Combination of Hyperspectral and Quad-Polarization SAR Images to Classify Marsh Vegetation Using Stacking Ensemble Learning Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Active and Passive Remote Sensing Images
2.2.2. Field Measurements and Image Preprocessing
2.3. Methods
2.3.1. Image Segmentation and Construction of Classification Schemes
2.3.2. Variable Selection and Construction of Marsh Vegetation Classification Model
3. Results
3.1. Marsh Vegetation Classifications Using Hyperspectral and Quad-Polarization SAR Images
3.1.1. Quad-Polarization SAR Images with Different Frequencies
3.1.2. Integrating Hyperspectral and the Quad-Polarization SAR Images
3.1.3. Statistical Analysis of the Classification Performance of Each Scheme
3.2. Effect of Different Classification Models on Marsh Vegetation Mapping
3.2.1. Stacking Ensemble Learning for Marsh Classification
3.2.2. Comparison of the Performance of Classification Models for Different Vegetation Types
3.3. Influence of Hyperspectral Image Features and Polarimetric Decomposition Parameters on Marsh Vegetation Classification
3.3.1. Evaluation of Contribution of Hyperspectral Image Features and Polarimetric Decomposition Parameters to Classify Marsh Vegetation
3.3.2. Influence of Polarimetric SAR Decomposition Methods on Marsh Vegetation Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Decomposition Models | Methods | Parameters |
---|---|---|
Coherent target decomposition | Touzi (TSVM) | Twenty parameters including TSVM_alpha_s1, TSVM_alpha_s2, TSVM_alpha_s3, etc. |
Aghababaee (Agh) | Agh_Alphap_SM1, Agh_Alphap_SM2, Agh_Alphap_SM3 etc. 19 parameters | |
Coherent-based two components | Huynen | Huynen_T11, Huynen_T22, Huynen_T33 |
Barnes 1 | Barnes1_T11, Barnes1_T22, Barnes1_T33 | |
Barnes 2 | Barnes2_T11, Barnes2_T22, Barnes2_T33 | |
UHDx (UHD1-9) | UHDx_T11, UHDx_T22, UHDx_T33 | |
Multiple-components scattering mechanism model | Freeman two components (Freeman2) | Freeman2_Vol, Freeman2_Ground |
Freeman three components (Freeman3) | Freeman3_Dbl, Freeman3_Odd, Freeman3_Vol | |
Yamaguchi three components (Yamaguchi3) | Yamaguchi3_Dbl, Yanaguchi3_Odd, Yamaguchi3_Vol | |
Yamaguchi four components (Yamaguchi4) | Yamaguchi4_S4R_Dbl, Yamaguchi4_S4R_Hlx, Yamaguchi4_S4R_Odd, Yamaguchi4_S4R_Vol | |
Bhattacharya&Frery four components (BF4) | BF4_Dbl, BF4_Hlx, BF4_Odd, BF4_Vol | |
Neumann two components (Neumann) | Neumann_delta_mod, Neumann_delta_pha, Neumann_tau | |
Arii three components (Arii3_NNED) | Arii3_NNED_Dbl, Arii3_NNED_Odd, Arii3_NNED_Vol | |
Singh four components (Singh_G4U2) | Singh4_G4U2_Dbl, Singh4_G4U2_Hlx, Singh4_G4U2_Odd, Singh4_G4U2_Vol | |
L.Zhang five components (MCSM) | MCSM_Dbl, MCSM_Hlx, MCSM_DblHlx, MCSM_Odd, MCSM_Vol, MCSM_Wire | |
Singh-Yamaguchi six components (Singh_i6SD) | Singh_i6SD_CD, Singh_i6SD_Dbl, Singh_i6SD_Hlx, Singh_i6SD_OD, Singh_i6SD_Odd, Singh_i6SD_Vol | |
Eigenvector /Eigenvalue of scattering matrix | HA-Alpha decomposition (HA-Alpha) | HA-Alpha_T11, HA-Alpha_T22, HA-Alpha_T33, etc. |
Cloude-Pottier (Cloude) | Cloude_T11, Cloude_T22, Cloude_T33 | |
Holm 1 | Holm1_T11, Holm1_T22, Holm1_T33 | |
Holm 2 | Holm2_T11, Holm2_T22, Holm2_T33 | |
An &Yang three components (An_Yang3) | An_Yang3_Dbl, An_Yang3_Odd, An_Yang3_Vol | |
An &Yang four components (An_Yang4) | An_Yang4_Dbl, An_Yang4_Hlx, An_Yang4_Odd, An_Yang4_Vol | |
