Temporal and Spatial Changes and GLOF Susceptibility Assessment of Glacial Lakes in Nepal from 2000 to 2020
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. Methods
3.2.1. Glacial Lake Extraction and Error Analysis
3.2.2. Glacial Lake Water Storage Calculation
3.2.3. GLOF Susceptibility Assessment of Glacial Lake
4. Results
4.1. Distribution of Glacial Lakes
4.2. Glacial Lake Change
4.2.1. Changes of Glacial Lakes of Different Scales
4.2.2. Altitude Variation of Glacial Lakes
4.2.3. Regional Changes of Glacial Lakes
4.3. GLOF Susceptibility Analysis of Glacial Lakes
5. Discussion
5.1. Causes of Glacial Lake Change in Nepal
5.2. The Effect of Different Spatial Resolution Images on Extracting Glacial Lakes Area
5.3. Validation of GLOF Susceptibility Assessment
6. Conclusions
- (1)
- In 2020, there were 2420 glacial lakes with an area of ≥0.0001 km2 in Nepal, having a total area of 87.21 km2, an average area of 0.036 km2, and a total water storage of about 2082.06 × 106 km3. The number is dominated by glacial lakes each with an area of <0.02 km2 (1646, 68.02); while the area is dominated by glacial lakes with an area of >0.1 km2 (50.23 km2, 57.59%). The glacial lakes in Nepal are concentrated in the Karnali region with the number, area and water storage of 1038 (42.89%), 34.96 km2 (40.09%), and 714.20 × 106 m3 (37.16%), respectively. The altitude range of 4500–5500 m is the concentrated development area of glacial lakes, with 1840 glacial lakes (76.03%) and an area of 62.04 km2 (71.14%).
- (2)
- From 2000 to 2020, the number, area, and water storage of glacial lakes with an area of >0.01 km2 in Nepal showed an overall increasing trend. The number of glacial lakes increased from 850 to 1210, with a change rate of 42.35%, including 499 newly formed, and 139 disappeared glacial lakes at the same time. The total area of glacial lakes expanded from 62.29 km2 to 81.75 km2, with a growth rate of 31.2%. The retreat of glaciers caused by climate warming provides development space for the formation and expansion of glacial lakes, which is the main reason for the changes of glacial lakes in Nepal.
- (3)
- The assessment results of GLOF susceptibility revealed that there are 6, 14, 12 and 8 glacial lakes with very high, high, medium and low GLOF susceptibility, respectively. Forty glacial lakes are mainly distributed in the Karnali and Sagarmatha regions. Of these, potential outburst flooding of glacial lakes, including the Tsho Rolpa lake (GLIMS code: GL86477E27861N), Lower Barun lake (GLIMS code: GL87091E27798E), and the lake with GLIMS code of GL87091E27797N will likely pose the greatest dangerous to the downstream areas. Therefore, remote sensing monitoring and basin investigation should be continuously strengthened, and corresponding disaster prevention and reduction plans should be formulated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, T.D. Glacial fluctuations and its impacts on lakes in the southern Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 2071. [Google Scholar] [CrossRef] [Green Version]
- Yi, G.H.; Deng, W.; Li, A.N.; Zhang, T.B. Response of lakes to climate change in Xainza basin Tibetan Plateau using multi-mission satellite data from 1976 to 2008. J. Mt. Sci. 2015, 12, 604–613. [Google Scholar] [CrossRef]
- Ke, C.Q. A review of monitoring lake environment change by means of remote sensing. Trans. Oceanol. Limnol. 2004, 4, 81–86. [Google Scholar]
