 | 21 | 17.16 | 1.93 | ||
Turbidity (NTU) | 31 | 57.39 | 112.16 | 85.08 | 15.76 | ||
TN (mg/L) | 31 | 0.57 | 0.72 | 0.66 | 0.05 | ||
TP (mg/L) | 31 | 0.08 | 0.29 | 0.21 | 0.04 |
Date | Mean ± SD | MinMax | Date | Mean ± SD | MinMax | Date | Mean ± SD | MinMax |
---|---|---|---|---|---|---|---|---|
201906 | 9.30 ± 1.60 | 2.4616.02 | 202006 | 4.44 ± 1.84 | 1.9719.45 | 202106 | 1.41 ± 0.53 | 0.507.74 |
201907 | 4.06 ± 0.99 | 2.5116.23 | 202007 | 2.33 ± 1.32 | 0.607.94 | 202107 | 2.60 ± 0.21 | 0.507.84 |
202008 | 4.78 ± 3.38 | 2.1220.77 | 202108 | 2.08 ± 0.17 | 1.377.69 | |||
201909 | 14.49 ± 2.83 | 2.5420.55 | 202009 | 2.66 ± 0.26 | 0.667.76 | 202109 | 6.62 ± 2.41 | 1.2220.32 |
201910 | 10.73 ± 0.46 | 2.6219.14 | 202010 | 3.26 ± 1.09 | 1.4519.67 | 202110 | 14.82 ± 1.64 | 2.0121.01 |
201911 | 15.10 ± 2.37 | 2.6220.55 | 202011 | 2.08 ± 0.50 | 0.4418.58 | 202111 | 7.87 ± 3.41 | 2.0519.79 |
Date | Mean ± SD | MinMax | Date | Mean ± SD | MinMax | Date | Mean ± SD | MinMax |
---|---|---|---|---|---|---|---|---|
201906 | 7.34 ± 2.83 | 2.4817.72 | 202006 | 2.63 ± 0.68 | 1.2319.33 | 202106 | 1.30 ± 0.53 | 0.367.84 |
201907 | 5.34 ± 2.09 | 2.0618.60 | 202007 | 1.77 ± 0.84 | 0.3618.48 | 202107 | 2.57 ± 0.40 | 0.4719.21 |
202008 | 3.53 ± 2.63 | 1.5420.54 | 202108 | 2.25 ± 0.12 | 0.817.68 | |||
201909 | 10.72 ± 1.67 | 2.6220.46 | 202009 | 2.53 ± 0.60 | 0.4819.64 | 202109 | 5.04 ± 1.66 | 0.4920.43 |
201910 | 11.47 ± 1.54 | 2.5620.08 | 202010 | 3.85 ± 1.50 | 1.6720.50 | 202110 | 11.50 ± 2.25 | 1.8920.40 |
201911 | 11.39 ± 1.63 | 2.6220.46 | 202011 | 2.36 ± 0.85 | 0.4220.36 | 202111 | 3.03 ± 0.80 | 1.4019.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Li, S.; Tao, Z.; Song, K.; Wen, Z.; Li, Y.; Chen, F. Remote Sensing of Chlorophyll-a in Xinkai Lake Using Machine Learning and GF-6 WFV Images. Remote Sens. 2022, 14, 5136. https://doi.org/10.3390/rs14205136
Xu S, Li S, Tao Z, Song K, Wen Z, Li Y, Chen F. Remote Sensing of Chlorophyll-a in Xinkai Lake Using Machine Learning and GF-6 WFV Images. Remote Sensing. 2022; 14(20):5136. https://doi.org/10.3390/rs14205136
Chicago/Turabian StyleXu, Shiqi, Sijia Li, Zui Tao, Kaishan Song, Zhidan Wen, Yong Li, and Fangfang Chen. 2022. "Remote Sensing of Chlorophyll-a in Xinkai Lake Using Machine Learning and GF-6 WFV Images" Remote Sensing 14, no. 20: 5136. https://doi.org/10.3390/rs14205136
APA StyleXu, S., Li, S., Tao, Z., Song, K., Wen, Z., Li, Y., & Chen, F. (2022). Remote Sensing of Chlorophyll-a in Xinkai Lake Using Machine Learning and GF-6 WFV Images. Remote Sensing, 14(20), 5136. https://doi.org/10.3390/rs14205136