Van Zyl (1992) three components (VanZyl3) | VanZyl3_Dbl, VanZyl3_Odd, VanZyl3_Vol |
Features | Description |
---|---|
Spectral bands | Thirty-two spectral bands, Brightness, Max. diff |
Texture and position Features | GLCM_Homogeneity, GLCM_Contrast, GLCM_Dissimilarity, GLCM_Entropy, GLCM_An.2nd_moment, GLCM_Mean, GLCM_Correlation, GLCM_StdDev, Distance, Coordinate |
Spectral indexes | CIgreen, CIreg, NDVI, RVI, GNDVI, NDWI |
Backscatter Coefficient (σ0) | σ0VV, σ0VH, σ0HH, σ0HV |
Polarimetric parameters | Shown in Table A1 |
References
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Gong, H.; Wang, Y.; Khan, S.; Zhao, K. Driving Forces for the Marsh Wetland Degradation in the Honghe National Nature Reserve in Sanjiang Plain, Northeast China. Environ. Model. Assess. 2008, 14, 101–111. [Google Scholar] [CrossRef]
- Cronk, J.K.; Fennessy, M.S. Wetland Plants: Biology and Ecology; CRC Press: Boca Raton, FL, USA, 2001; ISBN 1566703727. [Google Scholar]
- Brinson, M.M.; Malvárez, A.I. Temperate freshwater wetlands: Types, status, and threats. Environ. Conserv. 2002, 29, 115–133. [Google Scholar] [CrossRef]
- Gardner, R.C.; Finlayson, M. Global Wetland Outlook: State of the World’s Wetlands and Their Services to People. 2018. Available online: https://researchoutput.csu.edu.au/en/publications/global-wetland-outlook-state-of-the-worlds-wetlands-and-their-ser (accessed on 7 September 2022).
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A Review of Wetland Remote Sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote sensing for wetland classification: A comprehensive review. GIScience Remote Sens. 2017, 55, 623–658. [Google Scholar] [CrossRef]
- Pengra, B.W.; Johnston, C.A.; Loveland, T.R. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. Remote Sens. Environ. 2007, 108, 74–81. [Google Scholar] [CrossRef]
- Wright, C.; Gallant, A. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens. Environ. 2007, 107, 582–605. [Google Scholar] [CrossRef]
- Wang, M.; Fei, X.; Zhang, Y.; Chen, Z.; Wang, X.; Tsou, J.Y.; Liu, D.; Lu, X. Assessing Texture Features to Classify Coastal Wetland Vegetation from High Spatial Resolution Imagery Using Completed Local Binary Patterns (CLBP). Remote Sens. 2018, 10, 778. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Wang, Y.; Campbell, A.; Li, Y.; Zhang, B.; Yin, S.; Xing, Z.; Jin, X. Comparison of object-based and pixel-based Random Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data. Ecol. Indic. 2017, 73, 105–117. [Google Scholar] [CrossRef]
- Belluco, E.; Camuffo, M.; Ferrari, S.; Modenese, L.; Silvestri, S.; Marani, A.; Marani, M. Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sens. Environ. 2006, 105, 54–67. [Google Scholar] [CrossRef]
- Rosso, P.H.; Ustin, S.L.; Hastings, A. Mapping Marshland Vegetation of San Francisco Bay, California, Using Hyperspectral Data. Int. J. Remote Sens. 2005, 26, 5169–5191. [Google Scholar] [CrossRef]
- Sun, W.; Liu, K.; Ren, G.; Liu, W.; Yang, G.; Meng, X.; Peng, J. A Simple and Effective Spectral-Spatial Method for Mapping Large-Scale Coastal Wetlands Using China ZY1-02D Satellite Hyperspectral Images. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102572. [Google Scholar] [CrossRef]
- Liu, C.; Tao, R.; Li, W.; Zhang, M.; Sun, W.; Du, Q. Joint Classification of Hyperspectral and Multispectral Images for Mapping Coastal Wetlands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 982–996. [Google Scholar] [CrossRef]