- Yao, X.J.; Liu, S.Y.; Han, L.; Sun, M.P.; Zhao, L.L. Definition and classification system of glacial lake for inventory and hazards study. J. Geogr. Sci. 2018, 28, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Zhang, Y.L.; Gao, J.G.; Yang, X.C.; Liu, L.S.; Khanal, N.R. Climate change on the southern slope of Mt. Qomolangma (Everest) Region in Nepal since 1971. J. Geogr. Sci. 2013, 23, 595–611. [Google Scholar] [CrossRef]
- Emmer, A.; Klimeš, J.; Mergili, M.; Vilímek, V.; Cochachin, A. 882 lakes of the Cordillera Blanca: An inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena 2016, 147, 269–279. [Google Scholar] [CrossRef]
- Gong, P.; Yao, X.J.; Sun, M.P.; An, L.N.; Li, X.F. Spatial-temporal variations of glacial lakes in the Koshi River basin from 1967 to 2014. Acta Ecol. Sin. 2017, 37, 8422–8432. [Google Scholar]
- Cui, P.; Cheng, R.; Xiang, L.Z.; Su Feng, H. Risk analysis of mountain hazards in Tibetan Plateau under global warming. Clim. Chang. Res. 2014, 10, 103–109. [Google Scholar]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Q.; Wang, J.D.; Zhang, Y.L.; Sheng, Y.W.; Liu, S.Y. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology 2018, 308, 91–106. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Hong, Y.; Li, X.Y. The warning technology of debris flow caused by glacier lake outburst in Qinghai-Tibet Plateau. J. Mt. Sci. 2011, 29, 369–377. [Google Scholar]
- Harrison, S.; Kargel, J.S.; Huggel, C.; Reynolds, J.M.; Shugar, D.H.; Betts, R.A.; Emmer, A.; Glasser, N.F.; Haritashya, U.K.; Klimeš, J.; et al. Climate Change and the Global Pattern of Moraine-Dammed Glacial Lake Outburst Floods. Cryosphere 2017, 12, 1195–1209. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Sheng, Y.W.; Liu, Q.; Liu, L.S.; Liu, S.Y.; Zhang, Y.L.; Song, C.Q. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Tan, F.W.; Shi, M.F.; Wang, Z.H.; Li, Z.X.; Zhan, W.Z.; Rajaure, S.; Tripathi, G.N. Oil-source correlation and hydrocarbon accumulation in the Lesser Himalayan belt of Nepal. Acta Geol. Sci. 2021, 95, 3426–3441. [Google Scholar]
- Rounce, D.; Watson, C.; McKinney, D. Identification of hazard and risk for glacial lakes in the Nepal Himalaya using satellite imagery from 2000–2015. Remote Sens. 2017, 9, 654. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Tweed, F.S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet. Chang. 2016, 144, 1–16. [Google Scholar] [CrossRef]
- Cenderelli, D.A.; Wohl, E.E. Flow hydraulics and geomorphic effects of glacial-lake outburst floods in the Mount Everest region, Nepal. Earth Surf. Process. Landf. 2003, 28, 385–407. [Google Scholar] [CrossRef]
- Byers, A.C.; Chand, M.B.; Lala, J.; Shrestha, M.; Byers, E.A.; Watanabe, T. Reconstructing the history of glacial lake outburst floods (GLOF) in the Kanchenjunga conservation area, east Nepal: An interdisciplinary approach. Sustainability 2020, 12, 5407. [Google Scholar] [CrossRef]
- Mool, P.K.; Maskey, P.R.; Koirala, A.; Joshi, S.P.; Wu, L.; Shrestha, A.B.; Eriksson, M.; Gurung, B.; Pokharel, B.; Khanal, N.R. Glacial Lakes and Glacial Lake Outburst Floods in Nepal; ICIMOD; World Bank Group: Washington, DC, USA, 2015. [Google Scholar]
- Zhang, T.G.; Wang, W.C.; Gao, T.G.; An, B.S.; Shang, X.X. Glacial lake outburst floods on the High Mountain Asia: A review. J. Glaciol. Geocryol. 2021, 43, 1673–1692. [Google Scholar]
- Haritashya, U.; Kargel, J.; Shugar, D.; Leonard, G.; Strattman, K.; Watson, C.; Shean, D.; Harrison, S.; Mandli, K.; Regmi, D. Evolution and controls of large glacial lakes in the Nepal Himalaya. Remote Sens. 2018, 10, 798. [Google Scholar] [CrossRef] [Green Version]
- Bajracharya, S.R.; Mool, P. Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann. Glaciol. 2017, 50, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Liu, Q.; Sapkota, L.; Luo, Y.Y.; Wang, H.; Liao, H.J.; Wu, Y.H. Rapid glacier shrinkage and glacial lake expansion of a China-Nepal transboundary catchment in the central Himalayas, between 1964 and 2020. Remote Sens. 2021, 13, 3614. [Google Scholar] [CrossRef]
- Osti, R.; Egashira, S. Hydrodynamic characteristics of the Tam Pokhari glacial lake outburst flood in the Mt. Everest region, Nepal. Hydrol. Process. 2009, 23, 2943–2955. [Google Scholar] [CrossRef]
- Miles, E.S.; Watson, C.S.; Brun, F.; Berthier, E.; Esteves, M.; Quincey, D.J.; Miles, K.E.; Hubbard, B.; Wagnon, P. Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya. Cryosphere 2018, 12, 3891–3905. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Liu, Q.; Liao, H.J.; Liu, S.Y. Glaciers and glacial lakes status and their related geo-hazards along three main China-Nepal corridors. Mt. Res. 2020, 38, 314–327. [Google Scholar]
- Che, Y.J.; Wang, S.J.; Wei, Y.Q.; Pu, T.; Ma, X.G. Rapid changes to glaciers increased the outburst flood risk in Guangxieco Proglacial Lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau. Nat. Hazards 2021, 110, 2163–2184. [Google Scholar] [CrossRef]
- Sun, M.P.; Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.L. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef]
- Bolch, T.; Yao, T.; Bhattacharya, A.; Hu, Y.; King, O.; Liu, L.; Pronk, J.B.; Rastner, P.; Zhang, G. Earth observation to investigate occurrence, characteristics and changes of glaciers, glacial lakes and rock glaciers in the Poiqu river basin (central Himalaya). Remote Sens. 2022, 14, 1927. [Google Scholar] [CrossRef]
- Che, T.; Xiao, L.; Liou, Y.A. Changes in glaciers and glacial lakes and the identification of dangerous glacial lakes in the Pumqu River Basin, Xizang (Tibet). Adv. Meteorol. 2014, 903709, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.Y.; Kang, S.C.; Guo, W.Q.; Wu, X.D.; Chen, J.L. The rapidly shrinking cryopshere in the past decade: An interpretation of cryopshere changes from IPCC WGI Sixth Assessment Report. J. Glaciol. Geocryol. 2021, 43, 1–8. [Google Scholar]
- Wang, X.; Guo, X.Y.; Yang, C.D.; Liu, Q.H.; Wei, J.F.; Zhang, Y.; Liu, S.Y.; Zhang, Y.L.; Jiang, Z.L.; Tang, Z.G. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 2020, 12, 2169–2182. [Google Scholar] [CrossRef]
- Cao, X.M.; Li, A.N.; Lei, G.B.; Tan, J.B.; Zhang, Z.J.; Yan, D.; Xie, H.; Zhang, S.Q.; Yang, Y.S.; Sun, M.J. Land cover mapping and spatial pattern analysis with remote sensing in Nepal. J. Geo-Inf. Sci. 2016, 18, 1384–1398. [Google Scholar]
- Liu, K.; Sun, B.T.; Li, Y.G.; Wang, J.P. Study on the relationship between the earthquake damage distribution and geological structure of the 2015 Ms 8.1 Nepal earthquake. J. Nat. Disasters 2019, 28, 59–65. [Google Scholar]
- Dhital, M.R. Geology of the Nepal Himalaya; Springer: Berlin/Heidelberg, Germany; p. 2015.