- Wang, H.; Glennie, C. Fusion of Waveform LiDAR Data and Hyperspectral Imagery for Land Cover Classification. ISPRS J. Photogramm. Remote Sens. 2015, 108, 1–11. [Google Scholar] [CrossRef]
- Horritt, M. Waterline Mapping in Flooded Vegetation from Airborne SAR Imagery. Remote Sens. Environ. 2003, 85, 271–281. [Google Scholar] [CrossRef]
- Evans, T.L.; Costa, M.; Tomas, W.M.; Camilo, A.R. Large-Scale Habitat Mapping of the Brazilian Pantanal Wetland: A Synthetic Aperture Radar Approach. Remote Sens. Environ. 2014, 155, 89–108. [Google Scholar] [CrossRef]
- Moser, L.; Schmitt, A.; Wendleder, A.; Roth, A. Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data. Remote Sens. 2016, 8, 302. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.; Furtado, L.; Novo, E.; Sant’Anna, S.; Liesenberg, V.; Silva, T. Multifrequency and Full-Polarimetric SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Várzea Wetlands. Remote Sens. 2018, 10, 1355. [Google Scholar] [CrossRef] [Green Version]
- de Almeida Furtado, L.F.; Silva, T.S.F.; de Moraes Novo, E.M.L. Dual-Season and Full-Polarimetric C Band SAR Assessment for Vegetation Mapping in the Amazon Várzea Wetlands. Remote Sens. Environ. 2016, 174, 212–222. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Motagh, M. Random Forest Wetland Classification Using ALOS-2 L-Band, RADARSAT-2 C-Band, and TerraSAR-X Imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 13–31. [Google Scholar] [CrossRef]
- Evans, T.L.; Costa, M. Landcover Classification of the Lower Nhecolândia Subregion of the Brazilian Pantanal Wetlands Using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR Imagery. Remote Sens. Environ. 2013, 128, 118–137. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Evaluating Sentinel-2 Red-Edge Bands for Wetland Classification. Proceedings 2019, 18, 12. [Google Scholar]
- Buono, A.; Nunziata, F.; Migliaccio, M.; Yang, X.; Li, X. Classification of the Yellow River Delta Area Using Fully Polarimetric SAR Measurements. Int. J. Remote Sens. 2017, 38, 6714–6734. [Google Scholar] [CrossRef]
- Erinjery, J.J.; Singh, M.; Kent, R. Mapping and Assessment of Vegetation Types in the Tropical Rainforests of the Western Ghats Using Multispectral Sentinel-2 and SAR Sentinel-1 Satellite Imagery. Remote Sens. Environ. 2018, 216, 345–354. [Google Scholar] [CrossRef]
- Tu, C.; Li, P.; Li, Z.; Wang, H.; Yin, S.; Li, D.; Zhu, Q.; Chang, M.; Liu, J.; Wang, G. Synergetic Classification of Coastal Wetlands over the Yellow River Delta with GF-3 Full-Polarization SAR and Zhuhai-1 OHS Hyperspectral Remote Sensing. Remote Sens. 2021, 13, 4444. [Google Scholar] [CrossRef]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Chen, Y.; Xu, K.; Wang, D. Coastal Wetland Classification with GF-3 Polarimetric SAR Imagery by Using Object-Oriented Random Forest Algorithm. Sensors 2021, 21, 3395. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep Learning Based Multi-Temporal Crop Classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Yang, Z.; Kenneth Brewer, C.; Brooks, E.B.; Gorelick, N.; Hernandez, A.J.; Huang, C.; Joseph Hughes, M.; Kennedy, R.E.; et al. Mapping forest change using stacked generalization: An ensemble approach. Remote Sens. Environ. 2018, 204, 717–728. [Google Scholar] [CrossRef]