- Cao, X.C.; Liu, Z.Z.; Sheng, L.W. Glacial lake mapping and analysis of the potentially dangerous glacial lakes before Nepal 4 25 Earthquake in 2015. J. Glaciol. Geocryol. 2016, 38, 573–583. [Google Scholar]
- Stöcklin, J. Geology of Nepal and its regional frame. J. Geol. Soc. 1980, 137, 1–34. [Google Scholar] [CrossRef]
- Ma, H.S.; Zhou, L.Q.; Shao, Z.G.; Jiang, C.S. Process and trend of large earthquakes on the earth and in the China continent and its surroundings. Earthquake 2010, 30, 29–37. [Google Scholar]
- Shah, A.A.; Qadri, T.; Khwaja, S. Living with earthquake hazards in South and South East Asia. ASEAN J. Community Engagem. 2018, 2, 15–37. [Google Scholar] [CrossRef]
- Gnyawali, K.R.; Xing, A.; Zhuang, Y. Dynamic analysis of the multi-staged ice–rock debris avalanche in the Langtang valley triggered by the 2015 Gorkha earthquake, Nepal. Eng. Geol. 2020, 265, 1–29. [Google Scholar] [CrossRef]
- Peppa, M.V.; Maharjan, S.B.; Joshi, S.P.; Xiao, W.; Mills, J.P. Glacial Lake evolution based on remote sensing time series: A case study of Tsho Rolpa in Nepal. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 3, 633–639. [Google Scholar] [CrossRef]
- Yan, B.; Jia, H.G.; Jing, R.W.; Zhe, W.R.; Huang, X.R. Glacier lake extraction and its variation analysis of the Bujiagangri based on NDWI-NDSI combination threshold method. J. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Liu, J.; Yao, X.J.; Gao, Y.P.; Qi, M.M.; Duan, H.Y.; Zhang, D.H. Glacial lake variation and hazard assessment of glacial lakes outburst in the Parlung Zangbo River Basin. J. Lake Sci. 2019, 31, 1132–1143. [Google Scholar]
- Zhou, X.; Liu, X.; Zhang, Z. Automatic Extraction of Lakes on the Qinghai-Tibet Plateau from Sentinel-1 SAR Images. In Proceedings of the 2019 SAR in Big Data Era (BIGSARDATA), Beijing, China, 5–6 August 2019. [Google Scholar]
- Jia, S.C.; Xue, D.J.; Li, C.R.; Zheng, J.; Li, W.Q. Study on new method for water area information extraction based on Sentinel-1 data. Yangtze River 2019, 50, 213–217. [Google Scholar]
- Paul, F.; Huggel, C.; Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 2004, 89, 510–518. [Google Scholar] [CrossRef]
- Hall, D.K.; Bayr, K.J.; Schöner, W.; Bindschadler, R.A.; Chien, J.Y. Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sens. Environ. 2003, 86, 566–577. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.Y.; Guo, W.Q.; Yao, X.J.; Jiang, Z.L.; Han, Y.S. Using Remote Sensing Data to Quantify Changes in Glacial Lakes in the Chinese Himalaya. Mt. Res. Dev. 2012, 32, 203–212. [Google Scholar]
- Lala, J.M.; Rounce, D.R.; McKinney, D.C. Modeling the glacial lake outburst flood process chain in the Nepal Himalaya: Reassessing Imja Tsho’s hazard. Hydrol. Earth Syst. Sci. 2018, 22, 3721–3737. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.M.; Liu, S.Y.; Wu, K.P.; Zhu, Y.; Xie, F.M.; Jin, H.A.; Gao, Y.P.; Yao, X.J. Improving the accuracy of glacial lake volume estimation: A case study in the Poiqu basin, central Himalayas. J. Hydrol. 2022, 610, 1–35. [Google Scholar] [CrossRef]