- Wen, L.; Hughes, M. Coastal Wetland Mapping Using Ensemble Learning Algorithms: A Comparative Study of Bagging, Boosting and Stacking Techniques. Remote Sens. 2020, 12, 1683. [Google Scholar] [CrossRef]
- Long, X.; Li, X.; Lin, H.; Zhang, M. Mapping the Vegetation Distribution and Dynamics of a Wetland Using Adaptive-Stacking and Google Earth Engine Based on Multi-Source Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102453. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Zhang, M.; Lin, H. Mapping Wetland Using the Object-Based Stacked Generalization Method Based on Multi-Temporal Optical and SAR Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102164. [Google Scholar] [CrossRef]
- Box, J.F. Guinness, Gosset, Fisher, and Small Samples. Stat. Sci. 1987, 2, 45–52. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic Map Comparison. Photogramm. Eng. Amp. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Jin, H.; Mountrakis, G.; Stehman, S.V. Assessing Integration of Intensity, Polarimetric Scattering, Interferometric Coherence and Spatial Texture Metrics in PALSAR-Derived Land Cover Classification. ISPRS J. Photogramm. Remote Sens. 2014, 98, 70–84. [Google Scholar] [CrossRef]
- Amani, M.; Brisco, B.; Mahdavi, S.; Ghorbanian, A.; Moghimi, A.; DeLancey, E.R.; Merchant, M.; Jahncke, R.; Fedorchuk, L.; Mui, A.; et al. Evaluation of the Landsat-Based Canadian Wetland Inventory Map Using Multiple Sources: Challenges of Large-Scale Wetland Classification Using Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 32–52. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Kakooei, M.; Ghorbanian, A.; Brisco, B.; DeLancey, E.; Toure, S.; Reyes, E.L. Wetland Change Analysis in Alberta, Canada Using Four Decades of Landsat Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10314–10335. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Brisco, B. Separability Analysis of Wetlands in Canada Using Multi-Source SAR Data. GIScience Amp. Remote Sens. 2019, 56, 1233–1260. [Google Scholar] [CrossRef]
- Brisco, B.; Murnaghan, K.; Wdowinski, S.; Hong, S.-H. Evaluation of RADARSAT-2 Acquisition Modes for Wetland Monitoring Applications. Can. J. Remote Sens. 2015, 41, 431–439. [Google Scholar] [CrossRef]
- Bui, Q.-T.; Chou, T.-Y.; Hoang, T.-V.; Fang, Y.-M.; Mu, C.-Y.; Huang, P.-H.; Pham, V.-D.; Nguyen, Q.-H.; Anh, D.T.N.; Pham, V.-M.; et al. Gradient Boosting Machine and Object-Based CNN for Land Cover Classification. Remote Sens. 2021, 13, 2709. [Google Scholar] [CrossRef]
- Fu, B.; Zuo, P.; Liu, M.; Lan, G.; He, H.; Lao, Z.; Zhang, Y.; Fan, D.; Gao, E. Classifying Vegetation Communities Karst Wetland Synergistic Use of Image Fusion and Object-Based Machine Learning Algorithm with Jilin-1 and UAV Multispectral Images. Ecol. Indic. 2022, 140, 108989. [Google Scholar] [CrossRef]
- Rumora, L.; Miler, M.; Medak, D. Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover Classification Accuracy Using Machine Learning Classifiers. ISPRS Int. J. Geo-Inf. 2020, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, B.; Rogan, J.; Galiano, V.R.; Panday, P.; Neeti, N. An Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classification in Cape Cod, Massachusetts, USA. GIScience Amp. Remote Sens. 2012, 49, 623–643. [Google Scholar] [CrossRef]