- McKillop, R.J.; Clague, J.J. Statistical, remote sensing-based approach for estimating the probability of catastrophic drainage from moraine-dammed lakes in southwestern British Columbia. Glob. Planet. Chang. 2007, 56, 153–171. [Google Scholar] [CrossRef]
- Wang, W.C.; Yao, T.D.; Gao, Y.; Yang, X.X.; Kattel, D.B. A First-order Method to Identify Potentially Dangerous Glacial Lakes in a Region of the Southeastern Tibetan Plateau. Mt. Res. Dev. 2011, 31, 122–130. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, S. Fuzzy consistent matrix and its application in soft science. Syst. Eng. 1997, 15, 54–57. [Google Scholar]
- Duan, H.Y.; Yao, X.J.; Zhang, D.H.; Qi, M.M.; Liu, J. Glacial Lake changes and identification of potentially dangerous glacial lakes in the Yi’ong Zangbo River Basin. Water 2020, 12, 538. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.L.; Wang, C.M.; Wang, G.C.; Zhang, C.J. Application of fuzzy comprehensive evaluation method in risk degree determination for ice-lake outburst—An example of LuoZha County in Tibet. Earth Environ. 2005, 33, 109–114. [Google Scholar]
- Mergili, M.; Schneider, J.F. Regional-scale analysis of lake outburst hazards in the southwestern Pamir, Tajikistan, based on remote sensing and GIS. Nat. Hazards Earth Syst. Sci. 2011, 11, 1447–1462. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.M.; Liu, S.Y.; Yao, X.J.; Grünwald, R.; Gao, Y.P.; Duan, H.Y.; Liu, J. Lake inventory and potentially dangerous glacial lakes in the Nyang Qu Basin of China between 1970 and 2016. J. Mt. Sci. 2020, 17, 851–870. [Google Scholar] [CrossRef]
- Schmidt, S.; Nüsser, M.; Baghel, R.; Dame, J. Cryosphere hazards in Ladakh: The 2014 Gya glacial lake outburst flood and its implications for risk assessment. Nat. Hazards 2020, 104, 2071–2095. [Google Scholar] [CrossRef]
- Zhou, L.X.; Liu, J.K.; Chen, L. Risk analysis and evaluation of glacier lake outburst in traffic route of southeast Tibet (Linzhi). J. Nat. Disasters 2020, 29, 162–172. [Google Scholar]
- Liu, J.F.; Cheng, Z.L.; Chen, X.Q. The hazard assessment of glacier-lake outburst in Palongzangbu River from Ranwu to Peilong. J. Mt. Sci. 2012, 30, 369–377. [Google Scholar]
- Liu, J.K.; Zhang, J.J.; Gao, B.; Li, Y.L.; Li, M.J.; Wu, J.D.J.; Zhou, L.X. An overview of glacial lake outburst flood in Tibet. J. Glaciol. Geocryol. 2019, 41, 1335–1347. [Google Scholar]
- Shu, Y.F.; Wang, G.C.; Zhuang, S.Y.; Liu, W. A weight determination method based on rough set for hazard assessment of typical moraine-dammed Lake outburst in Himalayan Region. Bull. Soil Water Conserv. 2010, 30, 109–114. [Google Scholar]
- Li, X. Research on Glacier Snowline Changes in High Mountain Asia in the Past 30 Years Using GEE. Master’s Thesis, Northwest University, Evanston, IL, USA, 2021. [Google Scholar]
- Shrestha, U.B.; Shrestha, A.M.; Aryal, S.; Shrestha, S.; Gautam, M.S.; Ojha, H.R. Climate change in Nepal: A comprehensive analysis of instrumental data and people’s perceptions. Clim. Chang. 2019, 154, 315–334. [Google Scholar] [CrossRef]