- Fu, B.; He, X.; Yao, H.; Liang, Y.; Deng, T.; He, H.; Fan, D.; Lan, G.; He, W. Comparison of RFE-DL and Stacking Ensemble Learning Algorithms for Classifying Mangrove Species on UAV Multispectral Images. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102890. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Li, X.; Liu, Y.; Cai, Y.; Lin, H. Classification of Paddy Rice Using a Stacked Generalization Approach and the Spectral Mixture Method Based on MODIS Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2264–2275. [Google Scholar] [CrossRef]
- Huang, G.; Wu, L.; Ma, X.; Zhang, W.; Fan, J.; Yu, X.; Zeng, W.; Zhou, H. Evaluation of CatBoost Method for Prediction of Reference Evapotranspiration in Humid Regions. J. Hydrol. 2019, 574, 1029–1041. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Y.; Xie, Y.; Zhou, L.; Qiao, J.; Qiu, S.; Sun, Y. Combination of Feature Selection and CatBoost for Prediction: The First Application to the Estimation of Aboveground Biomass. Forests 2021, 12, 216. [Google Scholar] [CrossRef]
- Lan, Z.; Zhao, Y.; Zhang, J.; Jiao, R.; Khan, M.N.; Sial, T.A.; Si, B. Long-Term Vegetation Restoration Increases Deep Soil Carbon Storage in the Northern Loess Plateau. Sci. Rep. 2021, 11, 13758. [Google Scholar] [CrossRef] [PubMed]
- Young, P.J.; Harper, A.B.; Huntingford, C.; Paul, N.D.; Morgenstern, O.; Newman, P.A.; Oman, L.D.; Madronich, S.; Garcia, R.R. The Montreal Protocol Protects the Terrestrial Carbon Sink. Nature 2021, 596, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Rosenqvist, A.; Forsberg, B.R.; Pimentel, T.P.; Rauste, Y.A.; Richey, J.E. The use of spaceborne radar data for inundation modelling and subsequent estimations of trace gas emissions in tropical wetland areas. In Proceedings of the International Symposium on Hydrological and Geochemical Processes in Large-Scale River Basins, Manaus, Brazil, 16–19 November 1999. [Google Scholar]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating Forest Biomass to SAR Data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Melack, J.M.; Dunne, T.; Mertes, L.A.K.; Hess, L.L.; Smith, L.C. Interferometric Radar Measurements of Water Level Changes on the Amazon Flood Plain. Nature 2000, 404, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Henderson, F.M.; Lewis, A.J. Radar Detection of Wetland Ecosystems: A Review. Int. J. Remote Sens. 2008, 29, 5809–5835. [Google Scholar] [CrossRef]
- Fu, B.; Xie, S.; He, H.; Zuo, P.; Sun, J.; Liu, L.; Huang, L.; Fan, D.; Gao, E. Synergy of Multi-Temporal Polarimetric SAR and Optical Image Satellite for Mapping of Marsh Vegetation Using Object-Based Random Forest Algorithm. Ecol. Indic. 2021, 131, 108173. [Google Scholar] [CrossRef]
- Dronova, I. Object-Based Image Analysis in Wetland Research: A Review. Remote Sens. 2015, 7, 6380–6413. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-H.; Kim, H.-O.; Wdowinski, S.; Feliciano, E. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types. Remote Sens. 2015, 7, 8563–8585. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, H.; White, J.C.; Wulder, M.A.; Hermosilla, T. Discriminating Treed and Non-Treed Wetlands in Boreal Ecosystems Using Time Series Sentinel-1 Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102007. [Google Scholar] [CrossRef]