- Raper, S.C.B.; Brown, O.; Braithwaite, R.J. A geometric glacier model for sea-level change calculations. J. Glaciol. 2000, 46, 357–368. [Google Scholar] [CrossRef]
- Oerlemans, J. Linear modelling of glacier length fluctuations. Geogr. Ann. Ser. A Phys. Geogr. 2012, 94, 183–194. [Google Scholar] [CrossRef]
- Rai, M.R.; Chidthaisong, A.; Ekkawatpanit, C.; Varnakovida, P. Assessing Climate Change Trends and Their Relationships with Alpine Vegetation and Surface Water Dynamics in the Everest Region, Nepal. Atmosphere 2021, 12, 987. [Google Scholar] [CrossRef]
- Majeed, U.; Rashid, I.; Sattar, A.; Allen, S.; Stoffel, M.; Nusser, M.; Schmidt, S. Recession of Gya Glacier and the 2014 glacial lake outburst flood in the Trans-Himalayan region of Ladakh, India. Sci. Total Environ. 2021, 756, 144008. [Google Scholar] [CrossRef] [PubMed]
- Erokhin, S.A.; Zaginaev, V.V.; Meleshko, A.A.; Ruiz-Villanueva, V.; Petrakov, D.A.; Chernomorets, S.S.; Viskhadzhieva, K.S.; Tutubalina, O.V.; Stoffel, M. Debris flows triggered from non-stationary glacier lake outbursts: The case of the Teztor Lake complex (Northern Tian Shan, Kyrgyzstan). Landslides 2017, 15, 83–98. [Google Scholar] [CrossRef]
- Narama, C.; Daiyrov, M.; Duishonakunov, M.; Tadono, T.; Sato, H.; Kääb, A.; Ukita, J.; Abdrakhmatov, K. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia. Nat. Hazards Earth Syst. Sci. 2018, 18, 983–995. [Google Scholar] [CrossRef] [Green Version]
- Petrakov, D.A.; Chernomorets, S.S.; Viskhadzhieva, K.S.; Dokukin, M.D.; Savernyuk, E.A.; Petrov, M.A.; Erokhin, S.A.; Tutubalina, O.V.; Glazyrin, G.E.; Shpuntova, A.M.; et al. Putting the poorly documented 1998 GLOF disaster in Shakhimardan River valley (Alay Range, Kyrgyzstan/Uzbekistan) into perspective. Sci. Total Environ. 2020, 724, 138287. [Google Scholar] [CrossRef]
- Liu, J.; Yao, X.J.; Liu, S.Y.; Guo, W.Q.; Xu, J.L. Glacier changes in the Gangdisê Mountains from 1970 to 2016. Acta Geogr. Sin. 2019, 74, 1333–1344. [Google Scholar]
- Sattar, A.; Haritashya, U.K.; Kargel, J.S.; Leonard, G.J.; Shugar, D.H.; Chase, D.V. Modeling lake outburst and downstream hazard assessment of the Lower Barun Glacial Lake, Nepal Himalaya. J. Hydrol. 2021, 598, 126208. [Google Scholar] [CrossRef]
- Kattelmann, R. Glacial Lake Outburst Floods in the Nepal Himalaya: A Manageable Hazard? Nat. Hazards 2003, 28, 145–154. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A.; Nuimura, T.; Yamaguchi, S.; Sharma, R.R. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery. Environ. Res. Lett. 2009, 4, 045205. [Google Scholar] [CrossRef]
Indicators | F1 a | F2 b | F3 c | F4 d | F5 e | F6 f |
---|---|---|---|---|---|---|
F1 | 0.5 | 0.5 | 0.6 | 0.5 | 0.7 | 0.9 |
F2 | 0.5 | 0.5 | 0.7 | 0.5 | 0.6 | 0.8 |
F3 | 0.4 | 0.3 | 0.5 | 0.6 | 0.8 | 0.8 |
F4 | 0.5 | 0.5 | 0.4 | 0.5 | 0.5 | 0.7 |
F5 | 0.3 | 0.4 | 0.2 | 0.5 | 0.5 | 0.6 |
F6 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.5 |