- Townsend, P.A. Relationships between Forest Structure and the Detection of Flood Inundation in Forested Wetlands Using C-Band SAR. Int. J. Remote Sens. 2002, 23, 443–460. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. Wetland Mapping with LiDAR Derivatives, SAR Polarimetric Decompositions, and LiDAR–SAR Fusion Using a Random Forest Classifier. Can. J. Remote Sens. 2013, 39, 290–307. [Google Scholar] [CrossRef]
- Shimoni, M.; Borghys, D.; Heremans, R.; Perneel, C.; Acheroy, M. Fusion of PolSAR and PolInSAR Data for Land Cover Classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 169–180. [Google Scholar] [CrossRef]
- Huynen, J.R. Phenomenological Theory of Radar Targets. In Electromagnetic Scattering; Elsevier: Amsterdam, The Netherlands, 1978; pp. 653–712. [Google Scholar]
Satellites | Sensors | Spectral Ranges/ Polarization | Spatial Resolution | Acquired Time |
---|---|---|---|---|
ZH-1 | hyperspectral | 443–940 nm | 10 m | 20 October 2020 |
GF-3 | SAR | HH, HV, VH, VV | 4.7 m (azimuth) × 3.7 m (range) | 6 July 2020 |
ALOS-2 | SAR | HH, HV, VH, VV | 3.1 m (azimuth) × 5 m (range) | 16 September 2020 |
Land Cover Types | Description | False-Color Image of ALOS-2 Polarimetric Parameters (R = Holm1_T22, G = Holm1_T33, B = Holm1_T11) | False-Color Image of GF-3 Polarimetric Parameters (R = Holm1_T22, G = Holm1_T33, B = Holm1_T11) | True Color Composite Image of ZH-1 Satellites (R = B10, G = B4, B = B2) | Samples |
---|---|---|---|---|---|
Water | Permanent or seasonal river and lake | 67 | |||
Paddy field | Farmland with growing rice | 74 | |||
Cropland | sorghum and growing corn | 94 | |||
Shrub | Salix brachypoda and Spiraea salicifolia | 125 | |||
Forest | Poplar and white birch forest | 259 | |||
Deep-water marsh vegetation | Carex lasiocarpa, Carex pseudocuraica and other plants | 96 | |||
Shallow-water marsh vegetation | Calamagrostis angustifolia, Phragmites australis, Glyceria spiculosa, etc. | 185 |
Land Cover Types | Segmentation Scale | Shape/Color | Compactness/Smoothness |
---|---|---|---|
Water | 50 | 0.3/0.7 | 0.5/0.5 |
Paddy field | 300 | 0.7/0.3 | 0.5/0.5 |
Cropland | 150 | 0.5/0.5 | 0.5/0.5 |
Forest | 30 | 0.5/0.5 | 0.5/0.5 |
Shrub | 10 | 0.7/0.3 | 0.5/0.5 |
Deep-water marsh vegetation | 10 | 0.7/0.3 | 0.5/0.5 |
Shallow-water marsh vegetation | 10 | 0.7/0.3 | 0.5/0.5 |
Schemes | Data Combination | Number of Variables |
---|---|---|
1 | ZH-1 + VI\WI + TF + PF | 86 |
2 | GF-3_σ0 + TF + PF | 57 |
3 | GF-3_P + TF + PF | 205 |
4 | ALOS-2_σ0 + TF + PF | 57 |
5 | ALOS-2_P + TF + PF | 205 |
6 | GF-3_σ0 + P + TF + PF | 209 |
7 | ALOS-2_σ0 + P + TF + PF | 209 |
8 | GF-3_σ0 + P + ALOS-2_σ0 + P + TF + PF | 365 |
9 | ZH-1 + GF-3_σ0 + P + VI\WI + TF + PF | 242 |
10 | ZH-1 + ALOS-2_σ0 + P + VI\WI + TF + PF | 242 |
11 | ZH-1 + GF-3_σ0 + P + ALOS-2_σ0 + P +VI\WI + TF + PF | 398 |
Schemes | Correlation Coefficient | Number of Variables after Eliminating High Correlation | Number of RFE-Based Variables | Model Training Accuracy (%) |
---|---|---|---|---|
1 | 0.85 | 23 | 13 | 81.40 |
2 | 0.8 | 13 | 6 | 75.93 |
3 | 0.75 | 46 | 45 | 76.23 |
4 | 0.95 | 19 | 9 | 87.27 |
5 | 0.85 | 45 | 23 | 86.23 |
6 | 0.80 | 51 | 36 | 77.17 |
7 | 0.75 | 35 | 27 | 86.99 |
8 | 0.8 | 77 | 32 | 88.53 |
9 | 0.85 | 67 | 23 | 84.14 |
10 | 0.95 | 91 | 81 | 90.69 |
11 | 0.95 | 165 | 151 | 91.98 |
Models | Parameters | Tuning Ranges | Step Sizes |
---|---|---|---|
RF | mtry | 1–15 | 1 |
nforest | 500–2500 | 500 | |
XGBoost | max_depth | 4–10 | 1 |
min_child_weight | 1–10 | 1 | |
subsample | 0.5–1 | 0.1 | |
colsample_byforest | 0.5–1 | 0.1 | |
gamma | 0, 0.1, 0.2–0.1, 0.2–0.5 | 0.02, 0.1 | |
lambda | 0, 0.1, 0.2–0.1, 0.2–0.5 | 0.02, 0.1 | |
alpha | 0, 0.1, 0.2–0.1, 0.2–0.5 | 0.02, 0.1 | |
CatBoost | iterations | 500–2000 | 500 |
depth | 3–10 | 1 | |
l2_leaf_reg | 3–10 | 1 | |
learning_rate | 0.05–0.2 | 0.01 |
Schemes | OA (RF) | OA (XGBoost) | OA (CatBoost) | OA (Stacking) | AOA |
---|---|---|---|---|---|
2 | 78.63% ± 2.53% | 77.35% ± 2.65% | 80.34% ± 2.52% | 78.63% ± 2.53% | 78.74% ± 2.56% |
3 | 76.82% ± 2.65% | 77.25% ± 2.68% | 76.82% ± 2.61% | 77.68% ± 2.62% | 77.14% ± 2.64% |
4 | 86.38% ± 2.01% | 86.81% ± 1.97% | 84.26% ± 2.35% | 85.53% ± 2.24% | 85.75% ± 2.14% |
5 | 87.98% ± 2.07% | 87.98% ± 1.99% | 90.99% ± 1.86% | 91.85% ± 1.82% | 89.70% ± 1.93% |
6 | 79.40% ± 2.53% | 76.39% ± 2.76% | 81.55% ± 2.46% | 79.40% ± 2.58% | 79.19% ± 2.58% |
7 | 87.98% ± 2.11% | 88.84% ± 1.96% | 89.27% ± 2.01% | 90.13% ± 1.94% | 89.06% ± 2.01% |
8 | 83.69% ± 2.26% | 83.69% ± 2.36% | 85.41% ± 2.27% | 86.27% ± 2.26% | 84.77% ± 2.29% |
Schemes | OA (RF) | OA (XGBoost) | OA (CatBoost) | OA (Stacking) | AOA |
---|---|---|---|---|---|
1 | 76.60% ± 2.68% | 77.02% ± 2.69% | 79.57% ± 2.54% | 77.02% ± 2.70% | 77.55% ± 2.65% |
9 | 82.40% ± 2.30% | 83.69% ± 2.30% | 86.70% ± 2.10% | 85.41% ± 2.18% | 84.55% ± 2.22% |
10 | 90.56% ± 1.88% | 88.41% ± 2.02% | 91.85% ± 1.77% | 92.27% ± 1.71% | 90.77% ± 1.85% |
11 | 91.85% ± 1.78% | 92.70% ± 1.70% | 93.13% ± 1.65% | 91.85% ± 1.72% | 92.38% ± 1.71% |
Schemes | Shrub | Forest | Deep-Water Marsh Vegetation | Shallow-Water Marsh Vegetation |
---|---|---|---|---|
Scheme 1 vs. Scheme 9 | 3.81% | 7.36% | 19.70% | 15.02% |
Scheme 1 vs. Scheme 10 | 15.70% | 14.40% | 19.28% | 16.31% |
Scheme 1 vs. Scheme 11 | 16.68% | 13.80% | 17.64% | 19.33% |
Scheme 3 vs. Scheme 6 | 7.51% | 1.19% | 1.75% | 2.57% |
Scheme 6 vs. Scheme 8 | 16.24% | 4.64% | 6.76% | 1.96% |
Vegetation Types | ZH-1 | VI/WI | GF-3_σ0 | GF-3_P | ALOS-2_P |
---|---|---|---|---|---|
Shrub | 3% | 4% | 2% | 49% | 41% |
Forest | 4% | 4% | 2% | 50% | 40% |
Deep-water marsh vegetation | 3% | 3% | 2% | 50% | 42% |
Shallow-water marsh vegetation | 4% | 3% | 3% | 54% | 36% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Fu, B.; Zhang, Y.; Li, S.; Xie, S.; Qin, J.; Fan, D.; Gao, E. Combination of Hyperspectral and Quad-Polarization SAR Images to Classify Marsh Vegetation Using Stacking Ensemble Learning Algorithm. Remote Sens. 2022, 14, 5478. https://doi.org/10.3390/rs14215478
Yao H, Fu B, Zhang Y, Li S, Xie S, Qin J, Fan D, Gao E. Combination of Hyperspectral and Quad-Polarization SAR Images to Classify Marsh Vegetation Using Stacking Ensemble Learning Algorithm. Remote Sensing. 2022; 14(21):5478. https://doi.org/10.3390/rs14215478
Chicago/Turabian StyleYao, Hang, Bolin Fu, Ya Zhang, Sunzhe Li, Shuyu Xie, Jiaoling Qin, Donglin Fan, and Ertao Gao. 2022. "Combination of Hyperspectral and Quad-Polarization SAR Images to Classify Marsh Vegetation Using Stacking Ensemble Learning Algorithm" Remote Sensing 14, no. 21: 5478. https://doi.org/10.3390/rs14215478
APA StyleYao, H., Fu, B., Zhang, Y., Li, S., Xie, S., Qin, J., Fan, D., & Gao, E. (2022). Combination of Hyperspectral and Quad-Polarization SAR Images to Classify Marsh Vegetation Using Stacking Ensemble Learning Algorithm. Remote Sensing, 14(21), 5478. https://doi.org/10.3390/rs14215478