Indicators | Ⅰ | Ⅱ | Ⅲ | Ⅳ |
---|---|---|---|---|
Susceptibility value (SV) | 0.25 | 0.5 | 0.75 | 1 |
Area of the glacial lake/km2 | <0.27 | 0.27~0.37 | 0.37~0.65 | >0.65 |
Width of the moraine dam/m | >115 | 115~56 | 56~33 | <33 |
Mean slope of the moraine dam/° | <8 | 8~15 | 15~25 | >25 |
Area of the mother glacier/km2 | <0.5 | 0.5~1.3 | 1.3~7.5 | >7.5 |
Slope of the ice tongue/° | <10 | 10~12.5 | 12.5~19 | >19 |
Distance between the lake and glacier terminus/km | >800 | 800~370 | 370~30 | <30 |
Region | 2000 | 2010 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
Area /km2 | Number /n | Volume /×106 m3 | Area /km2 | Number /n | Volume /×106 m3 | Area /km2 | Number /n | Volume /×106 m3 | |
Mahakali | 0.17 | 7 | 1.57 | 0.26 | 10 | 2.46 | 0.27 | 11 | 2.37 |
Seti | 2.09 | 42 | 29.72 | 3.07 | 58 | 51.45 | 2.63 | 50 | 45.77 |
Karnali | 26.07 | 375 | 624.15 | 28.82 | 419 | 668.16 | 32.63 | 520 | 714.20 |
Rapti | 0.25 | 12 | 2.71 | 0.28 | 15 | 2.59 | 0.46 | 17 | 4.89 |
Dhawalagiri | 1.87 | 31 | 36.44 | 2.34 | 37 | 48.24 | 2.73 | 51 | 50.14 |
Gandaki | 6.04 | 26 | 239.44 | 6.41 | 26 | 250.89 | 6.87 | 43 | 258.67 |
Bagmati | 1.49 | 31 | 20.02 | 2.14 | 48 | 29.89 | 2.33 | 50 | 31.23 |
Janakpur | 2.38 | 25 | 68.28 | 2.95 | 31 | 83.64 | 3.27 | 38 | 91.89 |
Sagarmatha | 12.92 | 135 | 328.88 | 14.51 | 157 | 366.34 | 17.59 | 206 | 443.96 |
Koshi | 2.99 | 50 | 66.29 | 3.78 | 53 | 96.35 | 4.89 | 59 | 140.13 |
Meggie | 6.01 | 116 | 101.13 | 6.83 | 130 | 118.26 | 8.07 | 165 | 138.46 |
Glacial Lake | Gaofen-1/6 PMS 2 m | Sentinel-2 MSI 10 m | Landsat OLI 15 m | Landsat OLI 30 m | ||||
---|---|---|---|---|---|---|---|---|
Area/km2 | Error/% | Area/km2 | Error/% | Area/km2 | Error/% | Area/km2 | Error/% | |
A | 1.6514 | 0 | 1.6513 | 0.06 | 1.6029 | 2.93 | 1.5902 | 3.71 |
B | 0.4681 | 0 | 0.4653 | 0.59 | 0.4551 | 2.78 | 0.4496 | 3.95 |
C | 0.2246 | 0 | 0.2203 | 1.91 | 0.2193 | 2.36 | 0.2173 | 3.25 |
D | 0.0751 | 0 | 0.0772 | 2.79 | 0.0761 | 1.33 | 0.0756 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Yao, X.; Duan, H.; Zhang, Y.; Wang, Y.; Wu, T. Temporal and Spatial Changes and GLOF Susceptibility Assessment of Glacial Lakes in Nepal from 2000 to 2020. Remote Sens. 2022, 14, 5034. https://doi.org/10.3390/rs14195034
Hu J, Yao X, Duan H, Zhang Y, Wang Y, Wu T. Temporal and Spatial Changes and GLOF Susceptibility Assessment of Glacial Lakes in Nepal from 2000 to 2020. Remote Sensing. 2022; 14(19):5034. https://doi.org/10.3390/rs14195034
Chicago/Turabian StyleHu, Jiayu, Xiaojun Yao, Hongyu Duan, Yuan Zhang, Yu Wang, and Tongyu Wu. 2022. "Temporal and Spatial Changes and GLOF Susceptibility Assessment of Glacial Lakes in Nepal from 2000 to 2020" Remote Sensing 14, no. 19: 5034. https://doi.org/10.3390/rs14195034
APA StyleHu, J., Yao, X., Duan, H., Zhang, Y., Wang, Y., & Wu, T. (2022). Temporal and Spatial Changes and GLOF Susceptibility Assessment of Glacial Lakes in Nepal from 2000 to 2020. Remote Sensing, 14(19), 5034. https://doi.org/10.3390/rs14195034